

ibm.com/redbooks

Customizing the
Informix Dynamic Server
for Your Environment

Rosario Annino
Alan Caldera

Sergio Dias
Jacques Roy

An administration free zone to reduce
the cost of systems management

IBM Informix DataBlade technology
for extending applications

Robust flexibility to get
the best fit for you

Front cover

Chuck Ballard
Santosh Sajip

Vinayak Shenoi
Robert Uleman

 Suma Vinod

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Customizing the Informix Dynamic Server
for Your Environment

June 2008

International Technical Support Organization

SG24-7522-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2008)

This edition applies to Version 11 of the IBM Informix Dynamic Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xv
Become a published author . xviii
Comments welcome. xix

Chapter 1. IDS and your business . 1
1.1 An introduction to IDS . 2
1.2 Your business environment. 3

1.2.1 Transaction processing . 4
1.2.2 Enabling business decisions . 5

1.3 IDS capabilities . 6
1.4 Chapter abstracts . 10
1.5 Summary . 14

Chapter 2. Optimizing IDS for your environment . 15
2.1 Informix Dynamic Server solutions . 16

2.1.1 Available server solutions . 16
2.1.2 IDS features and tools. 17

2.2 Server deployment . 24
2.2.1 Business environment. 24
2.2.2 Features for customizing the environment . 25
2.2.3 Installation Wizard footprint . 25
2.2.4 Silent installation . 27
2.2.5 Silent configuration . 31
2.2.6 Remote instances administration tool . 33

2.3 Mixed and changing environments . 34
2.3.1 Example business environment . 34
2.3.2 OLTP and DSS (data warehousing) . 36
2.3.3 Configuring for DSS . 36
2.3.4 Configuring for OLTP . 43
2.3.5 Dynamically changing environments. 47

2.4 Installing the Open Admin Tool . 55
2.4.1 Preparing for the installation . 55
2.4.2 Downloading the software. 60
2.4.3 Installing the Open Admin Tool . 63
2.4.4 Configuring the installation . 67
© Copyright IBM Corp. 2008. All rights reserved. iii

Chapter 3. Enterprise data availability . 75
3.1 Enterprise data availability solutions in IDS . 76

3.1.1 High Availability Data Replication . 77
3.1.2 Remote Standalone Secondary . 78
3.1.3 Shared Disk Secondary . 80
3.1.4 Continuous Log Restore . 81
3.1.5 Enterprise Replication . 83

3.2 Clustering EDA solutions. 84
3.2.1 HA clusters . 85
3.2.2 ER with HA clusters . 86

3.3 Selecting the proper technology for your business 88
3.3.1 EDA technologies . 89
3.3.2 Summary of capabilities and failover options 90
3.3.3 Recommended solutions. 92

3.4 Sample scenarios . 93
3.4.1 Failover and disaster recovery . 93
3.4.2 Workload balancing with SDS and ER . 96
3.4.3 Data availability and distribution using ER . 98
3.4.4 Rolling upgrades for ER applications . 100
3.4.5 Application redirection using server groups 103

3.5 Monitoring cluster activity . 105
3.5.1 Checking the message log file and console 106
3.5.2 Event alarms . 106
3.5.3 The onstat utility . 106
3.5.4 The sysmaster database. 106
3.5.5 The Open Admin Tool . 107

Chapter 4. Robust administration . 113
4.1 Disk management . 114

4.1.1 Raw chunks versus cooked chunks . 114
4.1.2 Managing dbspaces . 115
4.1.3 Table types . 120
4.1.4 Data partitioning . 120

4.2 Predictable fast recovery. 121
4.2.1 Benefits of RTO_SERVER_RESTART over CKPTINTVL 122
4.2.2 RTO: Dependent onconfig parameters . 123
4.2.3 When not to use RTO_SERVER_RESTART 126

4.3 Automatic tuning . 127
4.3.1 AUTO_CKPTS . 127
4.3.2 AUTO_LRU_TUNING . 128
4.3.3 AUTO_AIOVPS. 129

4.4 Database connection security . 130
4.4.1 OS password authentication . 130
iv Customizing the Informix Dynamic Server for Your Environment

4.4.2 Pluggable Authentication Module . 131
4.4.3 Lightweight Directory Access Protocol . 132
4.4.4 Password encryption. 132
4.4.5 Stored procedures (sysdbopen and sysdbclose) 133
4.4.6 Administrator-only mode . 134

4.5 Controlling data access . 135
4.5.1 Creating permissions . 136
4.5.2 Security for external routines . 136
4.5.3 Role-based access control . 136
4.5.4 Label-based access control . 137
4.5.5 Auditing . 146
4.5.6 Data encryption . 146

4.6 Backup and restore . 147
4.6.1 Levels of backup . 149
4.6.2 Ontape backup and restore. 150
4.6.3 ON-Bar backup and restore . 151
4.6.4 External backup and restore . 155
4.6.5 Table level restore. 157
4.6.6 Backup filters. 158
4.6.7 Restartable restore . 159

4.7 Optimistic concurrency . 159

Chapter 5. The administration free zone . 161
5.1 IDS administration . 162
5.2 SQL-based administration. 164

5.2.1 The sysadmin database . 165
5.2.2 SQL Administration APIs. 167
5.2.3 Examples of task() and admin() usage . 167
5.2.4 Remote administration . 173

5.3 Scheduling and monitoring tasks . 174
5.3.1 Tasks. 174
5.3.2 Sensors . 176
5.3.3 Startup tasks . 178
5.3.4 Startup sensors . 179

5.4 Monitoring and analyzing SQL statements . 180
5.4.1 Enabling and disabling tracing . 182
5.4.2 Global and user modes of tracing . 183
5.4.3 Examples of enabling and disabling tracing 184
5.4.4 Displaying and analyzing trace information. 187

5.5 The Open Admin Tool for administration. 192
5.6 The Database Admin System . 208

5.6.1 Creating an idle timeout threshold . 209
5.6.2 Developing a stored procedure to terminate idle users. 210
 Contents v

5.6.3 Scheduling a procedure to run at regular intervals 214
5.6.4 Viewing the task in the Open Admin Tool . 216

Chapter 6. An extensible architecture for robust solutions 219
6.1 DataBlades: Components by any other name. 220

6.1.1 Object-relational extensibility . 220
6.2 Data types that match the problem domain. 221

6.2.1 Coordinates. 222
6.2.2 Date types . 230
6.2.3 Fractions . 233

6.3 Denormalization for performance and modeling 242
6.3.1 Line shapes. 244
6.3.2 Time series . 248
6.3.3 Arrays . 253

6.4 Business logic where you need it . 253
6.4.1 Integration: Doing multiple customizations 253
6.4.2 Consistency: Deploying once, supporting all applications 255
6.4.3 Resiliency: Responding to changing requirements 256
6.4.4 Efficiency: Bringing the logic to the data . 256

6.5 Dealing with non-traditional data . 257
6.5.1 Virtual Table Interface and Virtual Index Interface 257
6.5.2 Real-time data. 258
6.5.3 Emerging standards . 259
6.5.4 A word of caution . 259

Chapter 7. Easing into extensibility. 263
7.1 Manipulating dates . 264

7.1.1 The date functions. 267
7.1.2 Functional indexes . 269
7.1.3 Creating new date functions . 270
7.1.4 The quarter() function . 274

7.2 DataBlade API demystified . 277
7.3 Java UDRs made easy . 280
7.4 Development and deployment. 284

7.4.1 Building a C UDR . 284
7.4.2 Installation and registration . 287

7.5 DataBlades and Bladelets . 289
7.5.1 DataBlades included with IDS. 289
7.5.2 Other available DataBlades . 291
7.5.3 Available Bladelets . 293
vi Customizing the Informix Dynamic Server for Your Environment

7.6 Summary . 294

Chapter 8. Extensibility in action . 295
8.1 Pumping up your data with iterators . 296

8.1.1 Writing a C-based iterator function . 297
8.1.2 Generating data with iterators . 300
8.1.3 Improving performance with iterator functions 303
8.1.4 A challenge . 309

8.2 Summarizing your data with user-defined aggregates 309
8.2.1 Extensions of built-in aggregates . 310
8.2.2 User-defined aggregates. 311

8.3 Integrating your data with SOA . 320
8.3.1 SOA foundation technologies in IDS 11 . 320
8.3.2 Service providing with IDS 11 . 321
8.3.3 Service consumption with IDS 11 . 321

8.4 Publishing location data with a Web Feature Service 324
8.4.1 How organizations use spatial data . 324
8.4.2 Maps and globes: The Spatial and Geodetic DataBlades. 326
8.4.3 Basics of WFS. 332
8.4.4 Installing and setting up WFS . 347
8.4.5 Using WFS . 353
8.4.6 WFS and spatiotemporal queries . 358

8.5 Searching your database differently with Soundex 362
8.5.1 Creating the TSndx data type . 364
8.5.2 Indexing the TSndx data type . 367
8.5.3 Extending the base functionality . 371

8.6 Summary . 372

Chapter 9. Taking advantage of database events. 373
9.1 Database servers and application architectures 374
9.2 Database events . 377
9.3 Why use events. 378
9.4 How to use events. 379

9.4.1 IDS trigger capabilities . 380
9.4.2 Trigger introspection . 380
9.4.3 Creating a callback function . 380
9.4.4 Registering a callback function . 382
9.4.5 Memory duration . 383
9.4.6 Named memory. 384
9.4.7 Callback processing . 386

9.5 Implementation options . 390
9.5.1 Option A . 390
9.5.2 Option B . 391
 Contents vii

9.6 Communicating with the outside world . 392
9.6.1 Sending information to a file . 392
9.6.2 Misbehaved functions . 393
9.6.3 Calling a user-defined function . 394
9.6.4 Sending a signal . 396
9.6.5 Opening a network connection . 397
9.6.6 Integrating message queues. 398
9.6.7 Other possibilities . 398

9.7 Conclusion. 398

Chapter 10. The world is relational . 401
10.1 Virtual Table and Virtual Index Interfaces . 402

10.1.1 The UDAM framework. 403
10.1.2 Qualifiers . 413
10.1.3 Flow of DML and DDL with virtual tables and indices 414
10.1.4 UDAM tips and tricks. 419

10.2 Relational mashups. 422
10.2.1 Web services. 423
10.2.2 Amazon Web service . 425
10.2.3 Test driving Amazon VTI. 427
10.2.4 Amazon VTI architecture. 437

10.3 WebSphere MQ virtual tables . 441
10.3.1 WebSphere MQ . 441
10.3.2 How Informix and other database applications use

WebSphere MQ . 443
10.3.3 IDS support for WebSphere MQ . 444
10.3.4 Programming for WebSphere MQ. 445
10.3.5 MQ table mapping functions . 451
10.3.6 Transactions . 454

10.4 Relational access to flat files . 455
10.4.1 The ffvti architecture . 456
10.4.2 Testing ffvti . 458

Appendix A. Additional material . 465
Locating the Web material . 465
Using the Web material . 466

System requirements for downloading the Web material 466
How to use the Web material . 467
viii Customizing the Informix Dynamic Server for Your Environment

The Amazon VTI example . 468
The Fraction DataBlade example. 476
TSndx datatype and overloads. 478

Glossary . 493

Abbreviations and acronyms . 497

Related publications . 501
IBM Redbooks . 501
Other publications . 501
Online resources . 503
How to get Redbooks . 503
Help from IBM . 504

Index . 505
 Contents ix

x Customizing the Informix Dynamic Server for Your Environment

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DataBlade®
DB2 Universal Database™
DB2®
developerWorks®
Distributed Relational Database

Architecture™

DRDA®
eServer™
General Parallel File System™
GPFS™
IBM®
IMS™
Informix®

MQSeries®
pSeries®
Redbooks (logo) ®
Redbooks®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Adobe, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

EJB, Enterprise JavaBeans, J2EE, Java, Java runtime environment, JavaBeans, JavaSoft, JDBC, JDK, JRE,
JVM, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Excel, Internet Explorer, Microsoft, PowerPoint, Virtual Earth, Visual Basic, Visual C++, Visual Studio,
Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Intel, Pentium 4, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii Customizing the Informix Dynamic Server for Your Environment

http://www.ibm.com/legal/copytrade.shtml

Preface

In this IBM® Redbooks® publication, we provide an overview of some of the
capabilities of version 11 of the IBM Informix® Dynamic Server (IDS), referred to
as IDS 11, that enable it to be easily customized for your particular environment.
The focus is on ease of administration and application development, since these
are two of the primary areas for enabling customization. We describe and
demonstrate the customization capabilities of IDS 11 with examples to show how
easily it can be done.

We certainly realize that there are many other functions, features, and
advantages of using IDS that come into play as you customize. However,
although an in-depth focus on all of them is beyond the scope of this document,
we briefly glance at some of them.

IDS 11 provides blazing online transaction processing (OLTP) performance,
legendary reliability, and nearly hands-free administration to businesses of all
sizes. It also offers significant advantages in availability, manageability, security,
and performance.

Replication capabilities enable customers to link stores to distribution centers,
distribution centers to corporate headquarters, or fast and reliable dissemination
of any information across a global organization.

All these capabilities can result in a lower total cost of ownership (TCO). For
example, many of the typical database administrator operations are
self-managed by the IDS database, making it near hands free. The
administration activities can also be controlled within an application via the SQL
API. IDS customers report that they are using one-third or less of the staff
typically needed to manage other database products. Shortened development
cycles are also realized due to rapid deployment capabilities and the choice of
application development environments and languages.

There are also flexible choices for business continuity with replication and the
Continuous Availability (CA) Feature for shared disk cluster solutions. This
means that there is no necessity for a “one-size-fits-all” solution. You can
customize IDS to your environment.

The Continuous Availability Feature offers significant cost savings with support
for cluster solutions, providing scalability to meet growing business demands,
and failover recovery from any server to ensure continuous business operations.
It provides the ability for a secondary server to automatically take over in the
case of a system failure, accessing the same data disk.
© Copyright IBM Corp. 2008. All rights reserved. xiii

Through the use of IBM Informix DataBlade® technology, the capabilities of the
database can be extended to meet specific organizational requirements. All
types of data can be managed, including text, images, sound, video, time series,
and spatial. You can develop applications that use this technology to gain
business advantages in ways that were not previously possible or practical, and
typically at a lower cost.

All of this calls for a data server that is flexible and can accommodate change
and growth in applications, data volume, and numbers of users. It must also be
able to scale in performance as well as in functionality. The new suite of business
availability functionality provides greater flexibility and performance in backing up
and restoring an instance, automated statistical and performance metric
gathering, improvements in administration, and reductions in the cost to operate
the data server.

The technology used by IDS enables efficient use of existing hardware and
software, including single- and multi-processor architectures. It also helps you
keep up with technological growth, including the requirement to support complex
applications, which often calls for the use of nontraditional or rich data types that
cannot be stored in simple character or numeric form.

Built on the IBM Informix Dynamic Scalable Architecture (DSA), IDS provides
one of the most effective solutions available, including a next-generation parallel
data server architecture that delivers mainframe-caliber scalability, manageability
and performance, minimal operating system overhead, automatic distribution of
workload, and the capability to extend the server to handle new types of data.

IDS delivers proven technology that efficiently integrates new and complex data
directly into the database. It handles time-series, spatial, geodetic, Extensible
Markup Language (XML), video, image and other user-defined data side by side
with traditional data to meet today’s most rigorous data and business demands. It
also helps businesses lower their TCO by using their well-regarded general ease
of use and administration as well as its support of existing standards for
development tools and systems infrastructure. IDS is a development-neutral
environment and supports a comprehensive array of application development
tools for rapid deployment of applications under Linux®, UNIX®, and Microsoft®
Windows® operating environments.
xiv Customizing the Informix Dynamic Server for Your Environment

The team that wrote this book

This book was produced by a team of specialists from around the world working
with the International Technical Support Organization (ITSO), in San Jose,
California.

Chuck Ballard is a Project Manager at the ITSO in San
Jose, California. He has over 35 years experience, holding
positions in the areas of product engineering, sales,
marketing, technical support, and management. His
expertise is in the areas of database, data management,
data warehousing, business intelligence, and process
re-engineering. He has written extensively on these
subjects, taught classes, and presented at conferences and
seminars worldwide. Chuck has both a bachelor degree and
a master degree in industrial engineering from Purdue
University.

Jacques Roy is a member of the IBM worldwide sales
enablement organization. He is the author of “IDS.2000:
Server-Side Programming in C” and the lead author of
“Open-Source Components for IDS 9.x.” Jacques is also the
author of multiple technical IBM developerWorks® articles
on a variety of subjects. He is a frequent speaker at data
management conferences, IDUG conference, and users
group meetings.

Rosario Annino is an IBM Certified Solutions Expert for
IDS and DB2® for Linux, UNIX, and Windows (LUW). He is
located at the Informix Lab in Bedfont, London, England.
With more than 15 years experience in the software
industry, Rosario has held positions as a programmer,
analyst, and data warehouse administrator. He is currently
in a technical support group providing level 2 support for the
Informix product line. He is moving into Project
Management and is already covering positions as a project
manager. Rosario received a master degree in computer
science in 1996 from the University of Catania, Italy.
 Preface xv

Alan Caldera is currently a team lead for the IBM Informix
DataBlade development group and member of the IDS
Architecture Board. He has over 20 years of experience in
the IT industry as a software developer, database
administrator, and consultant. Alan joined the Informix
Software Professional Services Organization in 1998 as a
consultant, working with customers and business partners
on DataBlade implementations, application design,
replication, and IDS performance tuning. He holds a
bachelor degree in computer science from Indiana
University.

Sergio Dias is a Software Engineer with certifications in
IBM DB2 and Informix database servers, and over 25 years
experience in hardware and software development,
consulting, technical support, and software quality
assurance (QA). He joined Informix Software, Brazil in 1995,
and then moved to Miami as an Advanced Support Engineer
for Latin America, the Caribbean, and Canada. Sergio
currently works on the Informix QA team on High Availability
and Data Replication technologies. He holds a Bachelor of
Science (BS) degree in Electronics Engineering from the
Instituto Tecnológico de Aeronáutica in Brazil.

Vinayak Shenoi is team lead for the IBM Informix Dynamic
Server SQL and Extensibility components. He has led the
development of many features in the SQL, distributed
queries, DRDA®, Java™, and extensibility components of
IDS. Vinayak previously contributed to the Redbooks
publication Informix Dynamic Server V10 . . . Extended
Functionality for Modern Business, SG24-7299. He holds a
master degree in computer science from California State
University in Sacramento.

Santosh Sajip is a Senior Software Engineer with the IBM
Informix Resolution team, in San Jose, California. He began
his career as a member of the Informix XPS Advanced
Support team in 1998 and now has over 13 years of
experience in the software development and technical
support field. Santosh holds a master degree in computer
science from the University of Pune in India.
xvi Customizing the Informix Dynamic Server for Your Environment

Robert Uleman is a member of the Information
Management Worldwide Technical Sales team, focusing on
spatial and spatio-temporal data management. He is a
frequent contributor to publications and conferences for the
geographic information systems (GIS) and location-based
services (LBS) industries. Robert worked for Informix
Software as a product development manager, responsible
for the Geodetic, R-tree, Time Series, Video, and Image
DataBlades. In his 24-year career, he has developed
software products for GIS, image processing, and
geophysical data processing. He holds master degrees in
exploration geophysics (Stanford University) and applied
physics (Delft University of Technology).

Suma Vinod is a Senior Software Engineer in the IBM
World Wide Resolution team providing advanced technical
support, product development, training, and defect fixing for
Informix products. She joined the Informix Advanced
Support team in July 1998 and has about 13 years of
experience in software development and support. Suma
holds bachelor degrees in computer science and
engineering from Kerala University in India.

Thanks to the following people who have either contributed directly to the content
of this book or to its development and publication:

� A special thanks to:

– Alexander Koerner for his valuable contributions to this book and ongoing
support of the ITSO. Alexander is a member of the IBM worldwide sales
enablement organization, located in Munich, Germany.

– Donald Payne for his significant contribution to this book, particularly in
the area of Informix DataBlades. Donald is an IT Specialist with the
WorldWide Enablement Center in New York, NY, USA.

– Prasad Mujumdar for his valuable contributions and technical guidance in
the area of user-defined access methods. Prasad is a senior member of
the IDS development team, located in San Jose, CA, USA.

– Keshava Murthy for his valuable contributions and technical guidance in
the area of user-defined access methods. Keshava is an IDS
SQL/Extensibility Architect, located in San Jose, CA, USA.
 Preface xvii

� Thanks also to the following people for their contributions to this project:

– From IBM Locations Worldwide

• Cindy Fung, Software Engineer, IDS Product Management, Menlo
Park, CA

• Pat Moffatt, Program Manager, Education Planning and Development,
Markham, Ontario, Canada

– From the International Technical Support Organization

• Mary Comianos, Publications Management
• Emma Jacobs, Graphics
• Deanna Polm, Residency Administration

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xviii Customizing the Informix Dynamic Server for Your Environment

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Customizing the Informix Dynamic Server for Your Environment

Chapter 1. IDS and your business

The IBM Informix Dynamic Server (IDS) is good for your business. In this
chapter, we give you a brief overview of some of the capabilities of IDS, so that
you can better understand why. As you read the remainder of this book, you will
see, in much detail, how IDS can be customized and optimized for your particular
business environment, as a robust database management solution that can help
you meet your business requirements.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 An introduction to IDS

IDS delivers significant capabilities, many of which are unique. Many are also
high in the list of critical capabilities that demanding businesses require. The
requirements include capabilities to help manage business performance, the
flexibility to change as the business changes, and increasing transaction
performance to meet growing business volumes. The requirements also include
extensibility to support new data types that enable increasingly robust
applications and availability to meet the expanding hours of business common in
a global business environment.

Such capabilities can be found in key criteria categories as in the following
examples:

� Fast and easy implementation and version migration
� Minimal administration resource requirements
� Blazing online transaction processing (OLTP) performance
� Small footprint, embedability, and low operational resource usage
� Powerful extensibility for robust application development

In this book, we discuss some of the capabilities of a robust database
management system (DBMS) and how they are delivered with IDS version 11
(IDS 11). As examples, IDS offers the following capabilities and features among
others:

� Provides less and easier administration to run and manage
� Can automatically take corrective actions and perform self tuning
� Can administer multiple instances through a single database connection
� Enables automated systems monitoring and maintenance
� Provides a non-blocking checkpoint
� Is built on a dynamic scalable architecture
� Has a continuous availability feature for cluster solutions
� Has multiple high availability options to meet business demand
� Can be administered by command line, SQL, or the Open Admin Tool (OAT)
� Has enterprise replication for online, real-time reliable data distribution

With such capabilities, you can for perform the following tasks, for example:

� Perform implementation and maintenance with minimal resources
� Easily embed IDS in application systems
� Create your own “administration free zone” (See Chapter 5, “The

administration free zone” on page 161, for details.)

Through the use of IBM Informix DataBlade technology, the capabilities of the
database can be extended to meet specific organizational requirements. All
types of data can be managed, including text, images, sound, video, time series,
2 Customizing the Informix Dynamic Server for Your Environment

and spatial. In addition, you can develop applications that use this technology to
gain business advantages in ways that were not previously possible or practical.

All of this calls for a data server that is flexible and can accommodate change
and growth, in applications, data volume, and numbers of users. It must be able
to scale in performance and functionality. The IDS suite of business availability
functionality provides greater flexibility for backing up and restoring an instance,
automated statistical and performance metrics gathering, improvements in
administration, and reductions in the cost to operate and maintain.

The technology used by IDS enables efficient use of existing hardware and
software, including single- and multi-processor architectures. It also helps you
keep up with technological growth, including such requirements as more complex
application support, which often calls for the use of nontraditional or rich data
types that cannot be stored in simple character or numeric form.

To summarize, IDS has significant functionality, flexibility, and capability:

� Administration that is faster and easier to save you time, money, and
resources.

� Extensibility that is integrated to enable robust applications and systems
solutions

� Applications that can be developed more, faster, and with fewer resources
than with standardization, and a wide range of DataBlades

IDS has all this, and better yet, it can all be easily customized to support you and
your particular business environment. How? Let us take a look.

1.2 Your business environment

What are your business environment and processing requirements? As we all
know, there are many different business environments and many specific
requirements that can make even similar environments seem different. In this
section, we list some of the more common business requirements. While there
are many variations, most are quite similar. We offer the following list of
requirements categories to simply provide a starting point to help you in
understanding the significant capabilities of IDS in supporting them. Then, your
task will be to bridge this information to your particular business requirements.

� OLTP to drive the operational environment
� Packaged and custom applications
� Web-based and embedded applications
� Data analysis for decision support, through data warehousing and query
� Non-traditional data types
 Chapter 1. IDS and your business 3

� Global availability for information on demand
� Mixed and changing environments

In supporting these requirements, two primary types of processing are most
prevalent, OLTP and Decision Support Systems (DSS). These two types of
processing are typically used in each of the environments in some form or
another. In the following sections, we provide a brief overview of each to promote
a consistent understanding.

1.2.1 Transaction processing

OLTP refers to an environment that is concerned with processing transactions.
The transactions are processed online and typically one at a time, as they
happen, rather than, say, being stored in a group or a batch and processed at a
later time.

From a simplistic point of view, a transaction can be defined as a unit of work that
consists of receiving input data, performing some processing on that data, and
delivering a response. An OLTP system is one that manages the execution of
these transaction applications. All of this sounds fairly straightforward, except
that, over time, expanded meanings have been given to the term OLTP, as in the
following examples:

� A category of transactions, with specific characteristics
� An environment for processing transactions online
� A category of applications, with specific characteristics
� A process with specific characteristics
� A category of tools used to manage the transaction processing
� A set of specific requirements for transaction completion and recovery
� A specific database organization that best supports transaction processing
� Processing characteristics that differentiate OLTP from other categories

Therefore, you must be familiar with all of these particulars as you discuss OLTP.
For example, the following characteristics, among others, differentiate OLTP:

� Processing the data results in new, or changed, data.
� The duration of processing a transaction is relatively short.
� The volume of data processed in a single transaction is small.
� It typically deals with large numbers of transactions.
� A transaction recovery process is required so that data is not lost.
� The number of database accesses during a transaction is small.
� Processing time must be short, since it is performed online.
� The entire transaction must be completed successfully or rolled-back.

OLTP databases then must be capable of enabling the high performance
processing that is required. That is, they need to be designed and configured to
4 Customizing the Informix Dynamic Server for Your Environment

provide fast read/write access. To support this, the data records read and written
should have the following characteristics:

� Relatively small in size
� Indexed for fast access
� Lockable
� Persistent
� Recoverable
� Highly available

1.2.2 Enabling business decisions

Decision Support Systems refers to data processing applications that are
concerned with performing data analysis to support the decision making process.
These transactions can be processed online or in a batch. The timeliness
requirement of this category of applications is determined by the business. That
is, how quickly the information is required or how quickly the decision must be
made.

Most typically the performance of DSS transactions is not as critical as with
OLTP. This is because many DSS applications are also used simply for reporting
a summary of the results of, for example, the daily business operational
processes. These types of DSS transactions, which are non-exception
transactions, can be processed immediately or delayed, perhaps even overnight
in a batch reporting environment.

DSS applications are more typically read-only applications and, therefore, do not
have the stringent recovery and availability requirements as with OLTP. Even if it
is an online DSS application, and it fails for any reason, it can simply be rerun
after recovery. However, a DSS application can also be run online and thus must
be system managed.

The set of characteristics and requirements for DSS can be quite different from
OLTP, as in the following examples:

� The applications typically access multiple databases and servers.
� The duration of the application processing is relatively long.
� The volume of data processed by the application is large.
� Typically fewer, longer running applications are processed.
� A recovery process might not be required in a read-only environment.
� The number of database accesses during a transaction is larger.
� Processing time can be long, even when performed online.
� Application results need to be repeatable.
 Chapter 1. IDS and your business 5

DSS databases then must be capable of enabling multiple large tables to be
scanned, read, joined, and analyzed, and particularly quickly when run online.
The database typically has the following characteristics:

� Relatively large data volume
� Might require full table scans
� Federated to support multiple heterogeneous databases
� Access data across multiple servers
� Join heterogeneous data sources
� Highly available when supporting online analysis
� Scalable to handle large and growing volumes of users and data

There are many similar, but different, operating environments in the business
world that are required simply to handle the differing business requirements.
Throughout this book, we describe the capabilities of IDS that enable it to be
customized to support all of them. The message that we want to convey is that
IDS can be customized to support your environment.

1.3 IDS capabilities

We have just discussed some of the typical business environments and some of
the typical requirements for them. But can all of them be met by the IDS
database management system? The answer is...definitely yes.

In this book, we discuss and describe many of the IDS capabilities for
customizing your environment. However, it is not our intention to provide detailed
function and feature descriptions, but simply to discuss some of them in the
context of how and where to use them and how you can use them to help you
customize IDS to support your particular business requirements.

In this section, we provide a brief review of the positioning of IDS, which is
summarized in Figure 1-1, and its capabilities.
6 Customizing the Informix Dynamic Server for Your Environment

Figure 1-1 IDS capabilities positioning

Each of the categories and capabilities upon which the IDS positioning is based
is briefly described as follows:

� Resilient

The business environment today is more global in nature, and the demand for
high availability of systems and applications is growing dramatically to enable
support of that environment. IDS capabilities are also growing to meet those
demands.

– Reliable

IDS offers a broad spectrum of business continuity options to protect your
data server environment. Some business situations require backup
servers without duplicating data, while others need full and independent
copies of the entire processing environment for failover and workload
balancing around the world.

– Available

IDS 11 offers flexible choices that work seamlessly together for an
availability solution to fit nearly any situation. For example, the IDS
continuous availability feature enables you to build a cluster of IDS
instances around a single set of shared storage devices. All instances
synchronize memory structures, providing nearly seamless failover
options at a fraction of the cost of having full replicas of the primary data
server environment. Properly written applications can easily leverage this
architecture for load balancing or practically uninterrupted data services,
even in the event that one or more servers fail.

 Reliable

 Available

 Secure

 Adaptable

 Fast

 Flexible

 Hidden

 Minimal

 Affordable

Efficient
and

Easy

Rapid Response
to

Changing Needs

Peace of mindResilient

Agile

Invisible
 Chapter 1. IDS and your business 7

IDS extends High-Availability Data Replication by supporting multiple
secondary sites, enabling you to create a failsafe, multi-site global
availability plan while maximizing IT investment. Each remote replica can
also be used for read access, providing more options for load balancing
and improved performance. The IDS Continuous Log Restore capability
extends backup and restore tactics, offering log recovery to a backup
server. This is often an ideal availability solution, offering a more
automated and highly available option than simple backup and restore.

– Secure

IDS supports open, industry-standard security mechanisms such as roles,
password-based authentication, and relational database management
system (RDBMS) schema authorizations. These open standards ensure
flexibility and security with easy validation and verification. Column-level
encryption and Pluggable Authentication Modules (PAMs) are also
available. The Advanced Access Control Feature offers cell-, column-, and
row-level label-based access control (LBAC). This means access to data
can be controlled down to the individual cell level.

� Agile

To meet these business demands, businesses are going through significant
change. It is not just a one-time change to support a new business need, but
an ongoing change. The pace of business grows faster and faster, and
business systems must continually change to keep up with the pace.

– Adaptable

Customized deployment provides support for multiple triggers on tables
and views for application flexibility and compatibility.

– Fast

IDS is known for blazing fast OLTP performance. Such capabilities as the
last committed isolation level and non-blocking checkpoint maximize
concurrency for application performance. File system direct I/O
approximates I/O performance on raw devices. Optimizer directives enable
improved SQL operation performance and automatic statistics collection
helps optimize data queries. These capabilities both enable significant
performance gains and reduce infrastructure costs.

– Flexible

For example, the Web Feature Service application programming interface
(API) in IDS 11 makes it even easier to use location-based services or
location-enabled IT services. It implements an Open GeoSpatial
Consortium Web Feature Service (OGC WFS) API in IDS to enable
Web-driven applications to interact with location-based data provided by
the IBM Informix Spatial and Geodetic DataBlade modules, which also
support the Web Feature Service API.
8 Customizing the Informix Dynamic Server for Your Environment

� Invisible

Business systems and applications must not only keep pace with the
changing business environment, but they must do so with minimal impact on
the day-to-day business operations. That is, they must do so with minimal
effort, low costs, and increased ease of use. One way to do that is with
increased automation and self-maintenance to minimize resource costs.

– Hidden

Database administrative tasks can be controlled from within the
application, permitting seamless integration for solutions. Tasks, such as
space management, monitoring and manipulating memory, session
management and many other activities can be executed by using SQL
statements within your application with the SQL Administration API.

– Minimal

A customizable installation footprint can be created via the Deployment
Wizard, enabling you to install only the data server functionality that you
need, which reduces the cost and size of your solution and distribution.

– Affordable

Adding features and functionality to database management servers often
results in complexity and the requirement for additional administrative
duties. With IDS, that burden is relieved with administration being
performed within an application or with powerful APIs and GUIs.

That is the positioning of IDS from a high level perspective. Now we discuss
some examples of the special features of IDS:

� High availability to provide the systems access and support that is required to
successfully compete in a global environment

� Significant security and encryption, such as LBAC and Common Criteria
certification

� Spatial and Geodetic Web services for location-based services

IDS provides significant extensibility with the DataBlade technology.

� Further reduction in total cost of ownership (TCO) with improved
administration functions, which are easy, yet powerful, and can be scheduled,
or immediately executed automatically based on systems monitoring and
programmatic alerts

� Advanced application development, with XML and SOA, for standardization
and reduced cost through reusable code modules

� Enhanced solutions integration, an Admin API, and a customizable footprint
that results in faster and easier administration with minimum resource
requirements
 Chapter 1. IDS and your business 9

Ready to learn more? These are the topics discussed and described in this book,
so read on.

1.4 Chapter abstracts

In this section, we provide a brief description of the topics found in the remainder
of this book. We provide a good overview of what you will find in the chapters that
follow. For those who prefer to pick and choose the topics of special interest, this
section will help you select and prioritize your reading.

Chapter 2: Optimizing IDS for your environment
In this chapter, we discuss topics that are related to the installation and
configuration of IDS that enable you to optimize it for your environment. This
chapter includes the following topics:

� How easily IDS can be customized to fit into many environments

� The new Deployment Wizard for minimizing the IDS footprint (disk space)

� Creating a customized silent installation on multiple mach machines

� The flexibility of IDS in a mixed environment, such as dynamically changing
from OLTP to DSS or from DSS to OLTP

� Network infrastructure and configuration of the connections to meet
requirements

� Installing and configuring the OAT

Chapter 3: Enterprise data availability
In this chapter, we provide an overview of the enterprise data availability (EDA)
solutions and possible combinations of the technologies on which EDA is based.
We also discuss the technologies and solutions that are available to provide the
best implementation to satisfy your business requirements. In addition, we
provide sample scenarios for better understanding of EDA. Upon completion of
this chapter, you will have a better understanding of the technology and solutions
that are available to you with IDS.

To satisfy our objectives, we discuss the following topics:

� EDA solutions
� Clustering EDA solution
� Selecting the proper technology for your business
� Sample scenarios
� Monitoring cluster activity
10 Customizing the Informix Dynamic Server for Your Environment

Chapter 4: Robust administration
The database server administrator (DBSA) plays a crucial role in the proper
functioning of the database systems. IDS contains a rich set of features that
provide DBSAs with a framework to create a robust environment for a high
performance database system.

In this chapter, we discuss the following topics:

� Disk management in regard to the benefit from direct I/O on cooked chunks
and how to optimize the dbspace layout and select the partitioning techniques
and table types best suited for your environment

� Performance and autonomic features in terms of how to meet your recovery
time objective (RTO), and benefit from self tuning techniques such as
automatic checkpoint, automatic LRU and AIO tuning.

� Security in terms of how to implement database connection security,
privileges on database objects using role-based access control (RBAC), and
multi-level user and data access policies using LBAC

� Backup and restore in regard to meeting your recovery point objective (RPO)
using the most suitable backup/restore technique for your configuration

Chapter 5: The administration free zone
IDS 11 provides a framework to automatically schedule and monitor database
activities, to take corrective actions, and even to tune itself. Much of these
features are enabled because the administration is SQL-based. Therefore,
routines can be written to monitor, analyze, and change configuration parameters
dynamically, based on the requirements of the IDS implementation. It is
sometimes positioned as a “set it and forget it” environment because the system
does much of the administration. That is also the genesis for referring to the
environment as the administration free zone.

This framework is a significant enhancement and provides significant benefits.
For example, the reduction in administration resources is a significant contributor
to the low TCO of an IDS implementation.

A Web-based GUI administration tool called the Open Administration Tool is also
available for IDS 11. This tool uses the new features in IDS 11 to provide a simple
interface for performing the IDS administration tasks.

In this chapter, we provide a brief description of these features and how they
make administration simple and automated in IDS 11.
 Chapter 1. IDS and your business 11

Chapter 6: An extensible architecture for robust solutions
In this chapter, we begin to change the subject matter, moving from topics on the
installation and configuration of the data server to the customization of its
functional capabilities.

By extending the data server with new data types, functions, and
application-specific structures, developers build solutions that achieve the
following tasks:

� Take advantage of data models that closely match the problem domain
� Depart from strict relational normalization to achieve better performance
� Implement powerful business logic in the data tier of the software stack
� Handle new types of information

We call these solutions robust because the elegance and economy of their
architecture gives them higher performance, maintainability, responsiveness, and
flexibility in the face of changes in environment, assumptions, and requirements.

Chapter 7: Easing into extensibility
In this chapter, we describe how to get started with extensibility in IDS. We
demonstrate simple examples on how to manipulate dates and discuss how to
create user-defined routines (UDRs) by using C, SPL, or Java.

The basis for functional customization in IDS is the ability to add components,
which are packages that contain data types, functions, index methods, and
whatever else is needed to teach the data server new tricks. These components
are referred to as DataBlades, which are, in fact, extensions of the database.

An alternative to creating DataBlades is to take advantage of extensions that are
already written, which are known as either Bladelets (small DataBlades) or
example code. These extensions are available in a fashion similar to
open-source code, in that they come with source code but are not supported by
IBM or the original author.

For those who want to develop their database extensions in the C programming
language, IDS contains a comprehensive set of header files, public data type
structures, and public functions via the DataBlade API.

Chapter 8: Extensibility in action
In this chapter, we show how to reduce the load on client applications for
generating data sent to the database, how to aggregate it in the database so that
it does not have to come back to the client, and how to improve performance by
using views.
12 Customizing the Informix Dynamic Server for Your Environment

We also discuss how to consume Web services and provide details about new
capabilities for geospatial mapping and location-based services using the Web
Feature Service (WFS) available in IDS 11. One of the solutions for providing this
platform independence is the Open GeoSpatial Consortium’s WFS specification.
It provides a generic method for accessing and creating geographic data via a
Web service. A WFS provides the following capabilities:

� Query a data set and retrieve the features
� Find the feature definition
� Add features to, or delete them from, a data set
� Update features in a data set
� Lock features to prevent modification

In addition, to complete the discussion on extensibility, we include
service-oriented architecture (SOA). An SOA is a collection of services on a
network where the services communicate with one another in order to carry out
business processes. The communication can either be data passing, or it can
trigger several services implementing an activity. The services are loosely
coupled, have platform independent interfaces, and are fully reusable.

Chapter 9: Taking advantage of database events
In this chapter, we discuss the ability to add processing based on events that
occur in the database. This capability allows you to better integrate the database
in the architecture of a business solution. The result can be faster performance,
simpler design and implementation, faster time to production, and response to
business needs.

IDS has the unique capability of registering functions that will be executed when
specific events occur. An IDS event lives in the context of a database connection.
This means that the events and callback functions are specific to a user session,
which then must register the callbacks before the events are generated. IDS 11
includes new stored procedures that are executed when a database is opened or
when it is closed.

The logic of which external business partner is contacted following a specific
event can be kept outside the application that generated the event. This way, if
new business partners are added or some are removed, the application does not
change. Since the logic is in the database, multiple applications can take
advantage of the database logic. This simplifies the applications and provides an
additional way to reuse code.

Chapter 10: The world is relational
In this chapter, we provide an discussion of the Virtual Table Interface (VTI) and
Virtual Index Interface (VII) features provided by IDS. In the business world, there
is still a significant volume of application data that is not stored in relational
 Chapter 1. IDS and your business 13

tables, and there is a requirement to integrate this data with the data that is
stored in relational databases to satisfy business operations.

IDS provides a rich framework for application developers to integrate
non-relational data sources into the relational model and thereby enabling SQL
query capabilities on data in these non-relational data sources. We show a few
examples that illustrate the power of this framework and provide possible starting
points for how to customize IDS to build complex data integration applications.

With the advent of Web services, SOA, and Web 2.0, it is evident that centralized
sources of data are a thing of the past. More and more we see disparate data
sources being joined in order to extract interesting information from the huge
volumes of data. This is also evident in the current trend of Web 2.0 applications
called mashups. The idea is to be able to integrate multiple Web services, or for
that matter, any non-relational data source, into IDS and be able to query the
data by using simple SQL statements.

1.5 Summary

We have now provided an overview of the material presented in this book. This
guide will assist you in choosing and prioritizing your reading selections. In the
remainder of this book, we discuss and describe the capabilities of IDS in a way
that will make it easier for you to see how they can be applied and enable you to
customize IDS to your specific business environment, so that you can start taking
advantage of the benefits.
14 Customizing the Informix Dynamic Server for Your Environment

Chapter 2. Optimizing IDS for your
environment

In this chapter, we discuss topics related to the installation and configuration of
the IBM Informix Dynamic Server (IDS) that enable you to optimize it for your
environment. This chapter includes the following topics:

� How easily IDS can be customized to fit into many environments
� The new Deployment Wizard for minimizing the IDS footprint (disk space)
� The creation of a customized silent installation on multiple machines
� The flexibility of IDS in a mixed environment, such as dynamically changing

from online transaction processing (OLTP) to Decision Support Systems
(DSS), or from DSS to OLTP

We also discuss the network infrastructure and how to configure the connections
to meet your requirements.

Let us start by discussing the IDS server solutions that are available today for
your consideration.

2

© Copyright IBM Corp. 2008. All rights reserved. 15

2.1 Informix Dynamic Server solutions

The IDS delivers proven technology that efficiently integrates new and complex
data directly into the database. It has outstanding functionality for application and
Web development, information integration, and high performance. Most of these
capabilities are unique in the industry. Thanks to the IDS architecture and robust
features, it not only maintains, but accelerates its lead over other data servers in
the market today. These features enable clients to use information in new and
more efficient ways to create a business advantage.

In this section, we provide a brief description of the different server solutions that
are available and of a large number of additional products that allow Informix to
satisfy a wide range of business needs.

2.1.1 Available server solutions

Four independent server product solutions are in use today by IBM Informix
customers. However, of those four, only IDS is currently being actively developed.
For completeness, the four product solutions are positioned as follows:

� Informix Dynamic Server for all solution environments

� Extended Parallel Server (XPS) for large data warehouse environments

� Informix Standard Engine (SE) for small- to medium-sized OLTP
environments that desire minimal data administration requirements

� Informix OnLine for small to medium-sized OLTP environments that also
require additional functionality such as multi-media and application
development support

We describe each of these server solutions as follows:

� IBM Informix Dynamic Server provides blazing fast OLTP performance and
legendary reliability. In particular, IDS 11 offers significant improvements in
availability, manageability, security, and performance over previous versions.
In addition, it has features that can enable administration to be performed
nearly hands-free in many instances.

� IBM Informix Extended Parallel Server is a high-end database server. It
provides scalable data warehousing for the largest, most demanding,
business-critical environments, and enables the integration of multiple
traditional and Web-based business systems. XPS includes fast data loading
and comprehensive data management to support efficient decision-making in
complex environments.
16 Customizing the Informix Dynamic Server for Your Environment

� IBM Informix Standard Engine is an embeddable database server that
provides an ideal solution for developing small- to medium-sized applications
that need the power of Structured Query Language (SQL) without the
database administration requirements. However, it is important to understand
that the SQL provided here can be considered quite primitive when compared
to the SQL provided with IDS. It integrates seamlessly with Informix
application development tools, as well as third-party development tools that
are compliant with the Open Database Connectivity (ODBC) and Java
Database Connectivity (JDBC™) standards.

SE is a low-maintenance and high-reliability database solution that supports
the AIX®, HP UNIX, Linux, other UNIX, Sun™ Solaris™, True64 UNIX
(Compaq), and Windows operating environments.

� IBM Informix OnLine is an easy-to-use, embeddable, relational database
server for low-to-medium workloads. It features superior OLTP support with
the assurance of data integrity. It provides rich multimedia data management
capabilities, supporting the storage of a wide range of media such as
documents, images, and audio. In addition, it supports a wide variety of
application development tools, along with a large number of other third-party
tools, through support for the ODBC and JDBC industry standards for client
connectivity.

For more details about these products, see the Informix product family Web page
for IDS 11 at the following address:

http://www-306.ibm.com/software/data/informix/

Also visit the IBM library Web site to download the users guide:

http://www-306.ibm.com/software/data/informix/pubs/library/

2.1.2 IDS features and tools

In this section, we briefly describe the features and tools that are provided by IBM
Informix to increase server capability. Be aware that not all of these features and
tools are available with all of the server solutions that we previously described.
The focus is on IDS. For more specific details about the tools that are support by
all server solutions, refer to the specific IBM Informix product descriptions. The
features and tools can be segmented into five primary categories:

� Database administration
� Information integration
� Performance
� Web development
� Application development
 Chapter 2. Optimizing IDS for your environment 17

http://www-306.ibm.com/software/data/informix/
http://www-306.ibm.com/software/data/informix/pubs/library/

In the following section, we provide brief descriptions of each of these categories:

� Database administration

In this category, there are tools that provide comprehensive graphical
administration of the IBM Informix servers. These tools simplify such tasks as
system configuration, backup and restore, system monitoring, and schema
editing. This category includes the following primary administration tools:

– Open Administration Tool (OAT) for IDS 11

This set of open source code, written in PHP, enables visual administration
of the IDS 11. For example, it provides the ability to administer multiple
database server instances from a single location. Many tasks can be
performed with the OAT, of which the most important are defining and
managing automated tasks through the SQL Administration application
programming interface (API), and creating and displaying performance
histograms for analysis and tuning. You can also easily plug in your own
extensions to the OAT to create any additional functionality that is
required.

– Server Studio

This tool is a comprehensive multiplatform tool suite for IBM Informix
Developed by AGS Ltd. By using this tool, database administrators and
developers can improve efficiency of daily database tasks such as
application development, schema and storage space management,
performance monitoring and optimization, event response management,
and server maintenance. With Server Studio, you can maximize the
availability, performance, and manageability of your entire IBM Informix
infrastructure from a single point of control, regardless of whether the
database servers are in one location or at remote sites. Server Studio also
provides a comprehensive configuration auditing and change management
solution for data servers to preserve your database investment.

� Information integration tools

This category includes tools that enable transparent access to data from
servers. It includes the following tools among others:

– Informix Enterprise Gateway Manager

This tool is an SQL-based gateway that allows Informix tools, applications,
and databases to interoperate transparently with non-Informix databases.
It makes the underlying target database management system (DBMS)
appear to both client and server applications as an instance of the IDS.
For example, it allows distributed joins with Informix, Oracle®, and Sybase
data in a single SQL statement.
18 Customizing the Informix Dynamic Server for Your Environment

– Informix Enterprise Gateway Manager with DRDA

This tool provides a UNIX-based connectivity solution for IBM relational
databases. For example, it enables read-and-write access to IBM data
from UNIX-based applications. Its transparent connectivity gives users full
read-and-write access to a wealth of information that was previously
available only through lengthy batch processing operations, file transfers,
or cumbersome proprietary gateways. You can also execute distributed
joins to integrate data from multiple databases.

� Performance tools

This category of tools is designed to dramatically increase server
performance. The following tools are included in this category:

– Informix MaxConnect

This tool improves system scalability and performance by increasing the
number of users that can simultaneously connect to an Informix database
server. By multiplexing client connections to a smaller number of network
connections, Informix MaxConnect moves the management of user
connections away from the Informix database server, significantly reducing
operating requirements on the database server while increasing system
scalability. It reduces CPU requirements and optimizes the use of
operating system and network resources.

– I-Spy

This tool is a smart data warehouse monitoring and optimization tool that
is designed for IBM Informix databases. It helps warehouse administrators
and architects increase the business value of enterprise data warehouses
through enhanced utilization efficiency, design improvements, and lower
maintenance costs. I-Spy sits transparently between the database and the
client, helping the administrator monitor and adjust database resources
and client query usage.

– Server Studio Sentinel

This tool was developed by AGS Ltd. The Performance Edition provides a
comprehensive, easy-to-use issue discovery, analysis, and response
automation solution that enables rapid identification and remediation of
database performance problems in the IBM Informix data server
environment. This powerful multiplatform agent-less tool helps pinpoint the
underlying causes of IBM Informix data server performance bottlenecks
and resource contention issues for fast and efficient resolution of database
problems before they seriously impact users.

Sentinel automates 24x7 monitoring of IDS operations in real time,
provides over 160 real-time operational parameter measurements to be
used to monitor the IDS data servers and host systems on which they
reside. It also performs dynamic capture of SQL statements running on
 Chapter 2. Optimizing IDS for your environment 19

data servers, based on user login name, client host, Informix session ID, or
SQL statements execution statistics.

� Web development

This category contains a tool that allows easy development, management,
and deployment of database applications for the Web.

– Data Director for Web

This tool provides a model-driven development environment that is
designed explicitly for creating powerful database applications that can
grow with your business. It addresses both evolving enterprise needs and
increasingly diverse technical requirements. It also automates all of the
data access operations of the client application. By using this tool,
developers can easily incorporate sophisticated functionality without
having to be database programming experts.

� Application development tools

This category contains tools that enable you to create a wide range of
powerful business applications quickly, including Web-ready, dynamic content
management, and Java-based systems. The following tools are a sampling of
those that are included in this category:

– Informix 4GL

This tool consists of an integrated rapid development system, interactive
debugger and compiler. It is a comprehensive fourth-generation
application development and production environment that provides power
and flexibility without the need for third-generation languages such as C
and COBOL. It creates sophisticated database applications, in three easy
packages with one consistent interface. Used together, Informix 4GL
Rapid Development System and Informix 4GL Interactive Debugger
provide an environment for developing applications, while Informix 4GL
Compiler provides high-performance application execution in the
production environment.

– Client Software Development Kit (Client SDK)

This tool offers a single package of several APIs that are optimized for
developing applications for Informix servers. By using this tool, developers
can write applications in the language that they prefer and build one
application to access multiple IBM Informix databases.

– IBM Informix Connect

This tool is a runtime connectivity product that includes the runtime
libraries of the Informix Client Software Development Kit (Client SDK).
These libraries are required by applications that run on client machines
when accessing Informix servers. Informix Connect is needed when
finished applications are ready to be deployed.
20 Customizing the Informix Dynamic Server for Your Environment

– IBM Informix ESQL/C

This tool provides the convenience of entering SQL statements directly
into the C language source code. Developers can use SQL to issue
commands to the IBM Informix server and to manage the result sets of
data from queries. The ESQL/C compiler takes ESQL/C programs and
enables them to use ESQL/C libraries, so that they can communicate with
the database engine.

– IBM Informix ESQL/COBOL

This tool is an SQL API with which you can embed SQL statements
directly into COBOL code. It consists of a code preprocessor, data type
definitions, and COBOL routines that can be called. In addition, it can use
both static and dynamic SQL statements. When static SQL statements are
used, the program knows all the components at compile time.

– IBM Informix Java Database Connectivity (JDBC)

This tool is the JavaSoft™ specification of a standard API that allows Java
programs to access DBMSs. Informix JDBC V3.0 is a
platform-independent, industry-standard Type 4 driver that provides
enhanced support for distributed transactions. It is optimized to work with
the IBM WebSphere® Application Server.

– IBM Informix SQL

This database application development system provides the speed, power,
and security that are required by both large and small database
applications. It features a suite of five application development tools,
including a schema editor, menu builder, SQL editor, forms builder, and
report writer. It also provides rapid development for green-screen
terminals and applications that do not require programming language. It
includes easy reporting capabilities for quick data analysis and enables
quick access to data for evaluation.

– Python driver

This tool makes IDS and Python an excellent combination for innovative
developers who want to build high performance, custom applications.

– PHP driver

PHP is the fastest growing technology for building dynamic Web
applications. It provides high performance and allows PHP code to use
IDS as a data repository.
 Chapter 2. Optimizing IDS for your environment 21

– DataBlade modules

These modules extend the capabilities of IDS with user-defined objects.
The following DataBlade modules are available:

• C-ISAM DataBlade module

This module is a library of C functions that efficiently manage Indexed
Sequential Access Method (ISAM) files. It was developed specifically to
help you add relational database management system (RDBMS)
features to your C-ISAM environment or to assist you in migrating
C-ISAM applications to an RDBMS environment. It also enables fast
data access, includes flexible indexing options, supports large files,
and provides an SQL interface to C-ISAM data through an SQL Access
component. Also included is a Server Storage component that enables
you to store ISAM data directly in the database server, while allowing
C-ISAM programs to continue accessing this data.

• Image Foundation DataBlade module

This module provides a base on which new or specialized image types
and image processing technologies can be quickly added or changed.
It can store and retrieve images and metadata in the database or on
remote computers and storage servers. In addition, you can transform
images by using the industry-standard CVT command set.

• Excalibur Text Search DataBlade module

This module enables full text search capabilities, so that you can take
full advantage of an engine that is optimized for indexing and searching
text information, using proximity searches and other features. This
means you can add extensive text-searching to many existing
applications. It delivers full-text indexing, including extensive support
for fuzzy-search logic, which is especially important when indexing
scanned text. Plus it provides rapid query results and offers support for
various document types including ASCII, Word, Microsoft Excel®,
Microsoft PowerPoint®, HTML, PDF, and WordPerfect.

• Basic Text Search DataBlade module

By using this module, you can search words and phrases in an
unstructured document repository that are stored in a column of a
table. This module is considered the evolution of the Excalibur module.

• Binary DataBlade module

This module includes the binary18 and binary var data types that allow
you to store binary-encoded strings, which can be indexed for quick
retrieval. The Binary DataBlade module comes with string manipulation
functions to validate the data types and bitwise operation functions with
22 Customizing the Informix Dynamic Server for Your Environment

which you can perform bitwise logical AND, OR, or XOR comparisons
or apply a bitwise logical NOT to a string.

• Node DataBlade module

This module gives you the ability to classify the actual row data in a
defined hierarchy. You can consider the table as a hierarchical tree and
can easily navigate up, down, left, and right to find the parent, left and
right node, neighbors, depth, children, and parents in the tree. You can
compare tree levels and generate new tree levels and twigs based on a
given parent.

• Geodetic DataBlade module

With this module, you have the ability to manage geospatial information
referenced by latitude-longitude coordinates, supporting global space
and time-based queries without the limitations inherent in map
projections. This module manages spatial data by using geographic
information systems (GIS) technologies.

The Informix Geodetic DataBlade module is best used for global data
sets and applications. It provides a robust, well-crafted C-language
API, so that you can build new functions that use the same data
structures and internal interfaces used by SQL functions already
provided.

• Spatial DataBlade module

This module expands the IBM IDS object-relational data server to
provide industry leading SQL-based spatial data types and functions
that can be used directly through standard SQL queries or with
client-side GIS software, such as that from ESRI and MapInfo. This
module enables organizations to transform both traditional and
location-based data into important information to help gain a
competitive advantage. These data types can store spatial data such
as the location of a landmark, a street, or a parcel of land.

• TimeSeries DataBlade module

This module expands the functionality of the database by adding
sophisticated support for the management of time-series and temporal
data. A time series is any set of data that is accessed in sequence by
time that can be processed and analyzed in a chronological order.

• TimeSeries Real Time Loader DataBlade module

This module is a data loader that works in conjunction with IBM
Informix-NAG Financial DataBlade technology to achieve greater
analytical performance than is possible with either traditional relational
databases or stand-alone real-time analysis software.
 Chapter 2. Optimizing IDS for your environment 23

• Video Foundation DataBlade module

This module is an open and scalable software architecture that allows
strategic third-party development partners to incorporate specific video
technologies, such as video servers, external control devices,
compression codecs, or cataloging tools, into complete database
management applications with the Informix Dynamic Server. You can
manage video content and metadata, or information about the content.

• Web DataBlade module

This module enables you to create Web applications that dynamically
retrieve data from an IBM Informix database. By creating HTML pages
that include Web DataBlade module tags and functions, you can
execute SQL statements to retrieve information for the Web page and
format the results in HTML for display.

– DataBlade Developers Kit

This kit is an easy-to-use graphical interface for developing DataBlade
modules.

In this section, we provided a general overview of the major features and tools
that are integrated with IBM Informix database servers. For more information,
see the IBM Informix library at the following links:

� Informix product family page

http://www-306.ibm.com/software/data/informix/

� Informix library

http://www-306.ibm.com/software/data/informix/pubs/library/

2.2 Server deployment

In this section, we discuss the capability of Informix to adapt to a particular
environment. We consider the business environment and requirements of a
development company that uses IDS as the data repository. As examples, we
show how IDS can be installed with just 100 MB of disk space, how you can add
and remove IDS features, a how you can install and configure IDS without any
interaction from the user, to demonstrate the flexibility of IDS.

2.2.1 Business environment

In this example, we analyze the business requirements of a company that
develops applications that use IBM Informix as the data repository. The
development company sells the application, along with IDS, and provides
24 Customizing the Informix Dynamic Server for Your Environment

http://www-306.ibm.com/software/data/informix/
http://www-306.ibm.com/software/data/informix/pubs/library/

support for both the application and for IDS. In this example, the development
company wants a procedure to easily install and configure the environment to
use their applications. This particular company has the following environment:

� There are a few thousand users.
� Many users have limited Informix skills.
� The users also have limited hardware resources.
� Each user buys the application and the Informix server database.
� The development company supports the applications and the administration

of the Informix database.

The development company also wants an installation procedure that has the
following characteristics:

� Requires little space

� Easily installs and configures the database with almost no interaction from the
users

� Creates the same directory structure for all the users

� Has a remote administration tool that can provide easy administration of all
the Informix instances

2.2.2 Features for customizing the environment

In this section, we describe one possible solution for the scenario described in
2.2.1, “Business environment” on page 24, and demonstrate how easily it can be
adapted to any particular environment.

To do this, we use the following features:

� Installation Wizard to reduce the Informix installation space

� Silent installation to reduce the interaction with the user who installs Informix

� Sysadmin database to create the same directory structure and configure
Informix without interaction from the users

� The OAT to manage all the instances remotely

2.2.3 Installation Wizard footprint

The IDS installation currently provides users with two installation options:

� Typical installation
� Custom installation

With IDS 11, the custom installation has been improved. To do so, IDS is now
divided into multiple components based on functionality. Each component is then
 Chapter 2. Optimizing IDS for your environment 25

divided into subcomponents to allow more granularity. By using the Installation
Wizard, or Deployment Wizard, you can select only the Informix functionality and
features that you need, thereby reducing the space that is used by Informix
during the installation. The Installation Wizard checks the dependencies between
components and guides you to the correct selection of functionalities. Vendors
who embed IDS into their applications can now install only the minimum
functionality and features to run their applications. For example, they can install
only the base server without other components, which reduces disk space to
approximately 100 MB.

In Figure 2-1, you can see the Informix Deployment Wizard component tree.

Figure 2-1 Deployment Wizard - Component tree

Important: You must choose the custom installation to access the option to
remove the IDS components.

Base Server

Server Media
IDS

*GLS
DB Server
Extensions

Backup and
Restore

Admin
Utilities

On-Bar
Utilities

*TSM

*ISM

Archecker
Utility

Performance
Monitoring

Audit
Monitoring

DBLoad/
Unload Utils

Misc.
Utilities

Data Loading
Utilities

Enterprise
Utilities

Built-in DB
Models

Conversion/
Reversion

Onload/
Onunload

High Perf
Loader

West Europe
& Americas

J/Foundation

East Europe
& Cyrillic

DBLoad

Japanese

Korean

Demos

IDS Deployment Wizard – Component Tree

Other

Chinese

*GLX = Global Language Support
TSM = Tivoli Storage Manager
ISM = Informix Storage Manager
26 Customizing the Informix Dynamic Server for Your Environment

During the custom installation, you see a window like the one shown in
Figure 2-2. On this window, you can select only the components that you need
for your particular environment, thereby reducing the space needed for the
installation.

Figure 2-2 Custom installation footprint

For more information about the Installation Wizard, and IDS features and
components, see the IBM Informix Dynamic Server Installation Guide for
Microsoft Windows, G251-2776, or IBM Informix Dynamic Server Installation
Guide for UNIX and Linux, G251-2777.

2.2.4 Silent installation

A silent installation is an installation method that requires no user interaction
with the setup program. The installation is driven by a response file named
server.ini (on Windows) or responsefile.ini (on UNIX or Linux) that declares the
desired actions. Silent installation has the following advantages:

� There is no user interaction during the installation.
� The installation can be run by a person with no Informix skills.
� It is easy to replicate the same installation on different machines.
 Chapter 2. Optimizing IDS for your environment 27

To use the silent installation, perform the following actions:

1. Install the IDS and record the preferences in a response file.

To re-use the GUI custom-setup installation configuration to install IDS, in the
same way, on other machine, you must capture the responses from a
graphical installation by using the following steps:

a. Open a command window.

b. Go to the directory where the Informix installation media resides.

c. Be sure to have the setup.exe (Windows) or ids_install (UNIX or Linux) in
the correct directory.

d. Execute the following command depending on your platform:

• Windows:

setup.exe -r -f1”C:\temp\silent.ini”

If you run this command, without the option -fl, the response file is
created in the Windows directory. The option -r means record the
installation actions.

• UNIX or Linux:

ids_install -gui -record responsefile.ini

The option -record captures the installation actions in the response file.

These commands start the GUI installation and record your choices in the
response file.

After the installation starts and you accept the Software Licensing Agreement,
you can choose the desired type of installation. To install only some Informix
components (and minimize the footprint), choose custom installation. Then
select the Informix component to be installed as described in 2.2.3,
“Installation Wizard footprint” on page 25. When the installation finishes,
check the response file.
28 Customizing the Informix Dynamic Server for Your Environment

Figure 2-3 shows an excerpt from the response file. You do not need to read
the example, but simply use it to be familiar with the type of output to be
received.

Figure 2-3 Response file

In addition to the response file, the manifest file
%INFORMIXDIR%\etc\manifest.inf can help you quickly see the features and
components that are currently installed.

2. Install the IDS by using the response file.

Now you are ready to use the response file to replicate your installation in
other machines, without any interaction from the user. To do this, you need
the following items:

– The IDS installation software package
– The response file silent.ini (Windows) or responsefile.ini (UNIX or Linux)

In the next machine to be installed, perform the following actions:

a. Open a command window.

b. Change directory and go to the directory that contains the Informix
installation software.

c. Be sure that you have the setup.exe (Windows) or ids_install (UNIX or
Linux) file in the correct directory.
 Chapter 2. Optimizing IDS for your environment 29

d. Execute the following command depending on your platform:

• Windows:

setup.exe -s -f1"c:\TEMP\responsefile.ini"

• UNIX or Linux:

ids_install -gui -record responsefile.ini

3. Check the silent log file.

There is little to show regarding a silent installation because it is silent. That
is, there is nothing that shows the progress or that it has completed. The only
way that you can discover that it has completed is that the command prompt
returns. After the installation finishes, check the log file to know whether the
installation was successful. The log file resides in
%INFORMIXDIR%\logs\IDS_Install_date_time.log.

Figure 2-4 shows how the log file should appear. Again, it is not required that
you read the file, but just be familiar with how the output appears.

Figure 2-4 Silent log
30 Customizing the Informix Dynamic Server for Your Environment

2.2.5 Silent configuration

At this point, IDS has been installed without interaction with the user. All the
installations that have executed the silent installation have a similar environment.
That is, they have the same INFORMIXDIR, same onconfig file, and same
sqlhost. Any other requisite directories are established by the system
administrator.

Now we demonstrate how some administration tasks can be executed with
minimum interaction with the user. For example, to execute the tasks in the
following list, we use the sysadmin database:

� Add a new dbspace named dbs1, with a size of 100 MB, in the
$informixdir\chunks directory.

� Add a new dbspace for the logical log named logdbs, with a size of 100 MB, in
the $informixdir\chunks directory.

� Add a new dbspace for the physical log named physdbs, with a size of
100 MB, in the $informixdir\chunks directory.

� Add three logical logs in the dbspace logdbs with a size of 10 MB.

� Remove the first two logical logs from the rootdbs.

� Alter the physical log file from the default value to 30 MB.

� Change the RTO_SERVER_RESTART from the default value to 60.

� Execute a checkpoint.

All these tasks can be done, but we do not describe the details here. For more
information about the sysadmin database, refer to Chapter 5, “The administration
free zone” on page 161.

Now we show how you can create a script that performs all the administrative
tasks mentioned previously without interaction from the user by using the
following steps. The user must only execute the script from the user Informix.

1. Create a file named tailor_admin.sql.

2. Write the code as shown in Example 2-1.

Example 2-1 tailor_admin.sql

database sysadmin;
execute function admin("create dbspace", "dbs1",
"$INFORMIXDIR\chunks\dbs1", "100MB", "0");
execute function admin("create dbspace", "logdbs",
"$INFORMIXDIR\chunks\logdbs", "100MB", "0");
execute function admin("create dbspace", "physdbs",
"$INFORMIXDIR\chunks\physdbs", "100MB", "0");
 Chapter 2. Optimizing IDS for your environment 31

execute function admin("add log", "logdbs", "10MB");
execute function admin("add log", "logdbs", "10MB");
execute function admin("add log", "logdbs", "10MB");
execute function admin("drop log", "1");
execute function admin("drop log", "2");
execute function admin("drop log", "3");
execute function admin("alter plog","physdbs","30 MB");
execute function admin("ONMODE", "wf", "RTO_SERVER_RESTART=60");
unload to "command_history.txt" select * from command_history;

The last line of Example 2-1 generates a file named command_history.txt that
contains a list of all commands that the administration API ran. You can see
the results of each of the commands. The file command_history.txt should
look much like the example in shown in Figure 2-5.

3. Execute the configuration tasks.

From user informix, open a command window and execute the following
command:

dbaccess - tailor_admin.sql

4. Check the result of the commands that have been executed.

Analyze the file command_history.txt that was generated by the script
tailor_admin.sql. The file command_history.txt should look much like the
example shown in Figure 2-5. The sixth column contains the error codes,
which we have highlighted with the ovals. In this example, the commands
executed correctly. Therefore the error codes that are displayed are zeros.

Figure 2-5 Command history output
32 Customizing the Informix Dynamic Server for Your Environment

If the commands were not executed correctly, the error codes would not be
zero as demonstrated in Figure 2-6. Here we added a second command to
create the same dbspace. As you can see in line 101, the error code is not a
zero, but a -1. Included in this line is a brief description of the error, which in
this scenario indicates that the space was not created, because it already
exists.

Figure 2-6 Command history output with error

When the sixth column is different from zero, you must analyze the error and
fix it manually. For a description of the error, open an Informix command
window and execute the following command:

finderr error_number

You have now completed the silent configuration.

2.2.6 Remote instances administration tool

Now you should have many users with a working environment, configured to
work with your application. What is desired now is an easy way to manage all
these instances remotely. In this scenario, the OAT can be useful. In fact, you can
configure the OAT to manage all the instances and check the status of the
instances remotely by using the following tasks:

1. Install and configure the OAT.

For more information about this task, see 2.4, “Installing the Open Admin
Tool” on page 55.

2. Add a new connection in the OAT.

For each instance that you want to manage remotely, you must add a
connection in the OAT. The host name requested in the OAT new connection
form, see Figure 2-22 on page 70, must be the machine name or the IP
address of the machine where the instance resides.

101 create dbspace | -1 | Space already exists.\ |
 Chapter 2. Optimizing IDS for your environment 33

3. Connect to the server.

Open the OAT main page. In the quick login box, select the group, insert the
password, and click Get Servers. Then select the instance name. The field on
the right is filled in automatically as shown in Figure 2-23 on page 72. Click
the Login button in the bottom left corner of the window.

4. Manage the instance.

At this point, you should be connected to the instance that you selected as shown
in Figure 2-24 on page 73. Here you can manage the instance remotely. In
addition, you can check the logs, spaces, checkpoints, message log, and much
more.

2.3 Mixed and changing environments

One of the characteristics of IDS is the capability to adapt itself to a large range
of different environments. In this section, we focus our attention on two particular
environments, OLTP and DSS, that could be considered the upper and lower
bound of the environment range. OLTP applications are typically designed to be
highly performing and deal with small volumes of data. DSS applications are
typically query oriented, longer in duration, and deal with much larger volumes of
data. DSS is typically associated with, and retrieves data from, a data
warehousing environment. Some of the primary differences between these two
environments are summarized in Table 2-1 on page 36.

In this section, we show how IDS can be dynamically changed from supporting
one environment to supporting another environment, without a requirement to
reboot the instance, demonstrating the flexibility of IDS. This type of mixed
environment is more typically supported with medium-sized instances. For large
DSS or OLTP systems, it might be better to consider a dedicated machine for
each environment, or to reboot the instance to change the onconfig file when
moving between those environments.

2.3.1 Example business environment

Here we consider an example business environment with a requirement during
the night to do the following tasks:

� Load a massive amount of data in the IDS database server.
� Execute applications that analyze the data.
� Read entire tables to generate data aggregations, reports, or both.
34 Customizing the Informix Dynamic Server for Your Environment

During the day, the activities in the IDS database server are different. For
example, a large number of users execute queries to analyze the data and
access reports generated from the DSS environment the previous night. In
general, in this example, we can consider a mixed environment one that performs
DSS during the night and OLTP during the day.

An important consideration in the mixed environment is the database server
performance. That performance depends on several factors, such as hardware
resources, operating system tuning, and more importantly, the database server
configuration. The mixed environments that we have described are so different
that it is typically suggested to use two different server configurations to provide
maximum performance in both. Informix has the capability to dynamically adapt
itself to both environments, thus removing the bottleneck described.

Several activities, such as the following activities, are involved in configuring a
mixed environment:

� Understand the differences between OLTP and DSS.

� Tune the two environments separately.

� Find the onconfig parameter values that provide maximum performance for
each environment.

� Do performance tuning for a mixed environment.

Some onconfig parameters, such as RA_PAGES and RA_THRESHOLD,
cannot be changed dynamically. For those parameters, you must perform a
tuning activity to find a value that can provide acceptable performance for
both the environments, even though it means that performance might not be
truly optimal for either workload. However, you can also choose to optimize
one workload knowing that the other will be less optimal.

Always execute small changes, and then analyze the results. Keep in mind
that with IDS, you can change dynamically some of the onconfig parameters,
so that you can schedule the changes every time you need to switch from one
environment to the other.

Note: In the following sections, we provide values that can be considered as
starting points for performance tuning activity. The values came from practical
experience and have shown that they are a reasonable starting points from
which to begin tuning a configuration. For more information about this topic,
refer to the IBM Informix Dynamic Server Performance Guide, G229-6385.
 Chapter 2. Optimizing IDS for your environment 35

2.3.2 OLTP and DSS (data warehousing)

Table 2-1 contains examples of some of the considerations for, or typical
differences between, OLTP and DSS environments.

Table 2-1 OLTP and DSS

2.3.3 Configuring for DSS

In this section, we discuss some of the major criteria that can impact the DSS
environment, which are to be considered as you configure for optimization. As
examples, give consideration to the following items:

� Achieving optimum memory utilization
� Using light scans
� Using PDQ
� The type of fragmentation to be used
� Maximizing the I/O throughput

OLTP DSS

Many users Few users

Few rows read per transaction Many rows read per transaction

Index access data Sequential scan access data

Fast response time (less than 2 seconds) Long response time (minutes/hours)

Large resident memory Small resident memory

Small virtual memory Large virtual memory

Read cache rate of 95% or better Read cache rate below 80%

Write cache rate 85% or better Write cache rate below 80%

No parallel database query (PDQ) PDQ

Multiple network ports Single network port

Network protocol TCP/IP If local, network protocol shared memory

Fast recovery time is important Fast recovery time is not as important

Checkpoint duration is important Checkpoint duration is usually not a factor

Checkpoint execution more frequent
(seconds)

Checkpoint execution less frequent hours
36 Customizing the Informix Dynamic Server for Your Environment

Let us look at the requirements in more detail as follows:

� Memory utilization

The objective is to maximize the size of virtual memory. Usually the value of
the SHMVIRTSIZE is set to 75% of the memory available, but this approach is
not completely correct. You should allocate only the memory that is necessary
for your environment. Therefore, you need to find the point at which, during
the peak time (the instance of time at which resource utilization is highest),
IDS will not add any segments, while if you reduce the size of SHMVIRTSIZE,
IDS will add another segment.

The following method is a good approach to find the value of SHMVIRTSIZE:

a. Set SHMVIRTSIZE to 50% of your memory.

b. During the peak time, check how many additional segments have been
added. You can use the onstat -g seg command. If no additional
segments were added, then reduce the SHMVIRTSIZE. When you notice
additional segments, proceed to the next step.

c. Use the following formula:

new_SHMVIRTSIZE= old_SHMVIRTSIZE +
(number_of_segments_added * SHMADD)

d. When you find the optimal SHMVIRTSIZE, try to reduce a little bit the size
to see if an additional segment is created. This is a way to double check
that your calculations are correct.

� Light scan

The light scan is a mechanism that bypasses the traditional reading process.
Pages are read from disk and put in the buffer cache in the resident shared
memory segment. The light scan reads the page from disk and puts it in the
light_scan_buffers, which reside in the virtual segment of the shared memory.
It then reads the data in parallel, providing a significant increase in
performance when compared with scanning large tables.

Important: In subsequent sections of this chapter, where monitoring is
discussed, we typically used the onstat or oncheck commands. Many
monitoring tasks can also be performed by simply using SQL select
statements against the sysmaster database. However, be aware that
performing a select on the sysmaster results in latches (locks) on the
sysmaster tables. Since these tables are used by the engine, that could
introduce performance problems. Therefore, we recommend that this not be a
best practice.
 Chapter 2. Optimizing IDS for your environment 37

The number of light scan buffers is defined by the following equation:

light_scan_buffers = roundup((RA_PAGES + RA_THRESHOLD)/
(MAXAIOSIZE/PAGESIZE))

As you can see, RA_PAGES and RA_THRESHOLD can impact the number
of light scan buffers, and they cannot be changed dynamically. You can
consider creating dbspaces that are dedicated to the DSS activity, giving
them a larger page size. When increasing the PAGESIZE, IDS increases the
number of light scan buffers (see the previous equation). The page size must
be a multiple of the operating system page size, but not greater than 16
kilobytes (KB). Place attention on the size of your row. Each page can contain
a maximum of 255 rows. Therefore, if the row size is small and the page size
is large, you can risk to lose disk space. To know the maximum row size, use
the following command:

oncheck -pt databasename:tablename

Then check the line “Maximum row size.”

To create a dbspace with a customized page size in KB, you can use the
following command:

onspaces -c -d DBspace [-t] [-k pagesize] -p path -o offset -s size
[-m path offset]

– BUFFERPOOL

The BUFFERPOOL configuration parameter specifies the values for
BUFFERS, LRUs, LRU_MAX_DIRTY, and LRU_MIN_DIRTY for both the
default page size buffer pool and for any non-default pages size buffer
pools. However, if you create a dbspace with a non-default page size, the
dbspace must have a corresponding buffer pool. For example, if you
create a dbspace with a page size of 8 KB, you must create a buffer pool
with a page size of 8 KB. The BUFFERPOOL onconfig parameter can be
useful to reduce the number of buffers and force IDS to use the light scan.
For a DSS environment, you can set the buffers to a low number, for
example 5000.

BUFFERPOOL
size=8K,buffers=5000,lrus=8,lru_min_dirty=50,lru_max_dirty=60

MAXAIOSIZE: MAXAIOSIZE is an Informix internal parameter and is
platform dependent. In general, it is in the area of about eight pages.
38 Customizing the Informix Dynamic Server for Your Environment

� PDQ

Another key factor in DSS queries is to read the pages in parallel. To do this,
you must activate the PDQ. There are primarily six variables that enable you
control PDQ:

– PDQPRIORITY

This environment variable sets a reasonable or recommended priority
value.

– MAX_PDQPRIORITY

This variable limits the PDQ resources that the database server can
allocate to any one DSS query. MAX_PDQPRIORITY is a factor that is
used to scale the value of PDQ priority set by users.

– DS_TOTAL_MEMORY

This variable specifies the amount of memory available for PDQ queries.

– DS_MAX_SCANS

This variable limits the number of PDQ scan threads that the database
server can execute concurrently.

– DS_MAX_QUERIES

This variable specifies the maximum number of queries that can run
concurrently.

– DS_NONPDQ_QUERY_MEM

This variable increases the amount of memory that is a available for a
query that is not a PDQ.

The following formulas are used in PDQ. A good understanding of these
formulas can help to find the best setting for the PDQ parameters for your
environment:

– Memory quantum

Memory is granted in units called a quantum. A quantum unit is the
minimum increment of memory that is allocated to a query. The memory
quantum is calculated by using the following formula:

memory quantum = DS_TOTAL_MEMORY/DS_MAX_QUERIES

– Minimum amount of decision-support memory

When you assign a value to the configuration parameter
DS_MAX_QUERIES, the database server sets the minimum amount of
decision-support memory according to the following formula:

min_ds_total_memory = DS_MAX_QUERIES * 128 KB
 Chapter 2. Optimizing IDS for your environment 39

When you do not assign a value to DS_MAX_QUERIES, the database
server uses the following formula instead, which is based on the value of
VPCLASS cpu or NUMCPUVPS:

min_ds_total_memory = NUMCPUVPS * 2 * 128 KB

– Resources allocated

When a query requests a percentage of PDQ resources, the database
server allocates the MAX_PDQPRIORITY percentage of the amount
requested, as the following formula shows:

Resources allocated = (PDQPRIORITY/100) * (MAX_PDQPRIORITY/100)

– Memory for query

The amount of memory that is granted to a single parallel database query
depends on many system factors. However, in general, the amount of
memory granted to a single parallel database query is proportional to the
following formula:

memory_grant_basis = (DS_TOTAL_MEMORY/DS_MAX_QUERIES) *
(PDQPRIORITY/100) * (MAX_PDQPRIORITY/100)

– Maximum number of scan threads per query

You can limit the number of concurrent scans by using the
DS_MAX_SCANS. In fact, the resources that users can assign to a query
are calculated by the following formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * (pdqpriority/100) *
(MAX_PDQPRIORITY/100))

In this formula:

• nfrags is the number of fragments in the table with the largest number
of fragments.

• pdqpriority is the PDQ priority value that is set by either the
PDQPRIORITY environment variable or the SET PDQPRIORITY
statement.

– Amount of shared memory for PDQ

Use the following formula as a starting point for estimating the amount of
shared memory to allocate to decision-support queries:

DS_TOTAL_MEMORY = p_mem - os_mem - rsdnt_mem - (128 KB * users)
- other_mem
40 Customizing the Informix Dynamic Server for Your Environment

In this formula:

• p_mem is the total physical memory that is available on the host
computer.

• os_mem is represents the size of the operating system, including the
buffer cache.

• resdnt_mem represents the size of Informix-resident shared memory.

• users is the number of expected users (connections) specified in the
NETTYPE configuration parameter.

• other_mem is the size of memory used for other (non-IBM Informix)
applications.

For more information, see the IBM Informix Dynamic Server Performance
Guide, G229-6385.

In general, as a starting point for DSS environment, we set the values shown
in Table 2-2.

Table 2-2 PDQ values for DSS

You can monitor the PDQ behavior by using the onstat –g mgm command.

PDQ queries use memory from the Virtual Shared Memory segments, not
from the BUFFERS.

� DBSPACETEMP

This variable defines more DBSPACETEMP to allow parallelism. Also
consider how much additional space is needed. For example, hash joins can
use a significant amount of memory and can potentially overflow to temporary
space on disk. You can use the following formula to estimate the amount of
memory that is required for the hash table in a hash join:

hash_table_size = (32 bytes + row_size) * num_rows_table

� Fragmentation

There are many considerations when fragmenting. For example, you must
understand the workload and then consider how to fragment both the table
and the indexes based on that workload.

Parameter name Value

PDQPRIORITY 100

MAX_PDQPRIORITY 100

DS_TOTAL_MEMORY 90% of SHMVIRTSIZE

DS_MAX_SCAN Usually left as the default value
 Chapter 2. Optimizing IDS for your environment 41

For more information, refer to the IBM Informix Database Design and
Implementation Guide, G251-2271. Also see the “Fragmentation guidelines”
chapter in the IBM Informix Dynamic Server Performance Guide, G251-2296,
for a discussion on how to plan, design, and execute a fragmentation scheme
In addition, see the IBM Informix Guide to SQL: Syntax, G229-6375.

When implemented, you can use the onstat -D command output to see the
I/O workload on each of the fragments. The objective is to see balanced I/O
across all fragments in the table. At the system level, you can use sar -d, or a
similar utility, to monitor the I/O activity.

� Data load activity

For more information about the database server and high-performance
loading, see the IBM Informix High-Performance Loader User's Guide,
G229-6377. The High Performance Loader (HPL) offers two load modes,
deluxe mode and express mode. Express mode uses special buffers called
light append buffers, and can be faster. Deluxe mode is more flexible, but
uses normal buffers and can be slower than express mode.

– Nonlogging tables

Alter a table from logging to nonlogging. The two table types are
STANDARD (logging tables) and RAW (nonlogging tables). You can use
any loading utility, such as dbimport or HPL, to load raw tables.

The advantage of nonlogging tables is that you can load large data
warehousing tables quickly because they do not use CPU and I/O
resources for logging. They avoid problems, such as running out of logical
log space, and they are locked exclusively during an express load, so that
no other user can access the table during the load.

To alter a table from logging to nologging mode, execute the following
command:

ALTER TABLE tabname TYPE(RAW)

To alter a table from nonlogging to logging mode, execute the following
command:

ALTER TABLE tabname TYPE(STANDARD)

� Network

In client/server communications, use a network protocol together with a
network programming interface to connect and transfer data between the
client and the database server. Often in a DSS environment, you can have
applications that connect to the database server and run a set of jobs to
elaborate the data contained in tables. Those applications can reside in the
same machine where the database server resides. This can reduce the
network time to transfer the data from one machine to another.
42 Customizing the Informix Dynamic Server for Your Environment

In this scenario, you can consider the possibility to create a kind of connection
between the application and the server that can provide maximum speed. IDS
supports several connection types, but the ones that provide fast access are
shared memory (UNIX or Linux) and the named pipe (Windows). These
connections provide fast access to a database server, but can pose some
security risks.

In an OLTP environment, we suggest that you use TCP/IP connections for
security reasons. For more information related to the networking and security,
see the IBM Informix Dynamic Server Administrator’s Guide, G229-6359.

2.3.4 Configuring for OLTP

In this section, we discuss the primary factors that can impact the OLTP
environment to be considered for achieving maximum performance.

Keep in mind that, in an OLTP environment, you want to accomplish the following
tasks:

� Tune the onconfig parameters to have fast response time.
� Read and write buffer cache rates above 90%.
� Take fast checkpoints.
� Have a short recovery time objective (RTO).
� Maximize I/O throughput.
� Optimize fragmentation strategy.
� Optimize index utilization.

We look at the primary OLTP factors detail in the sections that follow.

Onconfig parameters and performance goals
In an OLTP environment, we want to achieve the goals as described in Table 2-2
on page 41. The onconfig parameters have a key role in achieving those goals.
Performance tuning is needed to find the values that provide the best
performance for your environment.

Here we describe some of the important parameters that are involved in the
OLTP configuration. However, this section is not about performance tuning and
that topic is not included in this book. For information about performance tuning,
see the IBM Informix Dynamic Server Performance Guide, G229-6385, and the
IBM Informix Dynamic Server Administrator’s Reference, G229-6360. For some
of the onconfig parameters, we provide an initial value, but this does not mean
they are the most suitable values for your particular implementation.
 Chapter 2. Optimizing IDS for your environment 43

� Cache rate

The cache read rate should be above 90%. To obtain this goal simply
increase the BUFFERS. That is, after making sure that there is also sufficient
memory available. The objective is to find the point where adding more
buffers no longer has an impact on the performance, while removing buffers
will impact the performance. Use onstat -p to monitor the read and write the
buffer cache rate.

� LRUs

The LRU field specifies the number of least recently used (LRU) queues in the
shared-memory buffer pool. You can tune the value of LRUs, in combination
with the LRU_MIN_DIRTY and LRU_MAX_DIRTY fields, to control how
frequently the shared-memory buffers are flushed to disk. Setting LRUs too
high might result in excessive page-cleaner activity.

– LRU_MAX_DIRTY specifies the percentage of modified pages in the LRU
queues at which the queue is cleaned.

– LRU_MIN_DIRTY specifies the percentage of modified pages in the LRU
queues at which page cleaning is no longer mandatory.

The following vales can be considered as typical initial values:

– 1 LRU for every 5000 buffers or 4 LRUs for each CPU virtual processor
– LRU_MAX_DIRTY = 10
– LRU_MIN_DIRTY = 5

Set the onconfig parameter AUTO_LRU_TUNING to 1, which enables IDS to
tune the LRUs automatically, and use the onstat -R command to monitor
LRU activity.

� CLEANERS

This parameter specifies the number of page-cleaner threads that are
available. A typical suggested value is LRUs/2.

� LOCKS

This parameter specifies the initial size of the lock table. The lock table holds
an entry for each lock that is used by a session. If the number of locks that
sessions allocate exceeds the value of LOCKS, the database server
increases the size of the lock table. The initial value is set as follows:

250 * number_of_users during the peak time

� RA_PAGES

This parameter specifies the number of disk pages to attempt to read ahead
during sequential scans of data records. Read-ahead can greatly speed up
database processing by compensating for the slowness of I/O processing
relative to the speed of CPU processing. A suggested initial value is 32.
44 Customizing the Informix Dynamic Server for Your Environment

� RA_THRESHOLD

This parameter is used with RA_PAGES when the database server reads
during sequential scans of data records. RA_THRESHOLD specifies the
read-ahead threshold. That is, the number of unprocessed data pages in
memory that signals the database server to perform the next read-ahead. A
suggested initial value 30 pages.

� SHMVIRTSIZE

This parameter specifies the initial size of a virtual shared-memory segment.
A suggested initial value is:

32000 + expected number of users * 800

� CKPTINTVL

This parameter specifies the frequency, expressed in seconds, at which the
database server checks to determine whether a checkpoint is needed. A
suggested initial value is 120.

� LOGBUFF

This parameter specifies the size in KB for the three logical-log buffers in
shared memory. If you log user data in smart large objects, increase the size
of the log buffer to make the system more efficient. If you set LOGBUFF too
high, the database server can run out of memory and shut down during
recovery. Check the logical-log section of the onstat -l command output to
tune the correct value. A suggested initial value is 256.

� PHYSBUFF

This parameter specifies the size in KB of the two physical log buffers in
shared memory. Check the physical log section of the onstat -l command
output to tune the correct value. A suggested initial value is 512.

� RTO_SERVER_RESTART

This parameter enables use of RTO standards to set the amount of time, in
seconds, that IDS has to recover from a problem after being restarted, and
brings the server into an online or quiescent mode. For OLTP, a low value is
suggested, such as from 60 to 90 seconds.

� AUTO_CKPTS

This parameter allows the server to trigger checkpoints more frequently to
avoid transaction blocking. A suggested value is 1.

� AUTO_AIOVPS

This parameter enables the database server to automatically increase the
number of AIO VPs and page cleaner threads when the database server
detects that the I/O workload has outpaced the performance of the existing
AIO VPs. A suggested value is 1.
 Chapter 2. Optimizing IDS for your environment 45

� AUTO_LRU_TUNING

This parameter enables automatic LRU tuning. A suggested value is 1.

For more information, see the following manuals:

� IBM Informix Dynamic Server Performance Guide, G229-6385
� IBM Informix Dynamic Server Administrator’s Reference, G229-6360

Fragmentation
Fragmentation is a data distribution scheme used by the database server to
distribute rows or index entries to data fragments. The expression-based
distribution schemes put rows that contain particular specified values in the same
fragment. A fragmentation expression defines the criteria for assigning a set of
rows to each fragment, either as a range rule or some arbitrary rule. A remainder
fragment can be specified that holds all rows that do not match the criteria for any
other fragment, although a remainder fragment reduces the efficiency of the
expression-based distribution scheme.

In an OLTP environment, expression-based distribution schemes are typically
used for the selection of rows. By using the expression, IDS identifies the
fragments that contain the rows that are involved in the query and then uses the
index to search inside the fragment. If the query does not validate the expression
of the distribution schemes, all the fragments must be scanned. For more
information and references, see the fragmentation discussion in the bulleted list
on page 41.

Index utilization
Typically the queries involved in the OLTP environment do not request a scan of
the entire table. Instead indexes are typically used to select the rows that are
needed to process the query. In large OLTP environments the database
administrator analyzes the tables when they are created. However, it can be
difficult to continue monitoring their usage. Therefore, new users or new
applications can query the tables by using a different WHERE condition that is
not yet optimized. This action can generate sequential scans, which in some
circumstances, can create significant performance problems because it
increases both the number of pages that are read from disk and the number of
locks.

OLTP performance can be increased by removing the sequential scans using the
following methods:

� Use the onstat -p command to check the value of the seqscans field. If
seqscans has a high value, say more than 200, you must investigate and
determine which tables have a high number of sequential scans.
46 Customizing the Informix Dynamic Server for Your Environment

� To find the name of the tables that have a high number of sequential scans,
execute a select from the sysmaster database as described in Example 2-2.
This select only shows the tables with more than 200 sequential scans that
were performed since the database instance was started or since the last
onstat -z command was executed.

Example 2-2 Finding tables with sequential scans

From dbaccess, connect to sysmaster then execute the following
select:

SELECT
dbsname,tabname,b.partnum,pf_dskreads,pf_dskwrites,pf_seqscans FROM
systabnames as a, sysptntab as b WHERE pf_seqscans > 200 AND
a.partnum=b.partnum

output:
dbsname database_name
tabname table_name
partnum 2097154
pf_dskreads 265432456
pf_dskwrites 543678954
pf_seqscans 34000

� After you identify a table with a high number of sequential scans, monitor the
activity on the table to determine if there are missing indexes. You can do this
by using the OAT as described in the list item “SQL Trace” on page 202 of
Chapter 5, “The administration free zone” on page 161.

This information offers good suggestions of where to focus to achieve the
maximum OLTP performance.

2.3.5 Dynamically changing environments

In this section, we explore the actions to take to dynamically change
environments, without bouncing the instance. In this sample scenario, we
consider changing between OLTP and DSS environments.

Important: At times, it can be more efficient to run a sequential scan rather
than using the index. This is particularly true for small tables. You can create a
index and then, by using the optimizer directives, you can modify the behavior
of the optimizer and force IDS to use, or avoid, the index. Do some testing and
compare results for the two methods to determine which works best in your
particular implementation.
 Chapter 2. Optimizing IDS for your environment 47

To do this, the onconfig parameters that must be changed to pass from one
environment to the other must be identified, and they should be placed in one of
the following categories:

� Dynamically changeable parameters can be changed dynamically by using
onmode commands. Examples are the PDQ parameters of
RTO_SERVER_RESTART, AUTO_CKPTS, AUTO_AIOVPS, and
AUTO_LRU_TUNING.

� Static parameters cannot be changed dynamically. Examples are
RA_PAGES, RA_THRESHOLD, BUFFERS, LOCKS, and CLEANERS. For
these parameters, find mid-point values that can provide the best
performance for both environments.

One important consideration is the source of data to which users need access.
For example, consider a telecommunications company that saves all the
customer call detail, such as phone number, call start and finish time, duration,
location, and so on. Some users might need access to all the detail, but many
others might not. They might only need a summarized version of the data, which
in this scenario, might include data such as the total number of calls per day,
average number of calls per hour, average duration of a call, and so on. This is
true, for example, when considering OLTP and DSS users.

For a scenario that includes OLTP and DSS users, data tables might be
categorized into the following three groups:

� The DSS group contains aggregate tables for the DSS users. For this
category, create the tables in dbspaces with large page sizes.

� The OLTP group contains tables with detailed data for the OLTP users that
contain the detailed data. Create these tables in dbspaces with a smaller
page size, such as 2k or 4k.

� The OLTP and DSS tables are used by both OLTP and DSS users. Create the
tables in dbspaces with a page size somewhere between the sizes of the
OLTP and DSS dbspaces.

This classification of the tables gives the possibility to use different dbspaces and
different BUFFERPOOL sizes, and to set parameters based on the results of the
performance tuning activity.

For example, consider a 32-bit operating system with 2,000 pages. The onconfig
file can contain several different BUFFERPOOL configurations, for example:

� For DSS:

BUFFERPOOL size=6k,buffers=2000, lrus=2, lru_min_dirty=60,
lru_max_dirty=50
48 Customizing the Informix Dynamic Server for Your Environment

� For OLTP:

BUFFERPOOL size=2k,buffers=500000, lrus=100, lru_min_dirty=10,
lru_max_dirty=5

� For OLTP and DSS:

BUFFERPOOL size=4k, buffers=10000, lrus=8, lru_min_dirty=40,
lru_max_dirty=30

The values of the BUFFERPOOL parameters can be changed based on the
results of the performance tuning activities. For example, you can specify
different buffers, LRUs, LRU_MIN_DIRTY, and LRU_MAX_DIRTY. Each page
can contain a maximum of 255 rows, and the BUFFERPOOL size must be a
multiple of the page size of the operating system. Therefore, if the row size is
small and the BUFFERPOOL size is large, there can be a loss of disk space. To
check this, use the oncheck command to obtain the maximum row size:

oncheck -pt databasename:tablename

Now we look at how to dynamically switch between environments.

Dynamically changing from OLTP to DSS
Suppose that there is a requirement at midnight every night to change from the
OLTP environment to the DSS environment. Such a change requires changing
some of the onconfig parameters, as in the following list:

� Activate the PDQ and change the following parameters:

– MAX_PDQPRIORITY from 0 to 100
– DS_TOTAL_MEMORY from 0 to 500000
– DS_MAX_SCAN from 10 to 50
– DS_MAX_QUERIES from 1 to 50

� Change the following parameters:

– RTO_SERVER_RESTART from 60 to 1200
– AUTO_CKPTS from 1 to 0
– AUTO_AIOVPS from 1 to 0
– AUTO_LRU_TUNING from 1 to 0

To change dynamically from OLTP to DSS, consider Example 2-3 on page 50. In
this example, we use generic values that must be changed for your environment.
The appropriate values that are used can be determined from your performance
tuning activity.

The first step is to create a file named oltp2dss.sql. In that file, place the SQL
script that is shown in Example 2-3.
 Chapter 2. Optimizing IDS for your environment 49

Example 2-3 oltp2dss.sql

database sysadmin;

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_RTO","TASK","SERVER", "change RTO for DSS",
"execute function admin('ONMODE', 'wf', 'RTO_SERVER_RESTART=1200');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY
);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_CKPTS","TASK","SERVER", "change AUTO_CKPTS for DSS",
"execute function admin('ONMODE', 'wf', 'AUTO_CKPTS=0');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY
);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_LRU","TASK","SERVER", "change AUTO_LRU_TUNING for DSS",
"execute function admin('ONMODE', 'wf', 'AUTO_LRU_TUNING=0');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_VPS","TASK","SERVER", "change AUTO_AIOVPS for DSS",
"execute function admin('ONMODE', 'wf', 'AUTO_AIOVPS=0');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
50 Customizing the Informix Dynamic Server for Your Environment

VALUES(
"oltp2dss_MaxPDQ","TASK","SERVER", "change MAX_PDQPRIORITY for DSS",
"execute function admin('ONMODE', 'D', '100');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_Max_Scan","TASK","SERVER", "change DS_MAX_SCANS for DSS",
"execute function admin('ONMODE', 'S', '50');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(tk_name,tk_type,tk_group,tk_description,
tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_Max_Queries","TASK","SERVER", "change DS_MAX_QUERIES for
DSS",
"execute function admin('ONMODE', 'Q', '50');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"oltp2dss_DS_TOTAL_MEMORY","TASK","SERVER", "change DS_TOTAL_MEMORY for
DSS",
"execute function admin('ONMODE', 'M', '500000');",
DATETIME(00:00:00) HOUR TO SECOND, DATETIME(00:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

The SQL script only needs to be executed once. Then the IDS scheduler can
execute the command every night at midnight as specified in the ph_task table.
To execute the script, from user informix, open a command window and execute
the following command:

dbaccess - oltp2dss.sql
 Chapter 2. Optimizing IDS for your environment 51

To check the results, from user informix, run dbaccess and connect to the
database sysadmin. Execute the select as shown in Example 2-4.

Example 2-4 Checking the ph_task table

select tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency
FROM ph_task WHERE tk_name MATCHES "oltp2dss*";

Output
tk_name oltp2dss_CKPTS
tk_type TASK
tk_group SERVER
tk_description change AUTO_CKPTS for DSS
tk_execute execute function admin('ONMODE', 'wf',
'AUTO_CKPTS=0');
tk_next_execution 2007-11-02 00:00:00
tk_start_time 00:00:00
tk_stop_time
tk_frequency 1 00:00:00

Double check that the tk_execute and tk_next_execution fields are correct as you
specified in your script. Check all the other tasks that you wrote in the script, as
shown in Example 2-5.

Example 2-5 Checking the table command_history

select * from command_history

cmd_number 131
cmd_exec_time 2007-12-31 00:00:00
cmd_user informix
cmd_hostname NA
cmd_executed ONMODE
cmd_ret_status 0
cmd_ret_msg OK

After the first scheduled execution, check the command_history table for the new
tasks that are created. Look at the cmd_ret_status field. If it is different from zero,
the command failed.

At this point, you should be able to change dynamically from the OLTP
environment to the DSS environment.
52 Customizing the Informix Dynamic Server for Your Environment

Dynamically changing from DSS to OLTP
To change from the DSS to the OLTP environment, follow the same process that
is described in “Dynamically changing from OLTP to DSS” on page 49. After
performing the performance tuning activities for the OLTP environment, change
the values of the parameters.

Instead of using the oltp2dss.sql script, use the dss2oltp.sql script as described
in Example 2-6. Primarily, the following fields need to be changed:

� tk_name
� tk_description
� tk_next_execution
� tk_start_time

Example 2-6 dss2oltp.sql script

database sysadmin;

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_RTO","TASK","SERVER", "change RTO for OLTP",
"execute function admin('ONMODE', 'wf', 'RTO_SERVER_RESTART=60');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY
);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_CKPTS","TASK","SERVER", "change AUTO_CKPTS for OLTP",
"execute function admin('ONMODE', 'wf', 'AUTO_CKPTS=1');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY
);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_LRU","TASK","SERVER", "change AUTO_LRU_TUNING for OLTP",
"execute function admin('ONMODE', 'wf', 'AUTO_LRU_TUNING=1');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);
 Chapter 2. Optimizing IDS for your environment 53

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_VPS","TASK","SERVER", "change AUTO_AIOVPS for OLTP",
"execute function admin('ONMODE', 'wf', 'AUTO_AIOVPS=1');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_MaxPDQ","TASK","SERVER", "change MAX_PDQPRIORITY for OLTP",
"execute function admin('ONMODE', 'D', '0');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_Max_Scan","TASK","SERVER", "change DS_MAX_SCANS for OLTP",
"execute function admin('ONMODE', 'S', '10');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(tk_name,tk_type,tk_group,tk_description,
tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_Max_Queries","TASK","SERVER", "change DS_MAX_QUERIES for
OLTP",
"execute function admin('ONMODE', 'Q', '1');",
DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description, tk_execute,
tk_next_execution,tk_start_time, tk_stop_time,tk_frequency)
VALUES(
"dss2oltp_DS_TOTAL_MEMORY","TASK","SERVER", "change DS_TOTAL_MEMORY for
OLTP",
"execute function admin('ONMODE', 'M', '10000');",
54 Customizing the Informix Dynamic Server for Your Environment

DATETIME(07:00:00) HOUR TO SECOND, DATETIME(07:00:00) HOUR TO SECOND,
NULL, INTERVAL (1) DAY TO DAY);

The script only needs to be executed once. The IDS scheduler will execute the
command every morning at 07:00:00 a.m. as you specified in the ph_task table.

At this point, you should be able to dynamically change from the DSS to the
OLTP environment.

2.4 Installing the Open Admin Tool

In this section, we briefly describe how to install and configure the OAT and
perform such tasks as connecting to an existing instance. For more details about
the functionality of OAT, see 3.5.5, “The Open Admin Tool” on page 107, and
Chapter 5, “The administration free zone” on page 161.

2.4.1 Preparing for the installation

In this section, we present the typical tasks that required when preparing to
install the OAT:

1. Verify the prerequisites:

The OAT for IDS requires that the following products to be already installed
and configured:

– A Web server, for example Apache
– IBM I-Connect, CSDK (3.00), or IDS
– PHP 5 compiled with PDO, PDO_SQLITE, GD and SOAP (5.2.2) enabled
– Informix PDO Module

This module is already included in PHP 5.1 or later, and it is automatically
enabled when you run the configuration.

2. Download the software.

You can download the software for free from the following Web sites:

– Apache

http://httpd.apache.org/download.cgi

– PHP

http://www.php.net/downloads.php
 Chapter 2. Optimizing IDS for your environment 55

http://httpd.apache.org/download.cgi
http://www.php.net/downloads.php

– I-Connect and CSDK

http://www14.software.ibm.com/webapp/download/
nochargesearchquery.jsp

– Informix PDO module

This module is already included in PHP 5.1 or later. For older PHP
releases, download the PDO module form the following link:

http://pecl.php.net/package/PDO_INFORMIX/download/

– XAMPP

This is an Apache distribution package that contains Apache, PHP, Mysql,
and Perl. You can download it from the following address:

http://www.apachefriends.org/en/xampp.html/

3. Install IDS, Client SDK, or I-Connect.

To install IDS, Client SDK, or I-Connect, refer to the installation guide, in the
Informix library at the following Web address, for the particular product that is
being installed:

http://www-306.ibm.com/software/data/informix/pubs/library/

4. Install Apache and PHP.

To install Apache and PHP, you have two choices:

– Use the application named XAMPP, which automatically installs and
configures the following packages:

• Apache
• PHP
• Mysql
• Perl

For more information, see the following Web address:

http://www.ibm.com/developerworks/linux/library/l-xampp/

Note: After the installation, you must configure XAMPP to work with
Informix.
56 Customizing the Informix Dynamic Server for Your Environment

http://www-306.ibm.com/software/data/informix/pubs/library/
http://www14.software.ibm.com/webapp/download/nochargesearchquery.jsp
http://pecl.php.net/package/PDO_INFORMIX/download/
http://www.apachefriends.org/en/xampp.html/
http://www.ibm.com/developerworks/linux/library/l-xampp/

– Install and configure Apache and PHP individually.

To only install Apache and PHP, refer to the following developerWorks
article depending on the operating environment for step-by-step
instructions:

• Windows:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0
607bombardier/

• UNIX or Linux:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0
606bombardier/

Verifying the installation
At this point, you have installed and configured the Web server, PHP, and
Informix server or client. Before proceeding with the installation of OAT, you must
verify that the Web server, PHP, and Informix can communicate with each other.
To verify the installation:

1. Open the Apache configuration file /apache_install_path/conf/httpd.conf.

2. Search for the variable DocumentRoot to determine which directory is used to
search the Web pages.

3. Open the DocumentRoot directory and perform the following steps:

a. Create a file named phpinfo.php.

b. In the file, type the following code:

<?php phpinfo(); ?>

4. Be sure that Apache is running.

5. Open a Web browser and type the either of the following URLs in the address
bar:

http://localhost/phpinfo.php
http://machine_name/phpinfo.php

If Apache and PHP are working properly, you see a page with PHP and
Apache. Scroll down the page until you see the Informix section, as shown in
Figure 2-7 on page 58, which means that, in PHP, the Informix module is
active.
 Chapter 2. Optimizing IDS for your environment 57

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0607bombardier/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606bombardier/

Figure 2-7 PHP Informix module

6. Be sure that the Informix instance is online.

7. Create the stores_demo database.

8. Create a file named select.php and place the code shown in Example 2-7 in
the file. Change instance_name, username, and your_password to the correct
values.

Example 2-7 Connect and select to IDS by using PHP

<?php
$ifxdbname="stores_demo@instance_name";
$ifxdbuser="username";
$ifxpassw="your_password";

$conn_id= ifx_connect($ifxdbname, $ifxdbuser, $ifxpassw);
if ($conn_id) {print("connected successfully");}
else {print ("error: $conn_id");};

$res_id=ifx_query("select * from customer",$conn_id);
58 Customizing the Informix Dynamic Server for Your Environment

ifx_htmltbl_result($res_id,"border=\"1\"");
ifx_free_result($res_id);
?>

9. Open a Web browser and enter either of the following URLs:

http://localhost/select.php
http://machinename/select.php

If everything is working properly, you should see the output as shown in
Figure 2-8.

Figure 2-8 Select to stores demo

You have now verified that the Web server, PHP, and Informix are installed and
configured properly. Proceed with installing the OAT.
 Chapter 2. Optimizing IDS for your environment 59

2.4.2 Downloading the software

To download the OAT software, registration is required. Follow these steps:

1. Register at the IBM Informix Free Product Download Web page at the
following address:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US
&source=swg-informixfpd

If you have already registered, click the Sign-in link and go to step 2 on
page 61.

If you have not registered, follow these steps:

a. Click Register Now.

b. On the registration form (Figure 2-9) on the next page, complete the
required fields and then click Continue at the bottom of the page.

Figure 2-9 Registration form
60 Customizing the Informix Dynamic Server for Your Environment

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-informixfpd

c. If the registration is successful, you receive a validation message like the
example in Figure 2-10. Click Continue.

Figure 2-10 Registration confirmation message

2. On the IBM Informix Free Product Download main page (Figure 2-11), scroll
down to the IBM Informix Open Admin section. Select the OS version and
documentation that you want to download, and click Download Now at the
bottom of the page.

Figure 2-11 OAT download form
 Chapter 2. Optimizing IDS for your environment 61

3. A Java applet starts and prompts you for the location to download the file
(Figure 2-12).

Figure 2-12 Java applet

If you click the button Detail, you can see the file downloaded, the location,
and size, as shown in Figure 2-13.

Figure 2-13 Details download directory
62 Customizing the Informix Dynamic Server for Your Environment

2.4.3 Installing the Open Admin Tool

To install the OAT:

1. In the Web server root directory, create a new subdirectory named OAT.
Extract the OAT package into the /web server document root directory/OAT/.

2. Change the ownership of the OAT/install directory to the user and group that
runs the Apache (httpd) server.

For the installation and configuration, use the local host for all the examples that
involve an action with Apache. However, you can use the machine name instead
of the local host in all the commands described in this section, and the results will
be the same.

1. Open the Web browser and type the following URL in the address bar:

http://localhost/oat/install/

2. On the installation Welcome Page (Figure 2-14), select the I accept the
terms in the license agreement check box and click Next.

Figure 2-14 Welcome to Open Admin Tool for IDS install
 Chapter 2. Optimizing IDS for your environment 63

3. OAT checks that the PHP modules that are required are correctly installed.
The Required PHP Modules page (Figure 2-15) shows the OAT check module
results. You should have a page similar to this one. A red “X” in one or more
PHP modules indicates a problem that must be corrected to proceed with the
OAT installation. Click Next to continue the installation.

Figure 2-15 Required PHP Modules

4. The Configuration Parameters Web Page is displayed as shown in
Figure 2-16 on page 65. On this page, you can change some of the
configuration parameters, such as language, the directory where the
connection database resides, the OAT home directory, and connection
protocol. Change the parameter as required, or keep the default values.
64 Customizing the Informix Dynamic Server for Your Environment

Googlemapkey
For a graphical representation of the location of the server, complete the
GOOGLEMAPKEY field (Figure 2-16). To begin, you must sign in at the following
Web site:

http://www.google.com/apis/maps/signup.html

The signup process provides a key that you can enter in the GOOGLEMAPKEY
field. From there, you can determine, for example, the specific latitude and
longitude of the server. When you finish, click Save.

Figure 2-16 Configuration parameters
 Chapter 2. Optimizing IDS for your environment 65

http://www.google.com/apis/maps/signup.html

Creating the connection database
Create the connection database that contains all the information to connect to
the IDS instances:

1. On the Create connections database page (Figure 2-17), click Next.

Figure 2-17 Create connections database

2. It takes few seconds to create the connection database. OAT shows a
message that informs you whether the database creation was successful. A
page shows a message indicating that the OAT database was created
successfully such as the example in Figure 2-18. Click Next.

Figure 2-18 Database connection created
66 Customizing the Informix Dynamic Server for Your Environment

3. A page shows a message indicating that the installation of OAT completed
successfully such as the example in Figure 2-19. Click HERE to start the OAT
configuration.

Figure 2-19 Installation completed

2.4.4 Configuring the installation

In this section, we explain how to configure OAT to open a connection to an IDS
instance by performing the following tasks:

1. Open the OAT configuration page.
2. Add a group, but only the first time.
3. Add a connection to an IDS instance.
4. Connect from OAT to the IDS instance.
5. Open the OAT main page to manage the instance.

Let us look at each of these steps in more detail.
 Chapter 2. Optimizing IDS for your environment 67

Opening the OAT configuration page
Open a Web browser and enter the following link:

http://localhost/oat/admin/

The OAT Admin page opens (Figure 2-20) on which you can perform the
following actions:

� Change the OAT configuration parameters (refer to Figure 2-16 on page 65).
� Add a new OAT administrator group.
� Add new connections to IDS instances.
� Associate a location map to the IDS instances.
� Connect to an IDS instance.

Figure 2-20 OAT configuration - Main page
68 Customizing the Informix Dynamic Server for Your Environment

Adding a new group
To add a new group, on the OAT Admin page, under Menu, click Add Group. The
Add a Group page (Figure 2-21) is displayed. Add the administrator group name
and password and click Add. Take note of the group name and password, which
are required when you want to add a new connection.

Figure 2-21 OAT configuration - Adding a new group
 Chapter 2. Optimizing IDS for your environment 69

Adding a connection to the IDS instance
To create a new connection, under Menu, click Add Connection. On the Add a
Connection page (Figure 2-22), complete the form and click Save.

Figure 2-22 OAT configuration - Adding a new connection

To find the Host Name, connect to the IDS server and enter the following
command:

hostname

To find the port number, connect to the IDS server, open the file services, and
search for the instance name. Depending on the operating environment, it can be
found in either of the following directories depending on your platform:

� For Windows, in C:\WINDOWS\system32\drivers\etc\services
� For UNIX or Linux, in /etc/services
70 Customizing the Informix Dynamic Server for Your Environment

You should see the information as shown in Table 2-3.

Table 2-3 File services

The port number is in the second column. Sometimes the port name and port
number used by the instance are not written in the file services. In this case,
enter the following command:

onstat -g ntt

Then you see the output that is shown in Example 2-8.

Example 2-8 onstat -g ntt

IBM Informix Dynamic Server Version 11.10.TC1 -- On-Line -- Up 00:01:41 -- 21696 Kbytes

global network information:
 #netscb connects read write q-limits q-exceed alloc/max
 7/ 7 0 0 0 0/ 45 10/ 0 0/ 0

Individual thread network information (times):
 netscb thread name sid open read write address
 ccdf728 18 17:47:28
 cc60bf8 17 17:47:28
 cbc7c48 16 17:47:27
 cc5d8a0 15 17:47:27
 c939a28 soctcplst 4 17:47:20 IBM-175C909B405.ibm.com|9088|soctcp
 c917d50 soctcpio 3 17:47:20
 c9008a0 soctcppoll 2 17:47:20

The port number is in the row that is related to the thread name, soctcplst.

If you are not planning to use the location map, you can leave the Latitude and
Longitude fields empty. If you are using the location map, those values can be
determined, for example, by using Google Maps. For more information, refer to
“Googlemapkey” on page 65.

When the form is complete, click Save.

Portname Portnumber Protocol Comment

svc_custom 9088 tcp #instance_name
 Chapter 2. Optimizing IDS for your environment 71

Opening the OAT main page
Click OAT Login or type the following URL in the address bar of the browser:

http://localhost/OAT/index.php

Then perform the following steps:

1. Select the group.
2. Type the user name and password.
3. Click the Get Servers button.
4. Select the instance name.

The fields for Server Details are completed automatically, as shown in
Figure 2-23.

5. Click Login.

Figure 2-23 OAT Login
72 Customizing the Informix Dynamic Server for Your Environment

If the login is successful, you are redirected to the OAT main page, which is
shown in Figure 2-24.

Figure 2-24 OAT main page

At this point you have completed the configuration and can now monitor and
manage the instance by using the OAT. For more details about managing the
instance, refer to Chapter 5, “The administration free zone” on page 161.
 Chapter 2. Optimizing IDS for your environment 73

74 Customizing the Informix Dynamic Server for Your Environment

Chapter 3. Enterprise data availability

In the world of information on demand, more and more companies find a need for
reliable, uninterrupted, and continuous access to corporate information that is
dispersed across all corners of the enterprise. Business continuity became a
matter of survival since downtime costs for organizations in segments, such as
financial market, credit card sales, home shopping, or airline reservations, could
amount to thousands or even millions of dollars in loss of revenue.

Informix Dynamic Server (IDS) provides what we refer to in this book as
enterprise data availability (EDA). EDA is provided by a suite of technologies
that enable uninterrupted access to corporate information, and provide data
replication, workload balancing, high availability, failover, and disaster recovery
for important enterprise systems.

EDA is comprised of the high availability (HA) and data replication solutions that
are embedded in IDS. Such solutions include High Availability Data Replication
(HDR), Remote Standalone Secondary (RSS), Shared Disk Secondary (SDS),
Continuous Log Restore (CLR), and Enterprise Replication (ER). These
solutions are key to enabling an effective, flexible, and efficient way to maximize
availability of data, provide disaster recovery, and ensure consistent delivery of
that data wherever and whenever it is needed.

In this chapter, we provide an overview of the EDA solutions and possible
combinations of the technologies on which they are based. We discuss the
technologies and solutions that are available to provide the best implementation

3

© Copyright IBM Corp. 2008. All rights reserved. 75

to satisfy your business requirements. We also provide sample scenarios for
better understanding.

In this chapter, we do not give details about how to configure and implement the
solutions presented here because such information is well beyond the scope of
the chapter. However, upon completion of this chapter, you will have a better
understanding of the technology and solutions that are available to you with IDS.

3.1 Enterprise data availability solutions in IDS

IDS provides many innovative features to support high availability and replication
of data.

High Availability Data Replication is extremely robust, having been part of IDS
for over ten years. However, with HDR, there can only be one secondary
instance. At this time, the user can only write to the primary instance, which
might not enable the desired degree of load balancing.

Enterprise Replication is a powerful offering that enables solutions with
enhanced flexibility. For example, a database administrator (DBA) can replicate
as many or as few tables as desired. Multiple servers can be created, all of which
stay synchronized with each other. As another long-time feature with IDS, ER
delivers more enhanced features and improved functionality with each release.

The latest requirement is to have both the ease of use of HDR and the
extensibility and one-to-many relationships of ER. With IDS 11, this functionality
has been delivered with two new replication technologies, Remote Standalone
Secondary and Shared Disk Secondary servers. Additionally, a new Continuous
Log Restore feature makes it possible to manually maintain a backup system.

In this section, we provide a brief overview of the high availability and data
replication technologies that are embedded in IDS. With this information, you will
have a better understanding of how to apply and enable these EDA features to
address your specific business and application needs.

More information: Refer to the Redbooks publication Informix Dynamic
Server 11: Extending Availability and Replication, SG24-7488, which contains
additional detail about existing availability and replication features of IDS. A
softcopy of that book is available for download from the following Web page:

http://www.redbooks.ibm.com/abstracts/sg247488.html?Open
76 Customizing the Informix Dynamic Server for Your Environment

http://www.redbooks.ibm.com/abstracts/sg247488.html?Open

3.1.1 High Availability Data Replication

HDR is a data replication and high availability solution that is fully integrated
within the data server. HDR is easy to set up and administer. It works between
two IDS server instances and requires a homogeneous environment where both
of the computers in the HDR pair must be on same hardware architecture,
operating system (OS), and IDS version, as illustrated in Figure 3-1.

Figure 3-1 High Availability Data Replication

HDR employs a log record shipping technique to transfer the logical log records
from the primary server to the secondary server. The secondary server is in
perpetual roll-forward mode, so that data on the secondary server remains
current with data on the primary server.

HDR can be configured to operate in synchronous (SYNC) or asynchronous
(ASYNC) mode. In SYNC mode, we can guarantee that, when a transaction is
committed on the primary server, its logs have been successfully transmitted to
the HDR secondary server. In this case, the performance of the primary might be
affected by the performance of the secondary server or network. Checkpoints in
HDR are required to be synchronous, so that the primary and the secondary
servers can switch roles. In ASYNC mode, transactions committed on the primary
and transmission of logs to the secondary are independent. This can provide
better performance, but it brings with it the risk of possibly losing transactions.

Primary HDR Secondary

HDR
 Chapter 3. Enterprise data availability 77

HDR uses a half-duplexed communications protocol, meaning that the primary
requires an acknowledgment (ACK) from the HDR secondary before sending the
next buffer. This requirement can affect the performance of the primary server if,
for any reason, the secondary does not send the ACK promptly.

HDR provides manual or automatic failover. If the primary server fails, the HDR
secondary server automatically takes over and switches to a standard or primary
server allowing minimal disruption to the clients. When the original primary
server becomes available, it is synchronized when HDR is restarted.

The HDR secondary server can be used for read-only operations while in a
functional HDR pair. As such, read-only applications, such as reports, can be
executed against the secondary instance, thus reducing the load on the primary
server. It can also be used as a hot backup server for additional availability in
case of unplanned outages or disaster recovery scenarios.

3.1.2 Remote Standalone Secondary

Similar to HDR, RSS servers can provide geographically remote,
application-accessible full copies of the primary instance. Logical logs are
continuously transmitted from the primary server and applied to the database on
the RSS server, as shown in Figure 3-2. RSS requires a homogeneous
environment, as does HDR.

Figure 3-2 Remote Standalone Secondary

NewYork
Primary

LosAngeles
RSS_1

RSS

RSS

Miami
RSS_1
78 Customizing the Informix Dynamic Server for Your Environment

RSS is different from HDR. As examples, RSS only uses asynchronous
transmissions of logs and checkpoints, RSS servers cannot be promoted directly
to a primary, and one or more RSS servers can be created.

Instead of using the half-duplexed communications protocol of HDR, RSS
servers use a fully duplexed protocol provided by the server multiplexer (SMX)
communications interface that supports encrypted multiplexed network
connections between servers in high availability environments. SMX provides a
reliable, secure, high-performance communication mechanism between
database server instances.

Using full duplexed communication results in RSS servers has little impact on the
primary server performance.

Multiple RSS servers in geographically diverse locations can be used to provide
faster query response than if all the users had to access the primary server. The
application traffic that only reads the data can be sent to local RSS servers. For
example, RSS servers can feed data to Web applications that do not require
up-to-the-minute data. If the applications must update the data, they connect to
the primary server. Otherwise, they read the data from the local RSS server. This
configuration reduces network traffic and the time required by the application to
access the data.

As shown in Figure 3-2 on page 78, remote application servers can access local
database servers to minimize latency and improve performance.

RSS can also be used as multiple remote backup servers for additional
availability in the event of unplanned outages or any catastrophe at the location
of the primary or other HA secondary servers.
 Chapter 3. Enterprise data availability 79

3.1.3 Shared Disk Secondary

Unlike HDR and RSS, SDS servers access the same physical disk as the
primary server. They provide increased availability and scalability without the
need to maintain multiple copies of the database, which results in lowering data
storage costs, as illustrated in Figure 3-3.

Figure 3-3 Shared Disk Secondary

SDS requires a homogeneous environment, as does HDR.

Like RSS servers, SDS servers also use the SMX layer, which is an internal
component that is implemented to support the full duplexed communication
protocol. SDS does not support synchronous mode, which is similar to RSS, but
different from HDR.

The SDS architecture provides the ability to set up multiple database servers
sharing the entire dbspace set that is defined by a primary database server. It
can be used for defining database servers on the same physical machine or
different machines with an underlying shared file system.

Multiple SDS servers provide the opportunity to dedicate specific SDS servers
for specific tasks, such as data warehousing as a DSS-oriented server or Web
application server with an online transaction processing (OLTP) approach, with
the appropriate differences in the configuration for parallel database query (PDQ)
and memory requirements. The SDS environment can also be used simply for

Primary SDS_1 SDS_2 SDS_3

Shared Disk
80 Customizing the Informix Dynamic Server for Your Environment

work balancing, by spreading the existing company applications across the SDS
servers in the infrastructure to achieve a better throughput.

An SDS server can be made available quickly. When configured, an SDS server
joins an existing system and is ready for immediate use.

The benefits of this feature in terms of resources, in comparison with HDR and
RSS, are a significantly lower requirement on disk space and a slight reduction in
network traffic. The simple requirements for setup and configuration do not bind
additional DBA resources. In addition, much better load balancing and workload
partitioning can be achieved by dynamically adding and removing SDS servers in
an existing infrastructure.

3.1.4 Continuous Log Restore

CLR is used as a robust way to set up a hot backup of a database server for
increased availability in case of unplanned outages or disaster recovery
scenarios. The hot backup of the primary IDS server is maintained on the backup
server, which contains similar hardware, OS, and an identical version of IDS.

To configure a backup server by using CLR, a physical backup of the primary
server is created, and the backup copy is transported to the backup server. The
backup is then restored on the backup server. After the restore is complete, the
backup server is ready for logical recovery. In the event that a logical log on the
primary server becomes full, it is backed up and then transported to the backup
server where logical recovery is performed. Figure 3-4 on page 82 illustrates the
operation of CLR.

Shared disk file systems: Several shared disk file systems are available in
the market that guarantee concurrent use by different systems in a high
availability cluster. For example, the IBM General Parallel File System™
(GPFS™) is a high performance shared disk file system that can provide fast,
reliable data access from all servers for AIX and Linux cluster systems.
Similarly, other shared disk technologies, such as Veritas Storage Foundation
Cluster File System, Redundant Array of Independent Disks (RAID), and
Storage Area Network (SAN), can also be used to set up an SDS cluster.
However, we do not recommend the use of a mounted Network File System
(NFS) for the Shared Disk Secondary servers, for performance reasons.
 Chapter 3. Enterprise data availability 81

Figure 3-4 Continuous Log Restore

Should the primary server become unavailable, a final log recovery is performed
on the backup server, which is brought up in online mode as the primary server.

CLR is useful when the backup database server is required to be fairly current,
but the two systems need to be completely independent of each other for
reasons such as security and network availability. CLR can also be useful when
the cost of maintaining a persistent network connection is too high. With CLR, log
files are manually transferred to a backup database server where they are
restored.

Backup Server

Full Backup Restore

Apply
Log

Backup Log

Transport Log

Step 1: Setup – A full backup is applied to the backup server

Step 2: Logs are applied as each is backed up

Primary Server
82 Customizing the Informix Dynamic Server for Your Environment

3.1.5 Enterprise Replication

ER provides reliable propagation of configurable selected data across multiple
IDS servers within complex network topologies, such as the one shown in
Figure 3-5.

Figure 3-5 Enterprise Replication

ER is an asynchronous, log-based data replication solution. It works with both
homogeneous or heterogeneous environments, meaning that each of the
computers that run ER servers can be on same or different hardware
architectures and OS and use different versions of IDS. For example, you can
replicate the data from IDS 11 (32-bit) on Linux to IDS 10 on Solaris (64-bit).

ER can be configured to replicate data immediately, at certain intervals or point in
time. It can also be used to replicate individual tables or subsets of tables rather

HA Cluster

HA Cluster

ER
 Chapter 3. Enterprise data availability 83

than the entire database or instance. In addition, each ER definition can target
different specific instances, rather than all instances in the ER system.

The flexible architecture of ER allows organizations to customize their replication
environment based on business requirements and models as in the following
examples:

� Primary-target replication, where the flow of information is in one direction,
usually for the purpose of data dissemination or consolidation

� Update-anywhere replication, where changes made on any location are
replicated to all other participating database servers, often used for workload
distribution

ER provides mechanisms to easily set up and deploy replication for systems with
large numbers of tables and servers. It also provides support for Online Schema
Evolution that allows modifications in replication definitions or replicated tables
for an active ER system without interrupting the data replication.

ER offers an effective mechanism for replication within network topologies with
fully-connected database servers and not-directly-connected database servers in
a hierarchical tree of servers. Depending on the volume of data, the distance
between the servers and the network facilities that are available, ER can be
configured to use a hierarchical tree or forest of trees topology, in a way that the
network traffic and database server processing could be highly reduced. For
example, if replication for a large number of servers across continents is
required, then a fully-connected topology might not be feasible for all the servers
because of insufficient network bandwidth for the data volume. Therefore, in this
case, an ER system can benefit from an hierarchical topology.

ER is not an instance-wide replication. Therefore, the disk space requirement for
each IDS instance depends on that database server usage and other business
needs.

All the features of ER can result in a wide spectrum of benefits, including reliable
and fast replication of data across a distributed or global organization, improved
data availability, capacity relief, and increased performance.

3.2 Clustering EDA solutions

Depending upon the business needs for high availability, failover, disaster
recovery, data distribution and sharing, workload balancing, and capacity relief,
you can choose to configure your database servers by using various
combinations of HDR, RSS, SDS, CLR, and ER technologies. All the EDA
84 Customizing the Informix Dynamic Server for Your Environment

solutions in IDS can coexist and work together to satisfy an extremely wide range
of business and application requirements for important systems.

The EDA features are built within the server and can interact with each other
making IDS a powerful database server yet that is simple to configure and
administer, thus minimizing DBA activity and overall cost of ownership.

3.2.1 HA clusters

Figure 3-6 shows an HA cluster, which is a combination of all the possible HA
solutions including CLR, HDR, RSS, and SDS nodes. Depending on the
business needs, the HA cluster can include more RSS and SDS nodes, or it can
be a subset of the configuration shown.

Figure 3-6 HA cluster with CLR, HDR, RSS, and SDS servers

The HA cluster can provide such capabilities as high availability, failover, disaster
recovery, and workload balancing. It can also support planned or unplanned
outages.

Typically, planned outages are required in situations where one of the servers in
the HA cluster is scheduled for maintenance such as in the hardware or OS.

Blade Server

Shared
Disk

HDR Secondary

RSS

RSS

SDS

SDS

SDS

Primary

Backup Server

CLR
 Chapter 3. Enterprise data availability 85

Unplanned outages occur when events, such as loss of power or a disaster
situation, occurs.

In these situations, a DBA can choose the available failover options. These
include failover of the primary to a secondary, switching roles between the
primary and secondary, switching the secondary to another type, changing a
server to standard mode, or just removing a server from the HA cluster.

3.2.2 ER with HA clusters

IDS supports mixing the HA technologies with ER, so that ER can seamlessly
work with HDR, RSS, SDS or CLR.

HA clusters can participate in an ER configuration. For example, any of the
database servers in an ER network can be part of an HA cluster. This might be
used to ensure that key nodes, such as the ER root nodes in a hierarchical
topology, are highly available, so the flow of data is not interrupted.

In this case, only the primary server of an HA cluster is included in the replication
network. The backup or secondary servers are not directly configured for ER.

The order of creating the systems does not matter. An HA cluster can be created
and then added to an ER network, or any stand-alone system in an ER network
can be converted to an HA cluster.

What matters is to ensure that paths are available, so that the failure of any single
system does not leave sets of systems cut off from one another. For example, in
Figure 3-7 on page 87, if one of the central servers, in New York or London, is not
available, then none of the regional servers will be able to connect to the rest of
the enterprise. In this case, each central server and its regional servers are good
candidates to be HA clusters.
86 Customizing the Informix Dynamic Server for Your Environment

Figure 3-7 ER root nodes without HA clusters

The fault tolerance capability of the configuration can be improved by adding HA
clusters to both root nodes (New York and London), as shown in Figure 3-8.

Figure 3-8 ER root nodes with HA clusters

LosAngeles Chicago

New York

London

Munich Paris

LosAngeles Chicago

New York

London

Munich Paris

HA Cluster

HA Cluster
 Chapter 3. Enterprise data availability 87

Figure 3-9 illustrates a combination of all the HA and ER technologies in IDS. It
shows three HA clusters in an ER network. It also shows how the headquarters
(HQ) and each region (Region1 and Region2) of a company can be self
sufficient, with respect to their HA needs, and still share the data over ER.

Figure 3-9 Combination of HA clusters and an ER network

In this scenario, the down time of an ER network can be significantly reduced by
the use of HA technologies.

3.3 Selecting the proper technology for your business

In this section, we recapitulate the characteristics and advantages for each of the
EDA solutions. We then provide suggestions and directions regarding when and
where these technologies, or combinations of these technologies, can be best
used.

HQ

Region1 Region2

Blade Server

Shared
Disk

HDR Secondary

RSS

RSS

SDS

SDS

SDS

Primary

Backup Server

Blade Server

Shared
Disk

HDR Secondary

RSS

RSS

SDS

SDS

SDS

Primary

Backup Server

Blade Server

Shared
Disk

HDR Secondary

RSS

RSS

SDS

SDS

SDS

Primary

Backup Server
88 Customizing the Informix Dynamic Server for Your Environment

3.3.1 EDA technologies

In the current demanding environment, more and more companies strive to
achieve and maintain high availability from their IT systems because any
interruption in accessing their systems can cause loss of revenue. Another
important requirement pursued is to obtain high performance from their
distributed systems that, depending on the company and business environment,
might be spread worldwide across many continents. Of course, these goals need
to be achieved with minimum cost. Therefore the high availability, high
performance, and minimum total cost of ownership (TCO) become a challenging
trio of demands.

The high availability requirement can be obtained with the failover, disaster
recovery, and data distribution capabilities provided by HDR, RSS, SDS, CLR,
and ER technologies included in IDS. In the same way, the high performance
goal can be achieved by using IDS and all of its built-in features that make it a
fast database server, along with the capacity relief, workload balancing, and data
sharing capabilities provided by the HA and ER solutions of IDS.

High availability and high performance requirements not only depend on the
database server, but also on the other components that comprise the system
such as hardware, OS, network, and the application. Nevertheless, the Informix
EDA solutions discussed in this chapter can be used as an important part of the
overall solution.

There is no single solution to satisfy the requirements of everyone. This is
because the TCO and the level of availability and performance requirements
differ from one organization to another. Therefore, it is best to understand the
capabilities for each of the EDA technologies of IDS to help determining the best
strategy for your particular environment.
 Chapter 3. Enterprise data availability 89

3.3.2 Summary of capabilities and failover options

Table 3-1 summarizes the capabilities and failover options for the EDA
technologies of IDS. You can use this table to assist you in selecting the proper
solution for your business needs.

Table 3-1 Comparison of capabilities and failover options for EDA technologies

Capabilities and failover options HDR RSS SDS CLR ER

Provides high availability Yes Yes Yes Yes Yes

Provides failover Yes Yes Yes Yes No

Provides disaster recovery Yes Yes Yes Yes No

Provides server redundancy Yes Yes Yes Yes Yes

Provides data redundancy Yes Yes No Yes Yes

Provides workload balancing or capacity relief Yes Yes Yes No Yes

Provides workload partitioning No No No No Yes

Provides dissemination and consolidation No No No No Yes

Primary/source to secondary/backup/target
distance (near/far)

Near Both Near Both Both

Supports Online Schema Evolution for
application upgrades

No No No No Yes

Setup and configuration difficulty Easy Easy Easy Easy Custom

Deployment difficulty Easy Easy Easy Easy Easy

Disk layout of primary or source compared to
secondary, backup, or target

Identical Identical Shared Identical Custom

Disk space dependency High High Low High Custom

Shared disk system dependency No No Yes No No

Fully duplexed (SMX) versus half duplexed
communication

Half Fully Fully N/A N/A

Network dependency High Medium Low None Custom

Supports complex network topologies with
fully-connected and non-directly-connected
IDS servers

No No No N/A Yes
90 Customizing the Informix Dynamic Server for Your Environment

Homogeneous versus heterogeneous
environment (hardware architecture, OS, IDS
version)

Homo Homo Homo Homo Hetero

Asynchronous versus synchronous replication Both Async Async N/A Async

Instance-wide versus customized replication or
copy

Instance Instance Instance Instance Custom

Primary or source and secondary, backup, or
target are like mirror images

Yes Yes Yes Yes No

Number of primary or source servers One One One One Many

Number of secondary, backup, or target
servers

One Many Many Many Many

Read-only versus read-write operations on
secondary, backup, or target

Read -
only

Read -
only

Read -
only

None Read -
Write

Can be part of an HA cluster Yes Yes Yes Yes N/A

Only one shared primary server for any existing
secondaries in an HA cluster

Yes Yes Yes Yes N/A

Only primary of HA cluster participates in ER N/A N/A N/A N/A Yes

Coexists and works together with other EDA
solutions

Yes Yes Yes Yes Yes

Secondary or backup can become a primary
server

Yes No Yes No N/A

secondary or backup can become a standard
server

Yes Yes No Yes N/A

Secondary can become an HDR secondary N/A Yes No N/A N/A

Secondary can become an RSS Yes N/A No N/A N/A

Secondary can become an SDS No No N/A N/A N/A

Capabilities and failover options HDR RSS SDS CLR ER
 Chapter 3. Enterprise data availability 91

3.3.3 Recommended solutions

EDA technologies can be combined to suit a variety of business situations.
Table 3-2 illustrates examples of combinations that can be used to address
different application and business requirements.

Table 3-2 Recommended solutions for various requirements

Application or business requirement Recommended solution

Periodic requirement to increase reporting capacity. Use SDS or RSS servers. If the amount of data is
large and maintaining multiple copies is difficult,
then use SDS servers.

You are using SAN devices, which provide ample
disk hardware availability, but you are concerned
about server failures.

Use SDS servers.

You are using SAN devices, which provide ample
disk hardware mirroring, but you also want a
second set of servers that can be brought online if
the primary operation should fail (and the
limitations of mirrored disks are not a problem).

Consider using two blade centers running SDS
servers at the two sites.

You want to have a backup site a moderate distance
away, but cannot tolerate any loss of data during
failover.

Consider using two blade centers with SDS servers
on the primary blade center and an HDR secondary
on the remote server.

You want a highly available system in which no
transaction is ever lost, but that must also have a
remote system on the other side of the world.

Consider using an HDR secondary located nearby
running in SYNC mode and an RSS server on the
other side of the world.

You want a high availability solution, but because of
the networks in your region, there is a large latency.

Consider using an RSS server.

You want a backup site, but you do not have any
direct communication with the backup site.

Consider using CLR with backup and recovery.

You can tolerate a delay in the delivery of data as
long as the data arrives eventually. However, you
need quick failover in any case.

Consider using SDS servers with hardware disk
mirroring in conjunction with ER.

You need additional write processing power, can
tolerate some delay in the delivery of those writes,
need something highly available, and can partition
the workload.

Consider using ER with SDS servers.
92 Customizing the Informix Dynamic Server for Your Environment

3.4 Sample scenarios

The EDA technologies described in this chapter can practically be present in any
business environment that requires capabilities such as high availability, failover,
disaster recovery, workload balancing, data sharing, and distribution. Some of
those environments that might fit closely to your business include OLTP, Web
applications, embedded applications, decision support, data warehousing, and
information on demand systems.

In this section, we discuss sample scenarios for the mentioned environments.
One of them might just be the solution that you need to satisfy your business
requirements.

3.4.1 Failover and disaster recovery

Today, failover capability alone is not the only requirement for data centers. We
have all witnessed natural and man-made calamities, and it is necessary for
everyone to be ready for disaster recovery. Traditional backup and restore
provides disaster recovery capability, but this traditional mechanism can be slow
and require a significant amount of preparation and execution.

In this example, we show a complex failover and disaster recovery strategy by
using the HA solutions that are available in IDS. This layered availability strategy
should provide maximum availability to survive a regional disaster.

The first layer provides availability solutions to deal with transitory local failures.
For example, this might include having a couple of blade servers attached to a
single disk subsystem running SDS servers. Placing the SDS servers in several
locations throughout your campus makes it possible to provide seamless failover
in the event of a local outage.

You might want to add a second layer to increase availability by including an
alternate location with its own copy of the disks. To protect against a large
regional disaster, you might also consider configuring an HDR secondary server
located some distance away, perhaps hundreds of miles. You might also want to
make the remote system a blade server or some other multiple-server system.
By providing this second layer, if a failover should occur and the remote HDR
secondary became the primary, then it is possible to easily start SDS servers at
the remote site.
 Chapter 3. Enterprise data availability 93

However, even a two-tiered approach might not be enough. A hurricane in one
region can spawn tornadoes hundreds of miles away. To protect against this,
consider adding a third tier of protection, such as an RSS server located one or
more thousand miles away. This three-tier approach, depicted in Figure 3-10,
provides for additional redundancy that can significantly reduce the risk of an
outage.

Figure 3-10 Configuration for three-tiered server availability

Now suppose that a local outage occurred in Building-A on the New Orleans
campus. Perhaps a pipe burst in the machine room causing water damage to the
blade server and the primary copy of the shared disk subsystem. You can switch
the role of the primary server to Building-B by running the onmode -d command to
make the primary server name on one of the SDS servers running on the blade
server in Building-B. This causes all other secondary nodes to automatically
connect to the new primary node, as shown in Figure 3-11 on page 95.

Primary

SDS

SDS

Blade Server A1
<New Orleans>
Building-A

Blade Server B
<Memphis>

HDR
Secondary

HDR Traffic

RSS

RSS Traffic

Blade Server C
<Denver>

SDS

Blade Server A2
<New Orleans>
Building-B

Shared
Disk

Shared
Disk

Shared
Disk

Mirror

Shared
Disk
94 Customizing the Informix Dynamic Server for Your Environment

Figure 3-11 First tier of protection

Should there be a regional outage in New Orleans such that both building A and
building B are both lost, then you can shift the primary server role to Memphis. In
addition, you might also want to make Denver an HDR secondary and possibly
add more SDS servers to the machine in Memphis. Figure 3-12 illustrates this
scenario.

Figure 3-12 Second tier of protection

Primary

SDS

Blade Server A1
<New Orleans>
Building-A

Blade Server B
<Memphis>

HDR
Secondary

RSS

Blade Server C
<Denver>

Blade Server A2
<New Orleans>
Building-B

RSS Traffic

HDR Traffic

Shared
Disk

Shared
Disk

Mirror

Shared
Disk

Shared
Disk

Offline

Blade Server A1
<New Orleans>
Building-A

Blade Server B
<Memphis>

Primary

HDR
Secondary

HDR Traffic

Blade Server C
<Denver>

Blade Server A2
<New Orleans>
Building-B

SDS

SDS

Shared
Disk

Mirror

Shared
Disk

Shared
Disk

Shared
Disk

Offline

Offline
 Chapter 3. Enterprise data availability 95

An even larger outage that affects both sites requires switching to the most
remote system, as illustrated in Figure 3-13.

Figure 3-13 Third tier of protection

3.4.2 Workload balancing with SDS and ER

In this section, we describe the scenario an organization that needs OLTP
servers for their production and needs to analyze that production data by using
data warehousing solutions. The organization has a large amount of disk
capacity in the form of shared disks and SAN, but has limited processor capacity.

Blade Server A1
<New Orleans>
Building-A

Blade Server B
<Memphis>

Primary

HDR Traffic

Blade Server C
<Denver>

Blade Server A2
<New Orleans>
Building-B

Shared

Shared
Disk

Mirror

Shared
Disk

Offline
Offline

Offline

Shared
Disk
96 Customizing the Informix Dynamic Server for Your Environment

During normal operations, there is enough capacity to satisfy the needs of the
OLTP clients that mostly perform read-only access. Figure 3-14 shows the initial
setup using SDS nodes at each site, along with ER.

Figure 3-14 Organization with data warehouse and OLTP using SDS and ER

hq1

Blade Server A

Shared
Disk

Primary

SDS

SDS

SDS

Blade Server B

Primary

SDS

SDS

SDS

OLTPOLTPData Warehouse Data Warehouse

Volume 1

Shared
Disk
Volume 2

hq2

ER Traffic

Disk I/O Traffic

SDS Network Traffic

Client to Server Traffic
 Chapter 3. Enterprise data availability 97

Over time, this company might face a need for increasing the capacity at the
OLTP site to satisfy additional client applications doing read-only operations. To
satisfy this need, the company can simply switch some of the SDS nodes at the
data warehouse site to work connected to the primary at the OLTP site and then
redirect some of the clients to those SDS nodes as illustrated in Figure 3-15.

Figure 3-15 Handling transient need for extra OLTP client requirements

3.4.3 Data availability and distribution using ER

Database replication is important because it enables enterprises to provide users
with access to current data where and when they need it. It can also provide a
wide spectrum of benefits, including improved performance when centralized
resources get overloaded, increased data availability, capacity relief, and support
for data warehousing to facilitate decision support.

An enterprise typically has a number of requirements for using data replication.
One key to designing an ER implementation is a clear understanding of those
requirements. Some organizations might want to increase fault tolerance by
duplicating the critical information in more than one location. Or, some might
want to increase data availability and performance of their application by using
local replicas to avoid wide area network (WAN) network traffic.

hq1 hq2

Blade Server A

Shared
Disk

Primary

SDS

SDS

SDS

Blade Server B

Primary

SDS

SDS

SDS

OLTPOLTPData Warehouse Data Warehouse

Volume 1

Shared
Disk
Volume 2
98 Customizing the Informix Dynamic Server for Your Environment

In the following sections, we provide examples of replication business models
that organizations might want to implement in their environment.

Call center
Organizations might want a consistent set of records that can be updated at any
site in a peer-to-peer fashion. That is an update-anywhere replication. This
capability allows users to function autonomously and continue to function even
when other servers or networks in the replication system are not available.

In this scenario, an international corporation needs 24x7 availability to support
centers in various locations around the world. For example, a call is routed to one
of the three call centers, depending on the time of day and call load-balancing
requirements. Each call center then needs the ability to update records and have
them replicated to the other call centers. When a call is made, it might be routed
to Sydney, Australia, and the information taken is then replicated to other call
centers in such locations as London and Miami. Therefore, each call center
would have the information captured at the other call centers.

Retail pricing
A company might want to use a data dissemination model where data is updated
in a central location and then replicated to multiple, read-only sites. This method
is useful when information must be distributed, for example, to multiple sales
locations.

For example, a hotel chain might want to send reservation information to the
various hotels, or a book store chain headquarters might need to send updated
price lists of available books to its stores on a nightly basis. To ensure that this
data is consistent, the stores have read-only access to the information while the
headquarters has read-write capability.

Data warehousing and DSS
Another business model that companies might want to use is data consolidation.
With data consolidation, data is updated at multiple sites and replicated to a
central, read-only site for DSS, accounting, or centralized reporting systems. This
method gives data ownership and location autonomy at the branch level.

An example of such environment is a retail store chain that throughout the day
gathers point-of-sale information. At the end of the business day, the stores must
transmit the data to the headquarters, where it is consolidated into the central
data warehouse to be used in various business intelligence processes, such as
trend analysis and inventory control systems.
 Chapter 3. Enterprise data availability 99

Human resources system
Organizations might also want to use the workload partitioning model where
users at different sites can update data only in their own table partition, but can
view data in the entire table. This gives database administrators (DBAs) the
flexibility of assigning data ownership at the table-partition level.

For example, an HR system where the European site has ownership of its
partition and can modify employee records for personnel in its region. Any
changes to the data are then replicated to the U.S. sites. While the European site
can query or read the other partitions, it cannot update them. Similarly, the U.S.
sites can change data only within their own respective partitions, but can query
and read data in all partitions. Any changes to the U.S. data are replicated to the
European site.

3.4.4 Rolling upgrades for ER applications

ER supports schema evolution for application upgrades while ER is active and
working. If an ER configuration has multiple clients connected to each of the
servers and if there is a schema upgrade of any of the replicated tables or
database, the new version of the clients can be deployed in a phased manner.

As an example, Figure 3-16 shows how two ER nodes, New York and London,
replicate a database table, Table X, which has four columns. A set of
applications, App V1, are connected to each of the ER nodes and execute
transactions against Table X.

Figure 3-16 Replicated table with applications executing

New York London

Table XTable X Table XTable X

AppApp V1V1 AppApp V1V1 AppApp V1V1 App V1App V1
App V1App V1

App V1App V1
100 Customizing the Informix Dynamic Server for Your Environment

Now we can add two columns to Table X on the both the servers. A new version
of the application (App V2) is also developed to access the new schema of
Table X. We can do this by first migrating all the applications App V1 running
against the London ER node to connect to the New York node. Then we change
the Table X schema, using the SQL command ALTER TABLE, to add two
columns. ER is still active and Table X still gets any changes that have been
applied at the ER node New York as illustrated in Figure 3-17.

Figure 3-17 Altering the table at one ER node with older client versions migrated

New York London

Table XTable X Table XTable X

App V1App V1 App V1App V1
App V1App V1 App V1App V1

App V1App V1
App V1App V1
 Chapter 3. Enterprise data availability 101

Now that the ER node London has a new table schema, we can retire application
App V1 and deploy the new application App V2 at both the sites. But all the new
applications are now connecting to the ER node London as shown in
Figure 3-18. Table X can also be changed to add the two extra columns at ER
node New York, but we must re-master the replicate to include the new columns
for both of the replicate participants.

Figure 3-18 Deployment of new version of application that is aware of the new schema

New York London

TablexTablex TablexTablex

App V2App V2

App V2App V2
App V2App V2
102 Customizing the Informix Dynamic Server for Your Environment

Finally, we can load balance the application instances at both the ER nodes as
shown in Figure 3-19.

Figure 3-19 Redistributing the applications to the ER nodes

Thus without any server downtime, we can smoothly upgrade the applications
from one version to another version.

3.4.5 Application redirection using server groups

The HA technologies of IDS support an automatic client redirection feature,
which makes failover transparent to the application. One of the methods used by
applications to automatically redirect clients to a primary server in an HA cluster
is by using server groups.

New York London

TablexTablex
TablexTablex

App V2App V2
App V2App V2 App V2App V2

App V2App V2
App V2App V2 App V2App V2

Alternative: There are other application redirection mechanisms, such as
using INFORMIXSERVER and DBPATH environment variables, but those
methods are not described in this example.
 Chapter 3. Enterprise data availability 103

By using a database server group, you can treat multiple related database
servers as one logical entity to establish client/server connections, or to simplify
the redirection of connections to database servers. Figure 3-20 illustrates the
concept of a server group.

Figure 3-20 Server group

In Figure 3-20, the primary, HDR secondary, RSS, and SDS instances are
configured as one logical instance named g_serv1. This configuration is
accomplished through entries in the client and server SQLHOSTS files as shown
in Table 3-3.

Table 3-3 SQLHOSTS file with server group syntax

DBSERVERNAME NETTYPE HOSTNAME SERVICE
NAME

Options

g_serv1 group - - i=100

serv1 onsoctcp host1 serv1_tcp g=g_serv1

sec_1 onsoctcp host2 serv1_sec_tcp g=g_serv1

sds_1 onsoctco host3 sds_1_tcp g=g_serv1

rss_1 onsoctcp host4 rss_1_tcp g=g_serv1

Primary

RSS

HDR SecondarySDS

serv1
sds_1 sec_1

rss_1

g_serv1
104 Customizing the Informix Dynamic Server for Your Environment

It is important to mention that from an application perspective, there is no
difference between a primary and a secondary database servers other than that
the secondary server is read only. Depending on the business needs,
applications can use both primary and secondary database servers to maximize
application performance. In practical terms, applications can be written so that
updates and modifications occur at the primary instance (serv1), while report
functions or read-only applications are directed to the secondary instances
(sec_1, sds_1 and rss_1).

However, from a failover perspective, if INFORMIXSERVER is defined as
g_serv1, the Informix connectivity libraries will always redirect an application
connection to the primary instance defined as part of the server group. The
application does not need to be recompiled or restarted. Transactions that were
in-flight must be restarted since the newly promoted primary does not have any
of the shared memory buffer information. In this case, the application connection
is never redirected to a secondary server, but only to the current primary server.

3.5 Monitoring cluster activity

There are several ways to monitor the status of components and features related
to high availability and ER servers. These are the main ways for monitoring HDR,
RSS, SDS, CLR and ER:

� Message log file (MSGPATH) and console device/file (CONSOLE)
� Event alarms
� onstat utility
� sysmaster database
� Open Administration Tool (OAT)

In this section, we briefly describe the first four methods and then show an
example of the MACH 11 feature of the OAT.

More information: For more details about using the message log file,
console, event alarms, onstat utility, and sysmaster database for monitoring
availability and replication features of IDS, refer to the Redbooks publication
Informix Dynamic Server 11: Extending Availability and Replication,
SG24-7488, which is available in softcopy at the following address:

http://www.redbooks.ibm.com/abstracts/sg247488.html?Open
 Chapter 3. Enterprise data availability 105

http://www.redbooks.ibm.com/abstracts/sg247488.html?Open�

3.5.1 Checking the message log file and console

The message log file, defined by the ONCONFIG variable MSGPATH, and the
console device or file, defined by the ONCONFIG variable CONSOLE, contain
informational messages that pertain to the status and errors of IDS. A DBA can
find important information about the status of HA and ER servers by monitoring
these files.

3.5.2 Event alarms

IDS uses the event alarm feature to report situations that require the attention of
a DBA. The events can have many severity levels, such as Attention, Emergency
or Fatal. To use the event alarm feature, set the ALARMPROGRAM
configuration parameter to the full path name of one of the shell scripts provided
with IDS, as shown in Example 3-1.

Example 3-1 ALARMPROGRAM in ONCONFIG file

ALARMPROGRAM /usr/informix/etc/alarmprogram.sh

You can either customize the ALARMPROGRAM scripts provided with IDS, or
write and use your own shell script, batch file, or binary program.

For further details about configuring the event alarms for HA and ER servers,
refer to the IBM Informix Dynamic Server Administrator's Guide, G229-6359, or
to the IBM Informix Dynamic Server Enterprise Replication Guide, G229-6371.

3.5.3 The onstat utility

The onstat utility is the primary tool for monitoring the status of IDS. Similar to
most of the other server features, onstat provides several options for checking
the status of HA and ER servers.

3.5.4 The sysmaster database

The sysmaster database provides a set of tables related to HA and ER servers.
The data in these tables is a reflection of the information that can be found with
the onstat utility, and they can be easily accessed with the SQL interface. The
database also provides the interface to plug in status data to existing monitoring
solutions provided by either third-party, open-source, or inhouse applications.
106 Customizing the Informix Dynamic Server for Your Environment

3.5.5 The Open Admin Tool

The OAT is currently a PHP-based open source project from IBM that can be
used for monitoring HA cluster servers via a Web-based interface. In this section,
we provide an example of how to use the cluster functionality of the OAT.

Consider that you have an HA cluster with one primary database server
(newyork), an SDS (newyork_c1), an HDR secondary (miami), and an RSS
(losangeles). You have already configured the servers by using the Connection
Admin page and included the latitude and longitude for every server. After a login
to the Informix server newyork in the OAT, you see an overview page.

To access the Cluster functionality of OAT, under Menu in the left pane of the
overview page, click Mach 11.

More information: You can also use OAT for monitoring and administering
other features and components of IDS. For more details about OAT, refer to
2.4, “Installing the Open Admin Tool” on page 55, and 5.5, “The Open Admin
Tool for administration” on page 192.
 Chapter 3. Enterprise data availability 107

Click Find Clusters to start the Cluster Discovery. A message window opens as
shown in Figure 3-21. Click OK to proceed with the discovery.

Figure 3-21 Cluster page with Cluster Discovery message
108 Customizing the Informix Dynamic Server for Your Environment

Another message window (Figure 3-22) opens that indicates that this action
might take a few minutes to complete.

Figure 3-22 Cluster page with message window
 Chapter 3. Enterprise data availability 109

After discovering a new cluster, OAT shows a list of servers with the respective
primary or secondary type, as depicted in Figure 3-23. Change the Cluster
Name, if you want, and then click OK to continue.

Figure 3-23 List of servers for cluster discovered
110 Customizing the Informix Dynamic Server for Your Environment

OAT indicates that the discovery is now completed, as shown in Figure 3-24.
Click the created icon HA Cluster 1, in this example, with the cluster name
chosen.

Figure 3-24 Cluster Discovery complete
 Chapter 3. Enterprise data availability 111

The message Examining Cluster is displayed. After a few seconds, you see the
cluster topology page, as depicted in Figure 3-25.

Figure 3-25 Cluster topology

You can use the cluster page to monitor the status of the servers in the
HA cluster.
112 Customizing the Informix Dynamic Server for Your Environment

Chapter 4. Robust administration

The Database Server Administrator (DBSA) plays a crucial role in the proper
functioning of the database systems. An Informix DBSA has the following typical
responsibilities among others:

� Installing the database software
� Designing the disk (chunk) and dbspace layout
� Fine tuning the database for optimal performance
� Implementing user and data access controls
� Handling backup and restore
� Ensuring business continuity (high availability) and data integrity

The role of the DBSA is a more powerful role than a DBA, who is typically only
responsible for a particular database. The Informix Dynamic Server (IDS)
contains a rich set of features that provide DBSAs with a framework to create a
robust environment for a high performance database system.

In this chapter, we discuss the following topics:

� Disk management

The benefit from direct I/O on cooked chunks; how to optimize the dbspace
layout and select the partitioning techniques and table types that are best
suited for your environment

4

© Copyright IBM Corp. 2008. All rights reserved. 113

� Performance and autonomic features

How to meet your recovery time objective (RTO) and benefit from self-tuning
techniques such as automatic checkpoint, automatic least recently used
(LRU), and asynchronous input/output (AIO) tuning

� Security

How to implement database connection security, privileges on database
objects using role-based access control (RBAC), and multi-level user and
data access policies using label-based access control (LBAC)

� Backup and restore

Meeting your recovery point objective (RPO) using the most suitable backup
and restore technique for your configuration

4.1 Disk management

Database performance relies heavily on the performance of the disk I/O
subsystem. System administrators and DBAs play a crucial role in the design of
an I/O system that provides optimal transaction throughput. In this section, we
discuss about the disk-related components in IDS, such as chunks, dbspaces,
tables, and fragmentation techniques, that can help the DBA achieve this goal.

4.1.1 Raw chunks versus cooked chunks

You can use either the standard operating system (cooked) files or raw disk
devices as chunks to store data. Cooked files are easier to manage and extend
but have a performance overhead due to file system caching. Buffering of data in
the file system cache causes data to be copied twice. For example, during a
read, data is copied from the disk to the file buffer cache and then from the file
buffer cache to the application buffer. It also consumes portion of the system
memory.

Raw devices, however, are much faster than cooked devices because they
bypass the file system caching and use kernel AIO (KAIO). But, they are
comparatively more difficult to manage and extend.

Cooked files have the benefit of a high cache hit rate, read-ahead, and
asynchronous I/O. However they are not needed because the database server
has its own buffering and read-ahead mechanism.
114 Customizing the Informix Dynamic Server for Your Environment

Direct I/O on cooked chunks
Some of the file system vendors support direct I/O on cooked devices, which
bypasses the file system cache. Direct I/O on cooked devices eliminates the
overhead of copying data twice. The data is read directly from the disk to the
application buffer. However, direct I/O generally requires that the data be aligned
on disk sector boundaries (512 or 1024 bytes).

Direct I/O is available on AIX, HP-UX, Solaris, Linux, and Windows, provided that
it is supported by the underlying file system. Some of the file systems that
support Direct I/O are Solaris UFS, VxFs, JFS, and NTFS. Refer to the man page
of the mount command to find the argument that enables direct I/O.

IDS 11 supports direct I/O on cooked devices only if it is supported by the file
system for the page size of the dbspace chunk. Direct I/O is used by default on
Windows (NTFS). To enable it on UNIX, set the onconfig parameter DIRECT_IO
to 1. If the database server is configured to use KAIO, IDS uses KAIO along with
direct I/O on cooked devices. The performance of direct I/O and KAIO on cooked
files is close to raw device performance.

For temporary dbspaces, use of the file system buffering for regular files can be
faster than using direct I/O because there is no need to synchronize writes to
ensure that writes are committed to disk. Therefore, for regular files belonging to
temporary dbspaces, IDS does not use direct I/O, even if direct I/O is enabled.

Recommendations
We recommend that you use raw disk devices for the best performance. Based
on your environment, requirements, and benchmark tests on your table layout,
you can decide on the option that is the most optimal and convenient. Even
though all your chunks are on raw devices, you might want to set DIRECT_IO if
you load large number of rows by using flat files that are generated from
heterogeneous systems. One such example is a data warehouse environment
where a large number of rows is bulk loaded from various data marts running on
other databases.

On Windows, both raw disks and NTFS use KAIO. Because NTFS files are a
more standard method of storing data, you can use NTFS files instead of raw
disks because it also supports direct I/O. Consider using raw disks if your
database server requires a large amount of disk access.

4.1.2 Managing dbspaces

The design of the dbspace layout is one of the major factors that determines the
database server performance. In this section, we discuss creating and managing
dbspaces to get maximum benefit from the database server.
 Chapter 4. Robust administration 115

You can store highly accessed tables or critical dbspaces (root dbspace, physical
log, and logical log) on your fastest disk drive to improve performance. By storing
critical data on separate physical devices, you ensure that when one of the disks
holding noncritical data fails, the failure affects only the availability of data on that
disk.

To reduce contention for the root dbspace, the physical and logical logs can be
moved out from the root dbspace to a separate disk.

Page size
The default system page size is platform dependent (4K on Windows and 2K on
most UNIX platforms). However, you might want to create multiple dbspaces with
differing page sizes that are multiples of the system page size. Each page size
can have its own BUFFERPOOL setting in the onconfig file. The maximum
allowable page size is 16K.

Larger page sizes offer the following advantages among others:

� Reduced depth of B-tree indexes, even for smaller index keys

� Decreased checkpoint time

� The grouping of long rows on the same page, which otherwise spans multiple
pages for the default page size

Tblspace tblspace extents
Each dbspace contains a table space called the tblspace tblspace that describes
all tblspaces in the dbspace. When creating a dbspace, the default first and next
extent sizes for tblspace tblspace are 250 and 50 pages, where for non-root
dbspaces, the defaults are 50 and 50 pages. If your database has a large
number of tables, these defaults can cause fragmented extents, some of which
might reside in non-primary chunks, which can impact performance.

At the time of disk initialization (oninit -iy), you can use the TBLTBLFIRST and
TBLTBLNEXT configuration parameters to specify the first and next extent sizes
for the tblspace tblspace belonging to the root dbspace. For non-root dbspaces,
you can use the onspaces utility to specify the initial and next extent sizes for the
tblspace tblspace, when creating this dbspace. The first and next extent sizes
cannot be changed after the creation of the dbspace. You cannot specify these
extent sizes for temporary dbspaces, sbspaces, blobspaces, or external spaces.

The number of pages in the tblspace tblspace is equal to the total number of
table and detached index fragments including any system objects that reside in
the dbspace. As shown in Example 4-1 on page 117, dbs4 is created with an
initial extent size and next extent size of 2 MB and 1 MB for tblspace tblspace.
116 Customizing the Informix Dynamic Server for Your Environment

The oncheck -pe output confirms that the first extent size is 1000 pages (for 2K
page size).

Example 4-1 Specifying tblspace tblspace extents

$ onspaces -c -d dbs4 -p /opt/dbspaces/dbs4 -o 0 -s 10240 -ef 2000 -en
1000

$ oncheck -pe
>>>>>>
Chunk Pathname Pagesize(k) Size(p) Used(p) Free(p)
 9 /work3/ssajip/INSTALL/dbspaces/dbs4 2 5120 1003 4117

 Description Offset(p) Size(p)
 --- -------- --------
 RESERVED PAGES 0 2
 CHUNK FREELIST PAGE 2 1
 dbs4:'informix'.TBLSpace 3 1000
 FREE 1003 4117

Multiple partitions in a single dbspace
One of the commonly used techniques for tables fragmented by expression is to
fragment based on a date range to facilitate easy roll-in and roll-out of data. Each
expression resides in a single dbspace. If the table has a large range of date
expressions, the DBA must create a large number of dbspaces, and managing
those dbspaces can be non-trivial. Also the maximum number of pages allowed
in a dbspace is approximately 16 million.

You can circumvent these limitations by configuring multiple partitions in a single
dbspace. Fragment elimination now eliminates partitions based on the
fragmentation strategy. As shown in Example 4-2, we create a table with four
partitions in dbspace dbs1 and attach a new partition, again residing on dbs1.
The query plan for the SELECT shows that only part5 and part4 partitions are
scanned, where the other three partitions are eliminated.

Example 4-2 Multiple partitions in a dbspace

CREATE TABLE shipment (item_number int, ship_date date, ship_locn
varchar(20))
 FRAGMENT BY EXPRESSION
 PARTITION part1 (month(ship_date) = 1) IN dbs1,
 PARTITION part2 (month(ship_date) = 2) IN dbs1,
 PARTITION part3 (month(ship_date) = 3) IN dbs1,
 PARTITION part4 REMAINDER IN dbs1;

INSERT INTO shipment values (1, '2007-01-01', "cleveland"); -- part1
INSERT INTO shipment values (2, '2007-02-01', "colorado"); -- part2
 Chapter 4. Robust administration 117

INSERT INTO shipment values (3, '2007-04-01', "boston"); -- part4

CREATE TABLE new1 (item_number int, ship_date date, ship_locn
varchar(20)) IN dbs1;

-- this ALTER causes row 3 to move from part4 to part5
ALTER FRAGMENT ON TABLE shipment
 ATTACH new1 AS PARTITION part5 (month(ship_date) = 4) AFTER part3;

set explain on ;
select * from shipment where ship_date = '2007-04-01';
EOF

$ cat sqexplain.out
QUERY: (OPTIMIZATION TIMESTAMP: 01-22-2008 15:38:30)

select * from shipment where ship_date = '2007-04-01'

Estimated Cost: 3
Estimated # of Rows Returned: 1

 1) ssajip.shipment: SEQUENTIAL SCAN (Serial, fragments: 3, 4)

 Filters: ssajip.shipment.ship_date = 2007-04-01

Blobspaces and sbspaces
If your application stores graphic or satellite images, video or audio clips,
formatted spreadsheets, or digitized voice patterns, you have the option of using
simple large objects (TEXT or BYTE data type) or smart large objects (BLOB or
CLOB data type). TEXT and BYTE data types are stored in blobspaces where
BLOB and CLOB data types are stored in sbspaces. A BLOB is a binary large
object and a CLOB is a character large object.

IDS supports simple large objects primarily for compatibility with earlier versions
of Informix applications. When you write new applications that need to access
large objects, we recommend that you use smart large objects to hold character
(CLOB) and binary (BLOB) data. CLOBs can be used only for text data, where
BLOBs can be used for any binary data.

Smart large objects have the following advantages over simple large objects:

� They can store up to 4 TB as opposed to 2 GB.

� They support random access to the data.

� You can read or rewrite only specified portions of the smart large object.
118 Customizing the Informix Dynamic Server for Your Environment

� Data logging can be turned on or off unlike simple large objects where it is
always on.

Temporary dbspaces
Temporary dbspaces are never backed up, nor are they physically or logically
logged. Therefore, if you create a logged temporary table in a logged database, it
resides only in the logged (non-temp) dbspaces of the DBSPACETEMP
configuration parameter.

Decision Support Systems (DSS) or data warehouse environments generally run
multiple complex queries that do large sort, group, or join operations. Depending
on your PDQ settings, these operations can overflow to disk by creating internally
generated temporary tables in these temp dbspaces. As a result, DSS queries
can use significant temporary dbspace. User specified temporary tables that are
non-logged also reside in these temp dbspaces. If you explicitly create a
fragmented temp table and the PDQ setting is greater than 0, IDS uses parallel
inserts to the temporary dbspaces if multiple dbspaces are specified in
DBSPACETEMP. You get even better performance if these temporary dbspaces
are on different disk controllers.

The database server keeps track of the most recently used temporary dbspace
and uses the next available dbspace (in a round-robin pattern) to allocate I/O
operations approximately evenly among those dbspaces. You can define a
different page size for temporary dbspaces, so that the temporary tables have a
separate buffer pool.

Extspaces
An extspace is a logical name that is associated with an arbitrary string that
signifies the location of external data. The resource that the extspace references
depends on the user-defined access method for accessing its contents. The
server does not manage this space. It is created by using the onspaces utility.

Extspaces can be used to access the following items:

� Database tables from other vendors
� Data stored in sequential files
� Remote data stored across a network

Virtual tables/index interface and basic text search (BTS) are two areas where
extspaces are used.
 Chapter 4. Robust administration 119

4.1.3 Table types

For data warehousing or other applications where a large number of rows (in
millions or billions) are loaded regularly, it can take an extended time to load the
rows if the table is logged. You can use the following steps to overcome this
situation:

1. Drop any constraints or index on the standard table.

2. Use the ALTER TABLE to alter the table type from standard to raw.

3. Load the rows into the raw table by using the High Performance Loader (HPL)
in express mode.

4. Perform a level 0 backup of the non-logging table.

5. Change the table type back to standard.

6. Add the constraints and recreate the index.

4.1.4 Data partitioning

Data partitioning is an intelligent way to distribute or fragment data or index
entries across multiple disks to get the advantage of parallel disk I/O operations.
It also enables the SQL operations to be segmented into subtasks and executed
in parallel. The SQL optimizer can also eliminate data or index fragments based
on expressions that benefit query performance. IDS supports round-robin and
expression-based fragmentation.

For DSS, data can be fragmented, and the index can be non-fragmented and can
reside in a different dbspace (detached index). For DSS environments that
contain tables that are accessed sequentially, or if there are no columns that can
be used as a fragment expression, you can choose a round-robin fragmentation.
Round-robin fragmentation evenly distributes data across the disks.

For large DSS tables that contain columns representing date, region, or country,
expression-based tables are most ideal because they can benefit from fragment
elimination. Also fragments can be detached or attached based on, for example,
the date column. For example, every month-end processing can involve
detaching the fragment for the first month of last year and attaching the fragment
that contains data for the new month.

For OLTP environments, you can fragment the data and index to reduce
contention among sessions. Smaller tables do not need to be fragmented
because the overhead of creating the scan threads to access the fragments can
exceed the time taken to sequentially scan the table.
120 Customizing the Informix Dynamic Server for Your Environment

For expression fragmented tables, arrange fragmentation expressions, so that
the most restrictive condition for each dbspace is tested within the expression
first. The expression that is most likely to be false can be placed first, so that
fewer conditions are evaluated before the database server moves to the next
fragment as demonstrated in the following example.

4.2 Predictable fast recovery

In the continuous availability world of today, businesses rely on their database
systems to be up and running for 24x7 every day of the year. Even a small
duration of downtime can severely impact the business continuity and cause loss
of revenue or credibility. If there is an unexpected outage, the database system is
expected to be back online as fast as possible. The time it takes to come online
depends on the transaction load at the time of the failure in relation to the last
checkpoint. But, if a handle is available to the DBA to predict the time it takes for
fast recovery or crash recovery to complete, they can plan accordingly.

Fast recovery time is the time from when the DBA starts the IDS server until the
server comes to an online or quiescent mode. It is comprised of the following
times:

� Boot up time

This is the time it takes to boot up the server infrastructure. Typically most of
this time is spent in the initialization of the shared memory.

� Physical recovery time

This is the physical recovery restores the database to a physically consistent
state. This time depends on the number of pages being physically restored
and the I/O speed of the physical log disk.

The database server tests all six of the inequality conditions when it attempts
to insert a row with a value of 25:

x >= 1 and x <= 10 in dbspace1
x > 10 and x <= 20 in dbspace2
x > 20 and x <= 30 in dbspace3

By comparison, only four conditions in the following expression need to be
tested: the first inequality for dbspace1 (x <= 10), the first for dbspace2
(x <= 20), and both conditions for dbspace3:

x <= 10 and x >= 1 in dbspace1
x <= 20 and x > 10 in dbspace2
x <= 30 and x > 20 in dbspace3
 Chapter 4. Robust administration 121

� Logical recovery time

This time applies the logical log records to bring the database to a
transactionally consistent state. This time depends on the number of log
records to be applied and the I/O speed of the disk I/O where the logical log
resides.

In the following sections, we describe how to set and tune the configuration
parameter to predict fast recovery time. We also discuss the effects of this setting
on other configuration parameters.

4.2.1 Benefits of RTO_SERVER_RESTART over CKPTINTVL

In this section, we focus on the RTO_SERVER_RESTART and CKPTINTVL
configuration parameters and their benefits. These are two mutually exclusive
parameters with different benefits.

The configuration parameter CKPTINTVL can be used to control the crash
recovery time, but it does not take into consideration the transactional workload.
The DBA must run tests to time the fast recovery based on the various settings of
CKPTINTVL to arrive at an optimum setting. These tests must be run under
various workload scenarios, which is not convenient.

For an environment that mandates a strict RTO policy, the
RTO_SERVER_RESTART configuration parameter can be used instead of
CKPTINTVL. These two parameters are mutually exclusive. If
RTO_SERVER_RESTART is set, CKPTINTVL is ignored.
RTO_SERVER_RESTART can be set to a value in seconds.

When the RTO_SERVER_RESTART parameter is set, IDS controls the
frequency of checkpoints based on past fast recovery performance and
automatically adjusts for variable workloads to ensure that IDS can meet the
target fast recovery time.

Tuning RTO_SERVER_RESTART
More frequent checkpoints are triggered for a lower value of this setting. You can
start with an aggressive (smaller) value of RTO_SERVER_RESTART that is
suitable for your environment, and then monitor the frequency and type of
checkpoints by using the onstat -g ckp command. If the checkpoints are too
frequent and are affecting transactional performance, use the onmode -wf
command to dynamically increase RTO_SERVER_RESTART as shown in
Example 4-3 on page 123.
122 Customizing the Informix Dynamic Server for Your Environment

Example 4-3 Dynamically changing RTO_SERVER_RESTART

$ onstat -c | grep RTO_SERVER_RESTART
RTO_SERVER_RESTART 60

$ onmode -wf RTO_SERVER_RESTART=120
Value of RTO_SERVER_RESTART has been changed to 120.

4.2.2 RTO: Dependent onconfig parameters

In this section, we discuss the various onconfig parameters that can have an
effect on the RTO policy.

As part of logical replay, each of the log records can generate an I/O. If that I/O
requires a page to be read from disk, log replay performance will be adversely
affected. Also, these random I/Os can cause unpredictable recovery time.

When RTO_SERVER_RESTART is set, IDS saves additional before images of
modified pages as part of transaction management. During physical recovery,
these pages are seeded into the buffer pool to eliminate random I/O and make
the recovery more predictable. The random I/O is replaced by block sequential
I/O. This means that now you must configure the system with an increased
physical log space to accommodate all the buffer pools. Typically, this additional
physical log activity has little or no impact on transaction performance.

PHYSFILE: Physical log size
For IDS 11, the PHYSFILE configuration parameter can be set to 110 percent of
the total size of buffer pools listed in BUFFERPOOL for optimum fast recovery
performance. During fast recovery, the server can seed the physical log pages
into the buffer pool and can handle the RTO policy more reliably. Having a large
physical log does not impact performance. If your system has a large buffer pool
and only part of it is used for updates, then you can specify a lower value.

Changing the physical log size, location, or both can only be done online in
IDS 11. You can use the onparams command to change the physical log size,
location, or both without requiring the server to be rebooted. However, this can
only be done while in quiescent or admin mode. That means it must be done
when access to the data can be interrupted.

Example 4-4 on page 124 shows how to change the physical log size from 9 MB
to 11 MB. This example has just the default BUFFERPOOL setting for 2K page
size. If you have BUFFERPOOL settings for other page sizes, you must sum
them to calculate the optimum physical log size.
 Chapter 4. Robust administration 123

There are always two physical log buffers in the shared memory. The onstat -l
output, therefore, shows half of the PHYSFILE value. Double buffering permits
user threads to write to the active physical log buffer, while the other buffer is
flushed to the physical log on disk.

Example 4-4 Changing physical log size

$ onstat -c | egrep ‘PHYSFILE|BUFFERPOOL’
PHYSFILE 9000 # Physical log file size (Kbytes)
BUFFERPOOL
size=2K,buffers=5000,lrus=8,lru_min_dirty=50,lru_max_dirty=60

Physical log size = 1.1 x buffer_size x buffers = 1.1 x 2K x 5000
= 11000Kb

$ onstat -l

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
 P-1 16 64 15 0 0.00
 phybegin physize phypos phyused %used
 1:15525 4500 34 16 0.36

$ onparams -p -s 11000 -y
Log operation started. To monitor progress, use the onstat -l command.
** WARNING ** Because the physical log has been modified, a level 0
archive must be taken of the following spaces before an incremental
archive will be permitted for them: rootdbs
(see Dynamic Server Administrator's manual)

$ onstat -l

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
 P-2 2 64 16 1 16.00
 phybegin physize phypos phyused %used
 1:20025 5500 0 2 0.04

A message is also written to the online.log:
11:14:21 Physical log size changed to 11000 KB.
124 Customizing the Informix Dynamic Server for Your Environment

PHYSBUFF
The default value for the physical log buffer size is 128 KB. When the
RTO_SERVER_RESTART configuration parameter is enabled, the default
physical log buffer size can be changed to 512 KB. If a smaller value is to be
used, IDS writes a performance advisory message to the online.log indicating
that optimal performance might not be attained, as shown in Example 4-5. Using
a physical log buffer smaller than the default size impacts only performance, not
transaction integrity.

Example 4-5 PHYSBUFF not optimal

10:40:18 Performance Advisory: The current size of the physical log
buffer is smaller than recommended.
10:40:18 Results: Transaction performance might not be optimal.
10:40:18 Action: For better performance, increase the physical log
buffer size to 128.

RAS_PLOG_SPEED and RAS_LLOG_SPEED
The configuration parameters RAS_PLOG_SPEED and RAS_LLOG_SPEED
are used to store the rate at which the physical and logical log can be recovered
during crash recovery. The units are in pages per second. Each time the server is
recycled and it goes through physical and logical recovery, it updates these
configuration parameters based on the time it takes for the recovery to complete.
These parameters are used by the server to determine if the RTO policy can be
met. They are set to 0 by default in the onconfig.std file.

RAS_PLOG_SPEED is updated during physical recovery only if the number of
pages physically recovered is more than 10,000 pages. RAS_LLOG_SPEED is
updated during logical recovery if the number of pages logically recovered is
more than 1000 pages. This is done to get a more accurate measurement.

Changing PHYSFILE and PHYSDBS: For IDS 11 and later releases,
PHYSFILE and PHYSDBS in the onconfig file are only checked during the
server initial creation time (oninit -i). You can change these values only by
using the onparams command. Editing the onconfig file to change these values
has no effect on the server.

Important: RAS_PLOG_SPEED and RAS_LLOG_SPEED are autoupdated
and are not supposed to be changed by the DBA. These values are listed in
the onconfig only to inform you of the physical and logical recovery speed of
your disks.
 Chapter 4. Robust administration 125

BUFFERPOOL
During fast recovery, if all the updated pages do not fit into the buffer pool, the
server cannot meet the RTO_SERVER_RESTART policy because of the
additional I/O. The server writes a performance advisory to increase the buffer
pool size as shown in Example 4-6. Alternatively, you can decrease the value of
the RTO_SERVER_RESTART configuration parameter to manage this.

Example 4-6 Advisory to increase BUFFERPOOL

15:06:23 Performance Advisory: The default buffer pool is very dirty
prior to logical log replay.
During fast recovery roll forward, logical log pages are placed in
the default buffer pool for better performance. For best
recovery performance, the whole physical log and some of the logical
log should be able to fit into the default buffer pool.
15:06:23 Results: Fast recovery performance might not be optimal.
15:06:23 Action: Dynamic Server automatically accounts for any
performance impact on the next fast recovery occurrence. This might
cause more frequent checkpoints to occur. For better performance,
increase the default buffer pool size by 5%.

4.2.3 When not to use RTO_SERVER_RESTART

If you lower the value of the RTO_SERVER_RESTART, the server triggers more
frequent automatic checkpoints. The frequent checkpoints do not adversely
affect transaction processing because of the non-blocking functionality of
checkpoints in IDS 11, but cause the cleaner threads (flush_sub) to consume
more CPU cycles.

If RTO_SERVER_RESTART is set, the server does additional physical logging
as described in 4.2.2, “RTO: Dependent onconfig parameters” on page 123.

Hence if your database system is a DSS, data warehouse, or any other
environment that does not require a strict RTO policy, we recommend that you
leave RTO_SERVER_RESTART to 0 (OFF), so that the server does not do the
extra physical logging and frequent check pointing. The default value is 0 in the
onconfig.std file.
126 Customizing the Informix Dynamic Server for Your Environment

4.3 Automatic tuning

IDS 11 has the self-tuning configuration parameters of AUTO_CKPTS,
AUTO_LRU_TUNING, and AUTO_AIOVPS that are ON by default. In the
following sections, we explain why these parameters should be left with their
default value and discuss scenarios when they might be set to OFF.

4.3.1 AUTO_CKPTS

The default value of AUTO_CKPTS is 1(ON) in the onconfig.std file. When
AUTO_CKPTS is set to 1, the server calculates the minimum physical log size
using RAS_PLOG_SPEED.

In Example 4-4 on page 124, we set PHYSFILE to 11 MB, which was 110% of
the total buffer pool size. In that example, we had set AUTO_CKPTS to 0. After
we set AUTO_CKPTS to 1, we saw a performance advisory message in the
online.log as shown in Example 4-7 to increase the log size to 14 MB. If the log
size is less than this minimum value, automatic checkpointing is disabled. You
can use the onparams -p command to increase PHYSFILE to the recommended
value of 14 MB.

Example 4-7 Auto checkpoint recommended physical log size

14:28:42 Performance Advisory: The physical log is too small for
automatic checkpoints.
14:28:42 Results: Automatic checkpoints are disabled.
14:28:42 Action: To enable automatic checkpoints, increase the
physical log to at least 14000 KB.

The server also calculates the minimum logical log space based on
RAS_LLOG_SPEED and writes an advisory message with the recommended
value.

If automatic checkpoint is ON, the server also calculates the time it takes to flush
the buffer pool and writes an advisory to the online.log if the physical log size is
too small. By the time the flushing completes, transactions can potentially use up
the remaining physical log causing checkpoints to block out transactions. The
server writes this informative message, so that the DBA can take a corrective
action, as shown in Example 4-8 on page 128.
 Chapter 4. Robust administration 127

Example 4-8 Physical log and BUFFERPOOL relation

14:18:41 Performance Advisory: Based on the current workload, the
physical log might be too small to accommodate the time it takes to
flush the buffer pool.
s14:18:41 Results: The server might block transactions during
checkpoints.
14:18:41 Action: If transactions are blocked during the checkpoint,
increase the size of the physical log to at least 14000 KB.

Apart from these useful performance advisories, AUTO_CKPTS trigger
automatic checkpoints based on the past checkpoint performance and the
current physical and logical log usage to avoid transaction blocking. Therefore,
we recommend that you do no not change the default ON setting of
AUTO_CKPTS unless you are sure you want the checkpoints to occur only on
the specific conditions such as 75% physical log, CKPTINTVL, and admin or
archive events. If the physical and logical resources are such that automatic
checkpoints are triggered every 35 seconds or less, the server disables the
automatic checkpoint as shown in Example 4-7 on page 127. In such a case, you
increase the resource as suggested in the Action field of the advisory message.
By doing this, you have the benefit of automatic checkpoints.

To change the default setting, you can use the onmode -wm (temporary for this
current server session) or onmode -wf (permanent change in onconfig) options to
turn it OFF (value 0).

4.3.2 AUTO_LRU_TUNING

In IDS versions prior to 11, it was typical to set low thresholds for
LRU_MIN_DIRTY and LRU_MAX_DIRTY. This setting limited the number of dirty
buffers and improved checkpoint performance. The reduced checkpoint time
blocked user transactions for a shorter duration as compared to the case where
the LRU_MIN_DIRTY and LRU_MAX_DIRTY values were higher. It might even
be set to a value < 1 if a large number of buffer pools were configured on the
system. With IDS 11, you can now relax the LRU settings, since checkpoints do
not block transactions. This should result in a dramatic increase in performance.

The following settings are a good starting point for setting the LRU flushing
parameters:

� lru_min_dirty=70
� lru_max_dirty=80

You can also let IDS auto tune the LRU settings depending on its usage by
setting the AUTO_LRU_TUNING configuration parameter to 1.
128 Customizing the Informix Dynamic Server for Your Environment

The database server automatically tunes LRU flushing whenever a page
replacement occurs. After a checkpoint has occurred, if a page-replacement
foreground write occurred during the previous checkpoint interval, the database
server increases the LRU settings by 10 percent. It continues to increase the
LRU flushing at each subsequent checkpoint until page-replacement foreground
writes stops or until the lru_max_dirty for a given buffer pool falls below 10
percent. For example, if a page-replacement foreground write occurs and the
LRU settings for a buffer pool are 80 and 90, the database server adjusts these
to 76 and 85.5.

In addition to foreground writes, LRU flushing is tuned more aggressively
whenever a page fault replaces high priority buffers and non-high priority buffers
are on the modified LRU queue. Automatic LRU adjustments only make LRU
flushing more aggressive. They do not decrease LRU flushing. Automatic LRU
adjustments are not permanent and are not recorded in the ONCONFIG file.

When AUTO_LRU_TUNING and RTO_SERVER_RESTART are set and the time
to flush the buffer pools during checkpoint processing takes longer than the
RTO_SERVER_RESTART policy setting, a performance advisory is written to the
online.log as shown in Example 4-9.

Example 4-9 Auto LRU tuning

Performance advisory: The time to flush the bufferpool ## is longer
than RTO_SERVER_RESTART ##.
Results: The IDS server can't meet the RTO policy
Action: Automatically adjusting LRU flushing to be more aggressive.
Adjusting LRU for bufferpool - id ## size ##k

Old max ## min ## New max ## min ##

4.3.3 AUTO_AIOVPS

The tuning of AIOVPS was based on how it can accommodate the peak number
of I/O requests. The maxlen field of the onstat -g ioq command shows the
largest backlog of I/O requests for each file descriptor. The gfd column of this
output can then be used to get the pathname from onstat -g iof, which can then
be mapped to the onstat -d output to get the chunk name. Generally, it is not
detrimental to allocate too many AIO virtual processors.

With IDS 11, you can set AUTO_AIOVPS to enable IDS to add AIO VPS on an
as-needed basis. The default value for AUTO_AIOVPS is 1. When using cooked
file chunks, if AIO VPs are too busy, the server automatically increases the
number of flushers and AIO VPs. However, we recommend that you monitor
these automatic increases and the particular environment. For example, if a large
 Chapter 4. Robust administration 129

number of AIO VPs are automatically generated on a system with a small
number of disks, performance can be negatively impacted.

Even if the database setup contains only raw devices that use KAIO, the server
uses AIO for writing to the online.log and sqexplain.out files or reading from the
onconfig file or load files.

4.4 Database connection security

In this section, we discuss the many options that are available for authenticating
or restricting client connections to the database server.

4.4.1 OS password authentication

If the IDS client applications specify a user name and password at connection
time, IDS does OS-level authentication based on the password and shadow files
or interaction with the Network Information Service (NIS). IDS also supports
trusted hosts defined by the hosts.equiv and rhosts files. You can configure the
connection security settings by using the r and s options of the fifth column entry
in the sqlhosts file. The s identifies database server-side settings, and the r
identifies client-side settings. You can choose to use a combination of rhosts or
hosts.equiv lookup for the server and .netrc lookup for the client.

Refer to the IDS administrator’s guide, IBM Informix Dynamic Server
Administrator’s Guide, Version 11.1, G229-6359-01, for more details about these
settings. The following sequence shows how you can disable the rhosts and
hosts.equiv lookup and force remote clients to connect only when a password is
entered:

1. A user who is trusted on the machine can connect from a remote client
without specifying the USER clause in the CONNECT statement. To make the
user trusted, add the remote client to the .rhosts file in the user’s home
directory:

> connect to 'db1@ids_server';

Connected.

Important: Do not disable the hosts.equiv lookup in database servers that are
used in distributed database operations.
130 Customizing the Informix Dynamic Server for Your Environment

2. An s=0 entry in the sqlhosts prevents rhosts and hosts.equiv lookup. The
database server is bounced after this change in sqlhosts:

sqlhosts entry:
ids_server ontlitcp ramsay 9801 s=0

3. Provide a password for the remote connection to succeed:

> connect to 'db1@ids_server';

 956: Client host or user informix@falcon1.menlo.ibm.com is not
trusted by the server.

> connect to 'db1@ids_server' user 'user1';
 ENTER PASSWORD:

Connected.

4.4.2 Pluggable Authentication Module

Applications that access sensitive information from a database need a higher
level of authentication than just the basic OS password authentication. In such
cases, they can use application-based authentication framework, such as the
Pluggable Authentication Module (PAM). PAM enables system administrators to
implement different authentication mechanisms for different applications. IDS
supports PAM on UNIX and Linux. You can write your own PAM service library
and save it in the /usr/lib/security directory. This library can either ask for a
password or throw challenges to authorize the users.

The following example shows the basic steps that are required to enable PAM.
The occurrence of s= 4 in the fifth field of the sqlhosts file represents a PAM entry
that includes the PAM service name and the type of authorization, password or
challenge.

1. Update the sqlhosts file entry for the PAM entry:

ids ontlitcp ramsay 9801 s=4,pam_serv=pam_ids,pamauth=(challenge)

2. Add an entry to the PAM configuration file /etc/pam.conf:

pam_ids auth required /usr/lib/security/pam_ids.so

3. Write a program to create the shared library pam_ids, so that it authenticates
the user by defining the function pam_sm_authenticate. This function can
throw various challenges. The remaining interfaces, including
pam_sm_setcred, pam_sm_acct_mgmt, pam_sm_open_session,
pam_sm_close_session, and pam_sm_chauthtok, can be left in dummy
status.
 Chapter 4. Robust administration 131

4. Copy pam_ids.so to the /usr/lib/security directory.

5. Provide the information for the connection to the database when prompted:

dbaccess test -
Your school name (MIT):
Your maiden name (SUZE):: SUZE
PAM Text Info:
Database selected.

An incorrect reply throws an error and prevents the user from connecting to
the database as shown in the following example:

$ dbaccess san -
Your school name (MIT):
Your maiden name (SUZE):: SUZ

 1809: Server rejected the connection.

You can find the sample shared library used in the previous example at the
following Web address:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0704anbalagan

4.4.3 Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) authentication in Windows is set
up and configured much like the PAM setup on UNIX and Linux. The
authentication module is a dynamic link library (DLL) that usually resides in the
%INFORMIXDIR%\dbssodir\lib\security directory. The parameters of the module
are listed in the %INFORMIXDIR%\dbssodir\pam.conf file. The source code for a
fully functional LDAP authentication module and samples of the required
configuration files are included in the %INFORMIXDIR%\demo\authentication
directory. The sqlhosts is set up exactly like the one shown in 4.4.2, “Pluggable
Authentication Module” on page 131.

4.4.4 Password encryption

The password encryption protects a password when it must be sent between the
client and the database server for authentication. Communication support
modules (CSMs) can be used to enable password encryption. The password
encryption libraries and connection options are specified in the concsm.cfg CSM
configuration file that resides by default in the $INFORMIXDIR/etc directory. The
$INFORMIXDIR/lib/client/csm/libixspw.so library is provided by IDS.
Example 4-10 on page 133 shows a sample configuration file that uses different
132 Customizing the Informix Dynamic Server for Your Environment

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0704anbalagan
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0704anbalagan

libraries for client and server. The p=0 option signifies that the password is not
mandatory, but if provided, it will be encrypted.

Example 4-10 Sample concsm.cfg

SPWDCSM("client=/usr/informix/lib/client/csm/libixspw.so,server=/usr/in
formix/lib/csm/libixspw.so", "", "p=0")

Handling denial-of-service flood attacks
You can use the configuration parameters LISTEN_TIMEOUT and
MAX_INCOMPLETE_CONNECTIONS to reduce the risk of a hostile,
denial-of-service (DOS) flood attack:

� LISTEN_TIMEOUT sets the incomplete connection timeout period. The
default incomplete connection timeout period is 10 seconds.

� MAX_INCOMPLETE_CONNECTIONS restricts the number of incomplete
requests for connections. The default maximum number of incomplete
connections is 1024.

If the maximum limit is reached, a message as shown in the following example is
in the online message log indicating that the system is under attack:

100 incomplete connection at this time.
System is under attack through invalid clients on the listener port.

4.4.5 Stored procedures (sysdbopen and sysdbclose)

The stored procedure, sysdbopen, does not fall under a security umbrella, but
allows the DBA to change session properties without changing the application
itself. IDS automatically executes the appropriate sysdbopen procedure when a
user connects to a database. Similarly the procedure sysdbclose executes during
disconnect.

The DBA can create a user.sysdbopen or a public.sysdbopen procedure. The
former has precedence over the latter, if both are present. You can include any
SET or SQL commands that are valid inside a regular procedure. Example 4-11
on page 134 shows how you can set different isolation levels or PDQPRIORITY
based on the user name. It shows that a DSS user must run with higher
PDQPRIORITY and with a dirty read isolation as compared to an OLTP user who
has to run with a lower PDQ setting and a repeatable read isolation.
 Chapter 4. Robust administration 133

Example 4-11 sysdbopen

database mydb;
create procedure dss_user.sysdbopen()
set isolation to dirty read;
set pdqpriority 40;
set optcompind ‘2’;
end procedure;

create procedure oltp_user.sysdbopen()
set isolation to repeatable read;
set pdqpriority 1;
set optcompind ‘1’;
end procedure;

create procedure public.sysdbopen()
set pdqpriority 10;
end procedure;

-- /tmp/collect_diag can be a shell script to collect any onstats
create procedure public.sysdbclose()
system “/tmp/collect_diag”;
end procedure;

4.4.6 Administrator-only mode

The online mode of the engine can be changed into an administrator only mode
by using onmode -j. This mode only allows the DBSA group or user informix to
connect to the server. Any maintenance work can be run in this mode including
running any SQL or Data Definition Language (DDL) commands. onstat prints
this mode as Single-User, as shown in Example 4-12.

Example 4-12 DBA only mode

IBM Informix Dynamic Server Version 11.10.F -- Single-User -- Up
00:02:31 -- 39936 Kbytes

Persistence of SET PDQPRIORITY and SET ENVIRONMENT: SET
PDQPRIORITY and SET ENVIRONMENT statements are not persistent for
regular user-defined routines (UDRs). Their scope is local within the UDR. For
sysdbopen, these two statements are persistent until the session ends unless
they are explicitly changed within the session.
134 Customizing the Informix Dynamic Server for Your Environment

If you want individual users to connect to the server when in single user mode,
you can run the following command:

onmode -j -U <comma_separated_user_list>

You can also achieve this by setting the onconfig parameter
ADMIN_USER_MODE_WITH_DBSA to 1 and ADMIN_MODE_USERS to the list
of such users and bouncing the server with oninit -j.

When the server is changed to administration mode, all sessions for users other
than user informix, the DBSA group users, and those identified in the user list
will lose their database server connection.

If you want only user informix to connect to the server, you can set the
configuration parameter ADMIN_USER_MODE_WITH_DBSA to 0. A value of 1
means that the DBSA group users, user informix, and administration mode
users, as listed in ADMIN_MODE_USERS, can connect when the server is in
administrator only mode.

4.5 Controlling data access

IDS supports two access-management systems: Mandatory Access Control
(MAC) and Discretionary Access Control (DAC).

MAC is an access control policy for information management systems that
handle sensitive or classified information. Multi-level security (MLS) is a
well-known implementation of MAC that addresses requirements where multiple
levels of security are required for organizations such as the Department of
Defense. IDS supports MLS by using the LBAC, where you can control access to
rows and columns based on security labels.

DAC is an access control policy that verifies whether the user has been granted
the required privileges to perform an operation. DAC is a simpler system that
involves lesser overhead than MAC and can be implemented in the following
ways:

� Controlling who is allowed to create databases by using the
DBCREATE_PERMISSION configuration parameter

� Restricting the users who are allowed to register external UDRs by using the
IFX_EXTEND_ROLE configuration parameter

� Controlling operations on database objects by using roles (RBAC)

In the subsequent sections, we briefly discuss these DAC options and explain
with some examples how you can benefit from the LBAC functionality.
 Chapter 4. Robust administration 135

4.5.1 Creating permissions

The DBCREATE_PERMISSION configuration parameter can be used to prevent
unauthorized users from creating databases. It contains the list of users who are
allowed to create databases. If you only want the user informix to create
databases, it can be set as shown in the following example:

DBCREATE_PERMISSION informix

4.5.2 Security for external routines

External routines with shared libraries that are outside the database server can
be security risks. The IFX_EXTEND_ROLE configuration parameter can be set
to 1 to restrict users from registering external routines. When this is set, only the
DBSA can grant or revoke permissions to specific users by using the GRANT
EXTEND TO and REVOKE EXTEND FROM commands. Only these users will be
able to create external routines.

Only jdoe can create external UDRs in a database, if the following statement is
the only GRANT EXTEND statement in that database:

GRANT EXTEND TO 'jdoe';

4.5.3 Role-based access control

A role is a work-task classification. Privileges on database objects are granted to
roles instead of users. By assigning privileges to roles and roles to users, you
can simplify the management of privileges (RABC). They can be at the database,
table, routine, type, or language level.

You can also create a default role and assign that role to individual users or to
PUBLIC on a per-database level. The default role is automatically applied when a
user establishes a connection with the database. This enables a user to connect
to a database without issuing a SET ROLE statement. The default role can also
be attained by setting the role in the user.sysdbopen procedure. Each user that is
assigned to a default role receives the privileges of that role in addition to the
other privileges that are granted individually to the user.

Example 4-13 on page 137 shows that user jdoe who works for the sales
department has a default role of sales_role with all permissions on the sales
table. maryk works for the human resource (HR) department and has all
permissions on the employee table but no permissions on the sales table. jdoe
can only access the employee and department columns from the employee table.
He cannot access any confidential columns, such as the salary column, from this
table.
136 Customizing the Informix Dynamic Server for Your Environment

Example 4-13 Roles and default roles

grant connect to ‘jdoe’;
grant connect to ‘maryk’;

create role sales_role;
create role hr_role;

revoke all on employee from "public";
revoke all on sales from "public";

grant select, insert, update, delete on sales to sales_role;

grant select, insert, update, delete on employee to emp_role;
grant select (emp_name, dept_name) on employee to sales_role;

-- routine delete_emp can only be executed by emp_role
grant execute on delete_emp to emp_role;

grant default role sales_role to ‘jdoe’;
grant default role hr_role to ‘maryk’;

4.5.4 Label-based access control

By using LBAC, you can control read and write access to individual rows and
columns of data. If your database system contains highly confidential, private, or
sensitive data that needs to be secure from any unauthorized use, you might
want to control and limit access to this data by implementing LBAC.

When a user attempts to access a protected table, IDS enforces two levels of
access control. The first level is DAC, which you can implement by using roles
(RBAC). With DAC, IDS verifies whether the user who is attempting to access the
table has been granted the required privileges to perform the requested
operation on that table. The second level is LBAC, which controls access at the
row level, column level, or both levels.

LBAC is implemented by creating new security objects that are made up of
security components, security policies, and security labels. Only the users with
the built-in role DBSECADM (database security administrator) can issue DDL
statements that can create, alter, rename, or drop these security objects. The
scope of the DBSECADM role is across all of the databases (instance wide)
unlike the user defined roles whose scope is the database in which the role is
created.
 Chapter 4. Robust administration 137

The security administrator can associate security labels with rows or columns in
a table and with users (user labels). When a user attempts to access an
LBAC-protected table object, the system compares the user label to the row or
column label to determine if the user can access the data. These security labels
belong to a security policy, which in turn is defined as a set of security
components.

In the following section, we demonstrate the implementation of an LBAC security
policy by using an example of an insurance company. We go through the steps to
implement LBAC security and explain them with examples. One of the first steps
is to identify tables that need security at either the row level, column level, or a
combination of both.

Implementing row-level LBAC
The sales department of an insurance company has a sales table that can be
accessed only by the employees in the sales department. The persons that
belong to a particular region, such as West and East, can only access rows from
their own region unless they work at a position (for example, Director or
President) that is allowed to access row from other regions. The sales table is
defined as follows:

CREATE TABLE sales (sales_date date, sales_person varchar(10), region
varchar(10), sales int);

To implement row-level security on this table:

1. Create security admin.

Create a new user ID, which is lbacadmin in this example, for the user who is
responsible for creating and maintaining LBAC. The DBSA grants the
DBSECADM role to this user ID by using the GRANT command:

GRANT DBSECADM TO ‘lbacadmin’;

The DBSECADM role is a built-in role that only the DBSA can grant. Unlike
UDRs, whose scope is the database in which the role is created, the scope of
the DBSECADM role is all of the databases of the IDS instance. It is not
necessary for DBSA to re-issue the GRANT DBSECADM statement in other
databases on the same server. Like all built-in roles of IDS, the DBSECADM
role is enabled when it is granted, without requiring activation by the SET
ROLE statement, and it remains in effect until it is revoked. Only a user who
holds the DBSECADM role can issue the SQL statements that can create or
modify security objects.
138 Customizing the Informix Dynamic Server for Your Environment

2. Create the security component.

The lbacadmin user creates the required security components. We use all of
the available types of security label components in this example:

– Set

A collection of items where the order is not important. The user label must
include all the components defined for the row to read/write the row:

CREATE SECURITY LABEL COMPONENT departments SET {'Marketing',
'Sales', 'Support', ‘Development’};

– Array

An ordered set where the highest privilege is first and that can be used to
represent a simple hierarchy. You can only read data that is at your level or
below, and you can write only at your level, which is called the no read up,
no write down approach:

CREATE SECURITY LABEL COMPONENT levels ARRAY [‘Board’,
‘Executive’, ‘Director’, ‘Manager’, ‘Engineer’];

– Tree

A more complex hierarchy that can have multiple nodes and branches:

CREATE SECURITY LABEL COMPONENT regions TREE (‘corp_wide’ root,
‘East’ under ‘corp_wide’, ‘West’ under ‘corp_wide’, ‘Central’
under ‘corp_wide’, ‘Northern California’ under ‘West’, ..);

3. Create a security policy.

Define the security policy by using all the necessary security components. In
this example, we use the three components that were previously defined:

CREATE SECURITY POLICY policy1 COMPONENTS departments, levels,
regions
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL;

The RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL is the default
clause that causes the INSERT, UPDATE, or DELETE statement to fail if the
users specify a security label in the DML statement that does not belong to
them. To override it so that IDS uses the user’s security label rather than the
security label explicitly specified by the user in the DML statement, use the
OVERRIDE NOT AUTHORIZED WRITE LABEL SECURITY clause.

4. Create security labels.

Define the security labels for the security policy and include the security
components that comprise this label. Here we define the security labels for
president, sales manager for the Western region, and a sales engineer for the
Northern California region:
 Chapter 4. Robust administration 139

CREATE SECURITY LABEL policy1.president
COMPONENT levels ‘Board’,
COMPONENT departments ‘Marketing’, ‘Sales’, ‘Support’,
‘Development’,
COMPONENT regions ‘corp_wide’;

CREATE SECURITY LABEL policy1.west_sales_mgr
COMPONENT levels ‘Manager’,
COMPONENT departments ‘Sales’,
COMPONENT regions ‘West’;

CREATE SECURITY LABEL policy1.northca_sales_engr
COMPONENT levels 'Engineer',
COMPONENT departments 'Sales',
COMPONENT regions 'Northern California';

5. Associate the table with the security policy.

Associate the sales tables with the security policy. To apply row level
protection, ALTER the table to add a column lbac_tag of data type
idssecuritylabel by using the policy policy1:

ALTER TABLE sales ADD (lbac_tag idssecuritylabel DEFAULT
‘NorthCA_sales_engr’), ADD SECURITY POLICY policy1;

6. Grant user labels.

The sales table that has been associated with a security policy is now
protected. No users are allowed access to it until they are assigned the
security labels. Now GRANT the appropriate labels to the respective users.
The president label is assigned to usr1, the Western sales manager label is
assigned to usr2, North California Sales engineer is usr3, and the Eastern
sales manager is usr4:

GRANT SECURITY LABEL policy1.president
TO USER ‘usr1’ FOR ALL ACCESS;
GRANT SECURITY LABEL policy1.west_sales_mgr
TO USER ‘usr2’ FOR ALL ACCESS;
GRANT SECURITY LABEL policy1.northca_sales_engr
TO USER ‘usr3’ FOR ALL ACCESS;
GRANT SECURITY LABEL policy1.east_sales_mgr
TO USER ‘usr4’ FOR ALL ACCESS;

DEFAULT clause: The DEFAULT clause is mandatory only if the sales
table is non-empty. You must ensure that the existing rows belong to this
default label.
140 Customizing the Informix Dynamic Server for Your Environment

7. Put row-level security to work.

During every INSERT into the sales table, either you must specify the
appropriate label associated with the row or, if you omit the column from the
list, IDS inserts the label belonging to the user performing the INSERT. IDS
provides the built-in functions SECLABEL_BY_NAME and
SECLABEL_BY_COMP to insert the labels. We demonstrate how this works
as follows:

a. INSERT a row into sales as usr3 with the label west_sales_mgr. Note that
usr3 does not have permission for this label because it belongs to the
northca_sales_engr label. Therefore, INSERT returns an error. If the
security policy is created by using the OVERRIDE NOT AUTHORIZED
WRITE SECURITY LABEL clause, the INSERT successfully inserts the
label northca_sales_engr and ignores the explicitly specified
west_sales_mgr label. Basically the INSERT downgrades the security to
the security of the user running the INSERT:

runas usr3:
> insert into sales values (today, "usr3", "North CA", 2000,
> SECLABEL_BY_NAME('policy1', 'west_sales_mgr'));
8247: User does not have the LBAC credentials to perform INSERT
on table (informix.sales).

b. INSERT a row by using the component names. usr2 has a
west_sales_mgr label but has no permissions on the Support component.
Therefore, the INSERT fails:

runas usr2:
> insert into sales values (today, "usr2", "North CA", 2000,
> SECLABEL_BY_COMP('policy1','Manager:(Sales,Support):West'));
8247: User does not have the LBAC credentials to perform INSERT
on table (informix.sales).

c. Even usr1, who is the president, cannot insert at a level lower than the
presidents security level, as shown here:

as usr1:
> insert into sales values (today, "usr1", "North CA", 2000,
SECLABEL_BY_COMP('policy1','Manager:(Sales,Support):West'));
 8247: User does not have the LBAC credentials to perform INSERT
on table (informix.sales).

d. INSERT a row successfully as usr3 with the correct security label and use
the built-in function SECLABEL_TO_CHAR to select the label:

as usr3:
> insert into sales values (today, "usr3", "North CA", 2000,
> SECLABEL_BY_NAME('policy1','northca_sales_engr'));
1 row(s) inserted.
 Chapter 4. Robust administration 141

> select sales_person, seclabel_to_char('policy1',lbac_tag),
> region from sales;

sales_person usr3
(expression) Engineer:Sales:Northern California
region North CA

1 row(s) retrieved.

e. Let us assume that usr2, who is the Western region Sales manager, wants
to insert rows. If the label column is omitted, IDS automatically inserts the
appropriate label that belongs to usr2. usr2 can see the row inserted by
usr3 in the previous step because usr2 is higher in the hierarchy in the
levels ARRAY and is from the West region:

as usr2:
> insert into sales (sales_date, sales_person, region, sales)
> values (today, "usr2", "West", 999);
1 row(s) inserted.

> select sales_person, seclabel_to_char('policy1',lbac_tag),
> region from sales;

sales_person usr3
(expression) Engineer:Sales:Northern California
region North CA

sales_person usr2
(expression) Manager:Sales:West
region West

2 row(s) retrieved.

f. usr3 is unable to see the usr2 row because that row is at a higher level:

as usr3:
> select sales_person, seclabel_to_char('policy1',lbac_tag),
> region from sales;

sales_person usr3
(expression) Engineer:Sales:Northern California
region North CA

1 row(s) retrieved.
142 Customizing the Informix Dynamic Server for Your Environment

g. If usr4, the Eastern sales manager, inserts a row, only the rows that
belong to the East region can be seen and not the remaining two rows that
were inserted earlier, which are for the West region:

as usr4:
> insert into sales (sales_date, sales_person, region, sales)
> values (today, "usr4", "East", 999);
1 row(s) inserted.

> select sales_person, seclabel_to_char('policy1',lbac_tag),
> region from sales;

sales_person usr4
(expression) Manager:Sales:East
region East

1 row(s) retrieved.

h. usr1 is the president and can view all the rows:

as usr4:
> select sales_person, seclabel_to_char('policy1',lbac_tag),
> region from sales;

sales_person usr3
(expression) Engineer:Sales:Northern California
region North CA

sales_person usr2
(expression) Manager:Sales:West
region West

sales_person usr4
(expression) Manager:Sales:East
region East

3 row(s) retrieved.

Implementing column-level LBAC
The HR department of the insurance company wants to allow employees,
managers, and the HR staff to access data in the EMPLOYEE table. This table
contains columns with different levels of sensitivity and has the following
requirements:
 Chapter 4. Robust administration 143

� Name, gender, and department are considered to be unclassified information
and can be available to all employees

� Employee number and salary are confidential and are restricted to managers
and HR staff

� The Social Security numbers are highly confidential information and are
restricted to the HR staff

The following statement creates the employee table:

CREATE TABLE employee (emp_name varchar(20), gender char(1), dept
varchar(10), emp_no integer, salary decimal, ssn char (9));

To implement column-level security on this table:

1. Create the security component.

We can consider an ARRAY for the simple hierarchy of the three levels of
sensitivity:

CREATE SECURITY LABEL COMPONENT slc_level
ARRAY ['HIGHLY CONFIDENTIAL', 'CONFIDENTIAL', 'UNCLASSIFIED']

2. Create the security policy.

Define the security policy by using the component defined in step 1:

CREATE SECURITY POLICY access_employee_policy
 COMPONENTS slc_level
 WITH IDSLBACRULES
 RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

3. Create the security labels.

Define the security labels from the components that belong to the policy.

CREATE SECURITY LABEL access_employee_policy.highconfidential
 COMPONENT slc_level 'HIGHLY CONFIDENTIAL'

CREATE SECURITY LABEL access_employee_policy.confidential
 COMPONENT slc_level 'CONFIDENTIAL'

CREATE SECURITY LABEL access_employee_policy.unclassified
 COMPONENT slc_level 'UNCLASSIFIED'

4. Associate the table with the security policy:

ALTER TABLE EMPLOYEE
 ALTER emp_name SECURED WITH UNCLASSIFIED
 ALTER gender SECURED WITH UNCLASSIFIED

 ALTER dept SECURED WITH UNCLASSIFIED
 ALTER emp_no SECURED WITH CONFIDENTIAL

 ALTER salary SECURED WITH CONFIDENTIAL
144 Customizing the Informix Dynamic Server for Your Environment

 ALTER ssn SECURED WITH HIGHCONFIDENTIAL
 ADD SECURITY POLICY access_employee_policy

5. Grant user labels:

GRANT SECURITY LABEL access_employee_policy.HIGHCONFIDENTIAL
 TO USER usr1 FOR ALL ACCESS

GRANT SECURITY LABEL access_employee_policy.CONFIDENTIAL
 TO USER usr2 FOR READ ACCESS

GRANT SECURITY LABEL access_employee_policy.UNCLASSIFIED
 TO USER usr3 FOR READ ACCESS

6. Put column-level security to work.

Depending on the level of sensitivity, only the columns that are allowed are
selected, as shown in the following sequence:

a. usr1 can successfully select all the columns of the table:

as usr1:
> select * from employee;

emp_name gender dept emp_no
salary ssn

No rows found.

b. usr2 cannot access the highly confidential column ssn. The SELECT
succeeds if usr2 selects only the allowable columns:

as usr2:
> select * from employee;
 8245: User cannot perform READ access to the protected column
(ssn).

> select emp_no,salary from employee;

 emp_no salary

No rows found.

c. usr3 can access only the columns that are marked as unclassified:

as usr3:
> select emp_name,gender,dept from employee;

emp_name gender dept

No rows found.
 Chapter 4. Robust administration 145

> select emp_name,ssn from employee;
 8245: User cannot perform READ access to the protected column
(ssn).

You can also have tables that require a combination of row level and column level
security. The steps to implement this are similar to the ones that we just
explained.

4.5.5 Auditing

You can use the secure auditing feature to detect any unauthorized access. This
feature allows you to audit database events that access or modify data. The
database system security officer (DBSSO) can configure the system to audit
certain user activities and periodically analyze the audit trail. The audit event has
predefined mnemonics, such as CRTB for CREATE TABLE, that can be used to
define the audit masks. The onaudit command is used to create, modify, and
maintain the audit masks and configuration.

Auditing can also be used for diagnostic purposes. For example, consider an
application that drops and recreates tables where the CREATE TABLE fails
intermittently with an error indicating that the table already exists, even though it
was DROPPED just before creation. This means that another session is trying to
run a CREATE TABLE between this session’s DROP and CREATE. You can turn
on auditing and audit the CREATE TABLE and DROP TABLE commands run by
usr1, by entering the following commands:

$ onaudit -l 1
$ onaudit -p /tmp/audit
$ onaudit -a -u usr1 -e +CRTB,DRTB

The file created in /tmp/audit shows an entry if usr1 creates a table t1 as shown
in this example:

ONLN|2007-11-01 11:52:17.000|ramsay|17280|ramsay_install|usr1
|0:CRTB:san:101:t1:usr1:0:-

4.5.6 Data encryption

You can use column-level encryption to store sensitive data in an encrypted
format. After encrypting sensitive data, such as credit card numbers, only users
who can provide the correct password can decrypt the data. All values in a given
column of a database table can be encrypted by using the same password. You
can also choose to encrypt by using different passwords, or different encryption
146 Customizing the Informix Dynamic Server for Your Environment

algorithms, on different rows of the same table. This technique is sometimes
necessary to protect personal data.

Users might enter unencrypted data into columns that are meant to contain
encrypted data. To ensure that data entered into a field is always encrypted, use
views and INSTEAD OF triggers that internally call the encryption function.

IDS supports built-in encryption and decryption functions. The encryption
functions ENCRYPT_AES and ENCRYPT_TDES each return an encrypted_data
value that encrypts the data argument. Conversely, the decryption functions
DECRYPT_CHAR and DECRYPT_BINARY return a plain-text data value from
the encrypted_data argument. You can invoke these encryption and decryption
functions from within DML statements or with the EXECUTE FUNCTION
statement.

For more details and examples, refer to Chapter 5 of the Redbooks publication
Informix Dynamic Server 11: Advanced Functionality for Modern Business,
SG24-7465.

Data encryption between HDR servers
To secure transmission of data between the database servers of a High
Availability Data Replication (HDR) pair, you can encrypt data. After enabling
encryption, the first database server in an HDR pair encrypts the data before
sending the data to the other server in the pair. The server receiving the data,
decrypts the data as soon as it is received. The configuration parameter
ENCRYPT_HDR is used to enable or disable HDR encryption.

Other related configuration parameters, such as ENCRYPT_CIPHERS and
ENCRYPT_MAC, must be set on both the servers. For more details, refer to the
IBM Informix Dynamic Server Administrator's Reference, Version 11.1,
G229-6360-01.

4.6 Backup and restore

The DBSAs are responsible for designing and implementing the database
backup strategy. They must ensure that the backup performance is optimal, so
that it has minimal impact on user activity. In case of a disaster recovery, DBSAs
are responsible for quickly bringing the database back online to a consistent
state by restoring it from backup. In the following sections, we discuss the various
IDS backup and restore techniques along with their advantages and
disadvantages. This information will help you in the design of the best backup
plan suitable to your environment.
 Chapter 4. Robust administration 147

You can back up and restore internally by using ontape or onbar, or externally by
using a backup/restore method outside of ON-Bar.

For internal backups, transactions can continue executing on the server when the
backup is running. There is a small time interval when the server blocks
transactions (updates) during the archive checkpoint. However, cold restore
requires the server to be in offline mode when a critical dbspace, such as root
dbspace or a dbspace that contains the physical or logical log, must be restored.
An onbar restore can take hours depending on the database size. If you have a
set of important tables that require immediate access, you can run a cold restore
on the dbspaces housing that data to bring the server online.

A warm restore can then be performed to restore the remaining non-critical
dbspaces when the server is in online mode. This mixed restore (cold restore
followed by a warm restore) can take more time than an entire cold restore
because it has to run a logical restore twice (once for the cold restore and once
for the warm restore). But it serves the purpose of keeping the downtime to a
minimum.

The external method handles the physical backup and restore, but the logical log
backup and restore still has be done by using ON-Bar. External backup and
restore can be done by using cp, dd, or tar on UNIX or copy on Windows, or a file
backup program. If you use hardware disk mirroring and external backup and
restore, the DBSA blocks the server for a short time period when the mirrors are
broken. During this time, reads are still allowed but updates block. The server is
then unblocked to allow updates, and onbar is run to back up all the logs
including the current one. The offline mirrored disks can then be backed up to
back up media by using external commands, during which time the server is
online and accepts new connections and updates. Mirroring can be resumed
after the backup is complete. You can get your system online faster with external
restore than with ON-Bar.

IDS supports internal backup and restore by using the ontape and onbar utilities:

� ontape offers the following advantages:

– Can perform a sequential backup and sequential restore
– Can back up to stdio, a file, or a directory
– Can change the logging mode of a database but the recommended way is

to use ondblog

� ontape requires the following considerations:

– Does not use a storage manager
– Cannot specify specific storage spaces
– Cannot do a Point-in-Time (PIT) restore from backup
– Cannot use multiple tapes concurrently
– Cannot restart a restore
148 Customizing the Informix Dynamic Server for Your Environment

The ON-Bar suite consists of the ON-Bar API and the Informix Storage Manager.
The ON-Bar API is the Informix implementation of the client component of the
Open Systems Backup Services Data Movement (XBSA) API that is defined by
the X/Open organization.

ON-Bar provides the following functionality:

� Parallel backup and parallel restores

� Use of Informix Storage Manager or other storage manager vendors to track
backups

� Support for concurrent multiple tapes, PIT restore, and restartable restore

� Backup and restore selected storage spaces

� Use of the sysutils database

The backup tapes produced by ontape and ON-Bar are not compatible. For
example, you cannot create a backup with ontape and then restore it with
ON-Bar, or visa versa. In the following sections, we discuss the various backup
and restore techniques and how they can fit your needs and your environment.

4.6.1 Levels of backup

IDS supports level-0, level-1, and level-2 backups. It writes all the disk pages to
backup media for level-0 backup. For level-1 backup, the data that has changed
since the level-0 is written to the media. Similarly for level 2, only the data that
has changed since level 1 is written to media. If you request an incremental
backup where no previous incremental backup exists, ON-Bar automatically
performs the lower-level backup.

We recommend that you establish a backup schedule that keeps level-1 and
level-2 backups small. Schedule frequent level-0 backups to avoid restoring large
level-1 and level-2 backups or many logical-log backups. The frequency of the
database backup depends on the frequency, amount, and importance of the data
updates.

A level-0 backup is advised after administrative events. Such events include
dropping or moving a logical log, changing the size or location of the physical log,
adding a dbspace, blobspace or sbspace, adding logging to a database, or
dropping a chunk. You might want to schedule these events to be run during the
next scheduled level-0 backup. Although you no longer need to back up
immediately after adding a logical log file, the next backup should be level-0
because the data structures have changed.
 Chapter 4. Robust administration 149

4.6.2 Ontape backup and restore

If there is a small- to medium-sized database in a test or development
environment that does not necessarily need parallel backup/restore or Point in
Time restore, you might want to choose ontape for your backup strategy. You do
not need to configure any storage manager in this case.

The ontape utility writes the backup data directly to tape media. The configuration
parameters TAPEDEV and LTAPEDEV point to the tape device. When backing
up to tape, ensure that an operator is available and that there is sufficient media.
A backup can require multiple tapes. After a tape fills, ontape rewinds the tape,
displays the tape number for labeling, and prompts the operator to mount the
next tape. The full tapes should then be labeled and new tapes mounted.

Backup to directory and stdout
To skip the additional manual intervention required for ontape, you can use
ontape to write to stdout or to directories instead of tapes. In the current
environment, where the cost of disk drives are falling, backing up to disk instead
of tapes is a convenient option. When TAPEDEV and LTAPEDEV point to valid
directories on either a local or mounted file system, ontape backs up data to
those directories without the interactive prompts. It generates the file name
automatically as <nodename>_<servernum>_L<level_num>. If a file already exists
with this name, it renames this file with the current date and time stamp.

As shown in Example 4-14, the same directory is used by two instances on the
same node ramsay, one with SERVERNUM 10 and the other with 14. Two level-0
backups have been run on the latter instance. During restore, ontape looks for
the file ramsay_14_L0 in this directory. If you must restore from an older image, it
can be renamed to this standard format and used for the restore.

The standard prefix can be changed by setting an environment variable
IFX_ONTAPE_FILE_PREFIX. If it is set to “dev101”, ontape generates file names
as dev101_L0, dev101_L1, and so on. The ontape restore also looks for files with
this prefix.

Example 4-14 ontape backup to directory

onconfig settings:
LTAPEDEV /home/data/backup
LTAPEDEV /home/data/backup
SERVERNUM 14

$ ontape -s -L 0
File created: /home/data/backup/ramsay_14_L0
150 Customizing the Informix Dynamic Server for Your Environment

Please label this tape as number 1 in the arc tape sequence.
This tape contains the following logical logs:

 5

Program over.

$ ls -ltr /home/data/backup
-rw-rw---- 1 informix informix 15342850 Oct 1 11:02 ramsay_10_L0
-rw-rw---- 1 informix informix 11042816 Nov 1 13:52
ramsay_14_20071101_135254_L0
-rw-rw---- 1 informix informix 11239424 Nov 1 22:48 ramsay_14_L0

LTAPEDEV and TAPEDEV can point to an existing file instead of a directory, in
which case successive backups overwrite this file. It can also point to STDIO to
redirect the backup to stdout. Then the ontape restore reads the data from stdin.
This is especially efficient for setting up HDR by restoring the data to the
secondary server while skipping the intermediary step of saving the data to a file
or disk. You can also use this option to restore this small-sized database to a
remote machine. This is known as an imported restore. To override the
LTAPEDEV and TAPEDEV settings, you can pass the -t option to ontape as
shown in Example 4-15.

Example 4-15 ontape backup/restore using pipes

ontape -s -L 0 -t STDIO | rsh remote1 'ontape -p -t STDIO'

This example requires that the INFORMIXDIR, INFORMIXSERVER,
INFORMIXSQLHOSTS, and ONCONFIG environment variables are set in the
default environment for this user (informix or root) on the node
remote1.

4.6.3 ON-Bar backup and restore

If your environment has a large number of instances and the investment in
additional disk drives for hardware disk mirroring and external backup and
restore is not feasible, ON-Bar can be used for the backup strategy. A storage
manager must be installed to handle the media labeling, mount requests, and
storage volumes. In this section, we discuss the various methods for improving
ON-Bar usability and performance.
 Chapter 4. Robust administration 151

Improving parallelism
Each ON-Bar process backs up or restores different dbspaces. To increase the
degree of parallelism, the BAR_MAX_BACKUP configuration parameter can be
increased. This value specifies the maximum number of parallel processes that
are allowed for each onbar command. When the number of running processes is
reached, additional processes can start only when a currently running process
completes its operation. If you set BAR_MAX_BACKUP to 0, the system creates
as many ON-Bar processes as needed. The number of ON-Bar processes is
limited only by the number of storage spaces or the amount of memory available
to the database server, whichever is less.

IDS 11 makes intelligent decisions regarding the ordering of dbspaces during
backup and restore to achieve maximum parallelism. For example, if the largest
dbspace is backed up in parallel to other smaller dbspaces, the complete system
backup takes less time. During a restore, dbspaces are restored in the same
order in which they were backed up, which reduces restore time.

A set of all the important tables can reside in separate dbspaces. These
dbspaces, along with the dbspaces that contain the root dbspace and the logical
and physical logs, can be backed more often than the remaining dbspaces.

Customizing ALARMPROGRAM
The ALARMPROGRAM configuration parameter can be set to the
Informix-provided alarm program script $INFORMIXDIR/etc/alarmprogam.sh to
capture certain administrative events. These events can be informative, such as
log complete, backup complete, long transaction detected, or an error condition
such as chunk offline or Out of memory.

You can customize this script to perform the following tasks:

� Change the value of ADMINMAIL to the e-mail address of the DBSA.

� Change the value of PAGERMAIL to the pager service e-mail address.

� Set the value of the parameter MAILUTILITY with /usr/bin/mail for UNIX and
$INFORMIXDIR/bin/ntmail.exe for Windows.

� To automatically back up logical logs as they fill, change BACKUPLOGS to Y.

Customizing the onbar script
The onbar script is located in the $INFORMIXDIR/bin directory and can be
customized. The Informix Storage Manager commands in the default onbar script
can be removed if you are not using Informix Storage Manager, and you can add
the Storage Manager initialization or cleanup commands, if needed. These can
include setting any storage manager specific environment variable settings.
152 Customizing the Informix Dynamic Server for Your Environment

Monitoring ON-Bar performance
To monitor the performance of ON-Bar and your storage manager, you can use
the BAR_PERFORMANCE configuration parameter. You can specify the level of
performance monitoring and have the statistics print to the ON-Bar activity log.

BAR_PERFORMANCE has the following valid values:

0 No statistics.

1 Report data transfer time between IDS and the storage manager.

2 The time stamps in the activity and error log in microsecond precision.

3 Reports both microsecond time stamps and transfer statistics. The value 3 is a
combination of 1 and 2.

A sample ON-Bar activity log with a BAR_PERFORMANCE setting of 3 during
backup is shown in Example 4-16. The time stamps in the log file have the
microsecond part. The transfer rate table lists the size (XBSA API column
xfer-kbytes) and the time (XBSA API column xfer-time) taken to transfer the data
from the XBSA to the storage manager and the size (SERVER API column
xfer-kbytes) and transfer time (SERVER API column xfer-kbytes) between IDS
and XBSA. The API times are the transfer time plus the time spent executing the
APIs. All these times are listed per dbspace.

The second table lists the time taken to spawn the daemon or update the sysutils
catalog for backup or time taken to read the bootup file in case of a warm restore.
If there are performance issues, compare these times to see if the bottleneck is
due to the storage manager or IDS.

Example 4-16 Transfer rate performance in the onbar activity log

2007-11-07 11:04:55.057311 9008 9006 /work3/ssajip/INSTALL/xps/bin/onbar_d -b
 2007-11-07 11:04:55.564799 9008 9006 Archive started on rootdbs, dbs1 (Requested
Level 0).
 2007-11-07 11:04:55.791489 9008 9006 Begin level 0 backup rootdbs.
 2007-11-07 11:04:55.830887 9008 9006 Successfully connected to Storage Manager.
 2007-11-07 11:04:56.556617 9008 9006 Completed level 0 backup rootdbs (Storage
Manager copy ID: 18950 0).
 2007-11-07 11:04:56.593297 9008 9006 Begin level 0 backup dbs1.
 2007-11-07 11:04:56.849028 9008 9006 Completed level 0 backup dbs1 (Storage Manager
copy ID: 18951 0).
 2007-11-07 11:04:57.216304 9008 9006 Archive on rootdbs, dbs1 Completed (Requested
Level 0).
 2007-11-07 11:04:57.250568 9008 9006 Begin backup logical log 9.
 2007-11-07 11:04:57.283503 9008 9006 Successfully connected to Storage Manager.
 2007-11-07 11:04:57.663000 9008 9006 Completed backup logical log 9 (Storage
Manager copy ID: 18952 0).
 Chapter 4. Robust administration 153

 2007-11-07 11:04:57.832761 9008 9006 PERFORMANCE INFORMATION

 TRANSFER RATES:
 --
 | OBJECT | XBSA API | SERVER API |
 | NAME | xfer-kbytes xfer-time RATIO(kb/s) API-TIME | xfer-kbytes xfer-time RATIO(kb/s) API-TIME |
 --
 | 9 | 64 0.147 436 0.261 | 64 0.013 4967 0.014 |
 | dbs1 | 62 0.105 589 0.156 | 62 0.000 134183 0.291 |
 | rootdbs | 10230 0.362 28233 0.440 | 10292 0.114 90338 0.293 |
 --
 | PID = 9008 | 10356 0.614 16859 0.856 | 10418 0.127 81855 0.598 |
 --
 2007-11-07 11:04:57.845472 9008 9006 PERFORMANCE INFORMATION

 PROCESS CLOCKS:
 --
 | PID | CLOCK DESCRIPTION | TIME SPENT (s) |
 --
 | 9008 | To execute the master OnBar deamon. | 2.796 |
 | 9008 | To update 'sysutils' for Log 9. | 0.036 |
 | 9008 | To update 'sysutils' for Dbspace dbs1. | 0.036 |
 | 9008 | To update 'sysutils' for Dbspace rootdbs. | 0.032 |
 | 9008 | To update 'sysutils' for Log 9. | 0.024 |
 | 9008 | To update 'sysutils' for Log 9. | 0.021 |
 | 9008 | To update 'sysutils' for Log 9. | 0.069 |
 | 9008 | To update 'sysutils' for Dbspace dbs1. | 0.015 |
 | 9008 | To update 'sysutils' for Dbspace dbs1. | 0.018 |
 | 9008 | To update 'sysutils' for Dbspace dbs1. | 0.044 |
 | 9008 | To update 'sysutils' for Dbspace rootdbs. | 0.022 |
 | 9008 | To update 'sysutils' for Dbspace rootdbs. | 0.042 |
 | 9008 | To update 'sysutils' for Dbspace rootdbs. | 0.112 |
 --
 2007-11-07 11:04:57.857574 9008 9006 /work3/ssajip/INSTALL/xps/bin/onbar_d complete, returning 0 (0x00)

Synchronizing onbar with the storage manager
The storage manager allows you to expire any old or aborted backups. The
backup objects and the metadata information is deleted from the storage
manager based on an expiration policy. For example, you can expire all backups
prior to a particular date or retain only certain versions of a backup. IDS has to be
informed of these expired backups, so that the storage manager and IDS are
synchronized. The onsmsync utility is used for these purposes.

ON-Bar maintains a history of backup and restore operations in the sysutils
database and an extra copy of the backup history in the emergency boot file. It
uses the sysutils database in a warm restore and uses the emergency boot file in
a cold restore because the sysutils database cannot be accessed. The
emergency boot file resides in the $INFORMIXDIR/etc directory and is named
ixbar.servernum, where servernum is the value of the SERVERNUM
configuration parameter.

You can use the onsmsync utility to regenerate the emergency boot file and expire
old backups.
154 Customizing the Informix Dynamic Server for Your Environment

The onsmsync utility synchronizes the sysutils database, the storage manager,
and the emergency boot file as follows:

� The missing objects in the sysutils database are updated from the emergency
boot file.

� It removes the records of restores, whole-system restores, fake backups, and
successful and failed backups from the sysutils database.

� It expires old logical logs that are no longer needed.

� It regenerates the emergency boot file from the sysutils database.

For the syntax and options available with onsmsync, refer to the IBM Informix
Backup and Restore Guide, Version 11.1, G229-6361-01.

4.6.4 External backup and restore

There is administrative overhead with external backup because you have to track
and label the database objects manually or use an external source such as a
third-party storage manager. If your environment only has a few instances,
external backup and restore with hardware mirroring is an efficient method as the
benefits of backup and restore outweigh the administrative overhead. These
instances can be large DSS or data warehouse environments. However, if you
can invest in the additional disk drives, disk mirroring with the external method is
an ideal option.

In an external backup, the backup and restore is performed outside of the
database server, except for the logical log backup and restore, which is done by
using the ON-Bar utility. ON-Bar treats an external backup as equivalent to a
level-0 backup. You cannot perform an external backup and then use ON-Bar to
perform a level-1 backup, or visa versa because ON-Bar does not have any
record of the external backup. Because the external backup is outside the scope
of control of the IDS instance, the granularity of a level 1 or level 2 does not exist.

To back up externally with enabled hardware disk mirroring:

1. Block the server by using onmode as follows, so that the database server is in
a consistent state at a specific point in time:

$ onmode -c block

Blocking forces a checkpoint, flushes buffers to disk, and blocks transactions
that involve updates or temporary tables. During the blocking operation, users
can access the database server in read-only mode.

Tracking backups: To make tracking backups easier, we recommend that you
back up all storage spaces in each external backup.
 Chapter 4. Robust administration 155

2. Break (disable) the mirror. The mirrored disks now contain a copy of the
consistent data. If there is no disk mirroring, all the chunk files in each storage
space can be backed up by using cp, tar, or any third-party tools.

Also back up the administrative files, such as ONCONFIG, and the
emergency boot file.

3. Unblock the server by using onmode as follows so that users can continue with
the updates:

$ onmode -c unblock

4. Back up the logical logs including the current one by using onbar or ontape as
follows:

$ onbar -b -l -c

The current logical log has the archive checkpoint information that is needed
during restore.

5. Back up the offline mirrored disks to back up media by using external
commands.

6. Restart disk mirroring.

The database server and ON-Bar do not track external backups. To track the
external backup data, use a third-party storage manager or track the data
manually. Table 4-1 shows the items that we recommend to track for an external
backup.

Table 4-1 Items to track for external backup and restore

IDS supports a cold or warm external restore. Refer to the IBM Informix Backup
and Restore Guide, Version 11.1, G229-6361-01, to do a cold or warm restore
from an external backup.

Items to track Description or example

Full path names of each chunk file
for each backed up storage space

/work/dbspaces/rootdbs (UNIX)

Object type Critical dbspaces and non-critical storage spaces

ins_copyid_hi and ins_copyid_lo Copy ID that the storage manager assigns to each
backup object

Backup date and time The times that the database server was blocked
and unblocked

Backup media Tape volume number or disk path name

Database server version The database server version from which the
backup was taken
156 Customizing the Informix Dynamic Server for Your Environment

4.6.5 Table level restore

ON-Bar can back up and restore database objects only at the dbspace level. If a
table, a set of tables, or only portions of a table (using table filters) are to be
restored, you can use the archecker utility. archecker is especially useful to
restore a table that has accidentally been dropped.

To restore a table, you must create an archecker configuration file. The
environment variable AC_CONFIG points to this configuration file. If this variable
is not set, the file used by default is $INFORMIXDIR/etc/ac_config.std. This
configuration file contains all the archecker specific configuration parameters.
One of these parameters is AC_CONFIG, which is set to the archecker schema
file. This schema file contains the schema of the source table (table that is being
restored) and the destination table. This schema file also contains an INSERT
statement that tells the archecker utility the tables to extract, the dbspace or
dbspaces it needs to extract to, and any table filters.

To restore a table from an onbar backup:

1. Edit the archecker configuration file $INFORMIXDIR/etc/ac_config.std to
include the following basic configuration parameters:

AC_STORAGE /tmp
AC_MSGPATH /tmp/ac_msg.log
AC_SCHEMA /home/informix/tlr.sh

2. Create the archecker schema file /home/informix/tlr.sh as shown in
Example 4-17. The round-robin fragmented src table is restored from archive
as an expression fragmented table dest. The INSERT statement specifies the
destination and source tables. It can restore a subset of columns by specifying
them in the SELECT list or a subset of rows using the WHERE clause.

Example 4-17 Creating the archecker schema file

database db1;
create table src (col1 int, col2 char(10)) fragment by round robin
in rootdbs, dbs1;

create table dest (col1 int, col2 char(10)) fragment by expression
mod(col1,2) = 0 in rootdbs,
remainder in dbs1;

insert into dest select * from src;
 Chapter 4. Robust administration 157

3. Run archecker to restore the table dest as shown in Example 4-18. Option b
is to use the onbar driver as opposed to ontape (option t), X is to extract the
table from archive, v is for verbose output, and s prints the status to panel.

Example 4-18 Running archecker to restore the table dest

$ ui archecker -bXvs
IBM Informix Dynamic Server Version 11.10.FC1
Program Name: archecker
Version: 8.0
Released: 2007-06-11 23:42:30
CSDK: IBM Informix CSDK Version 2.91
ESQL: IBM Informix-ESQL Version 2.91.FN219
Compiled: 06/11/07 23:43 on SunOS 5.9 Generic_112233-12

AC_STORAGE /tmp
AC_MSGPATH /tmp/ac_msg.log
AC_VERBOSE on
AC_TAPEBLOCK 62 KB
AC_IXBAR /home/informix/INSTALL/etc/ixbar.14
Dropping old log control tables
Extracting table db1:src into db1:dest

Scan PASSED
Control page checks PASSED
Table checks PASSED
Table extraction commands 1
Tables found on archive 1
LOADED: db1:dest produced 4 rows.
Creating log control tables
Staging Log 12

Logically recovered san:dest Inserted 0 Deleted 0 Updated 0

4.6.6 Backup filters

The onconfig parameters provide the option of specifying external programs, or
filters, to transform data during backup and restore with both ON-Bar and ontape.
You can use filters for compression or other data transformations. The backup
filter reads the data to be backed up, transforms it, and then returns the
transformed data to the backup utility. The restore filter receives the restored data
from disk, transforms it back to its original state, and then passes the data to the
restore utility. You specify the filters with two new onconfig parameters,
BACKUP_FILTER and RESTORE_FILTER.
158 Customizing the Informix Dynamic Server for Your Environment

For example, if you want to compress the archive data, the backup filter receives
the data, compresses it, and then backs up the compressed data. During the
restore, the restore filter decompresses the data before it is restored to the
database.

BACKUP_FILTER /bin/compress
RESTORE_FILTER /bin/uncompress

4.6.7 Restartable restore

If a failure occurs with the database server, media, or ON-Bar during a restore,
you can restart the restore from the place that it failed. You do not have to restart
the restore from the beginning. The RESTARTABLE_RESTORE configuration
parameter controls whether ON-Bar is able to keep track of the storage spaces
and logical logs that were restored successfully.

You can restart the following types of restores:

� Whole system
� Point in time
� Storage spaces
� Logical part of a cold restore

Refer to the IBM Informix Backup and Restore Guide, Version 11.1,
G229-6361-01, for more information.

4.7 Optimistic concurrency

In this section, we discuss how to prevent applications from failing with SQL
errors under specific conditions.

In Committed Read isolation level, exclusive row-level locks held by other
sessions can cause SQL operations to fail with a lock error when attempting to
read data in the locked rows. You can use the LAST COMMITTED keyword
option to the SET ISOLATION COMMITTED READ statement to reduce the risk
of such locking conflicts. In contexts where an application attempts to read a row
on which another session holds an exclusive lock, these keywords instruct the
database server to return the most recently committed version of the row, rather
than wait for the lock to be released. The LAST COMMITTED keywords are only
effective with concurrent read operations. They cannot prevent locking conflicts
or errors that occur when concurrent sessions attempt to write to the same row.
 Chapter 4. Robust administration 159

Applications that prepare a statement (by using PREPARE) before running
EXECUTE can sometimes fail with the following error message:

-710 error - Table <table-name> has been dropped, altered, or renamed.

This happens when the table or tables to which the statement refers in the
PREPARE get renamed or altered, possibly changing the structure of the table or
even an UPDATE STATISTICS on the table. By setting the configuration
parameter AUTO_REPREPARE to 1, IDS automatically re-optimizes SPL
routines and prepares prepared objects again after the schema of a table
referenced by the SPL routine or by the prepared object has been changed. You
can also set it at a session level by using SET ENVIRONMENT
IFX_AUTO_REPREPARE.

For more information, refer to the IBM Informix Dynamic Server Administrators
Reference Guide, Version 11.1, G229-6359-01.
160 Customizing the Informix Dynamic Server for Your Environment

Chapter 5. The administration free zone

IBM Informix Dynamic Server (IDS) is well known for its powerful and flexible
administrative capabilities. In IDS 11, administration gets even better with the
addition of more features.

For example, IDS 11 now has SQL-based administration. That is, now most of
the administrative tasks can be performed by using SQL. It also provides a
framework where SQL statements or stored procedures can be defined to
execute administrative tasks, collect statistical information, and perform database
system monitoring without database administrator (DBA) intervention. IDS also
has the capability to trace SQL statements for a particular user or a set of users.
DBAs can retrieve the trace information in several ways and in formats that are
more understandable to them.

IDS 11 provides a framework to automatically schedule and monitor database
activities, to take corrective actions, and even to tune itself. Many of these
features are enabled because the administration is SQL-based. Therefore,
routines can be written to monitor, analyze, and change configuration parameters
dynamically, based on the requirements of the IDS implementation. It is
sometimes positioned as a “set it and forget it” environment because the system
is doing much of the administration. That is also the genesis for referring to the
environment as the “administration free zone”.

The administration free zone is a significant enhancement and provides
significant benefits. As an example, the reduction in administration resources is a

5

© Copyright IBM Corp. 2008. All rights reserved. 161

significant contributor to the low total cost of ownership (TCO) of an IDS
implementation.

The Web-based GUI administration tool called Open Administration Tool (OAT) is
also available for IDS 11. This tool uses the new features in IDS 11 to provide a
simple interface for performing the IDS administration tasks.

In this chapter, we provide a brief description of these features and explain how
they make administration simple and automated in IDS 11. We also discuss
example scenarios for using the new functionality. Finally we show you a real life
example that uses the different components of the database administration
system.

5.1 IDS administration

Database servers in general require numerous administrative tasks to be
performed by the DBA to keep the database management system (DBMS)
running at optimal levels. The following administrative tasks are some examples:

� Archiving the system at regular intervals to save the data

� Executing update statistics on the databases and tables to ensure good query
performance

� Verifying database tables and indexes for data integrity

� Adding more space to the server as needed

� Backing up logical logs

� Monitoring the system for performance degradation

In previous IDS versions, some of these administration activities, such as adding
dbspaces and checking database tables and indexes, could only be performed
by using command line utilities such as onspaces, onparams, and oncheck. Hence
to administer multiple instances, a command prompt was needed with the server
environment for each of the instances to enable execution of these utilities. It was
not possible to administer multiple instances with a single database connection
or to administer an instance remotely. In addition, these IDS versions did not
provide a way to schedule a task to occur at a specific time. To schedule an
administrative activity, such as archiving the system weekly, or to update
statistics when the load on the server was low, the DBA had to rely on operating
system (OS) cron jobs or shell scripts, which can be platform dependent.

In IDS 11, you can use a set of user-defined routines (UDRs) to do most of the
administrative tasks previously performed by command line utilities, such as
finderr, oninit, onmode, onspaces, onparams, ondblog, oncheck (-c options only),
162 Customizing the Informix Dynamic Server for Your Environment

onlog, and onstat. These UDRs are called SQL Administration APIs. If you have
a connection to a database server, you can administer other database servers on
the same machines or other machines using SQL. Of course, you must have
access permissions on those servers.

IDS 11 also has a component called the DBScheduler, which by using this
component, you can schedule administrative activities within the database
server. You can specify when to execute a specific administration task and
whether to run it at specific intervals or at predefined times. For example, you can
specify that the database server is to take the archive of the system at a certain
time every week without manual intervention. You can also configure the
database server to detect certain situations and take corrective actions as
needed. For example, when the logical logs are full, the server blocks until the
logical logs are backed up or new logs are available.

You can write scripts to enable the server to detect when the logical logs are full
and add a logical log dynamically. You can also define SQL scripts and store
them in the database server to gather statistical information and monitor
database activity. For example, you can enable the server to monitor how much
memory each session is using or how many users are logged onto the system at
a certain time.

You can also generate reports for later analysis. For example, you can create
reports for the total memory used by sessions or for the SQL statement statistics
and purge these reports every day. The DBA does not need to rely on OS cron
jobs or shell scripts for these routine tasks. Because the tasks are scheduled
inside the server, they are portable across all platforms.

This framework provided by IDS 11 to schedule and monitor database activities,
to take corrective actions, and even tune itself is referred to as the administration
free zone. Some of the administrative activities are already predefined in the
server. That is, they are already created for you and reside in the sysadmin
database. We provide a list of those predefined administrative tasks in Table 5-1.

Table 5-1 Predefined administrative tasks in IDS 11

Table Description

mon_command_history Monitors how much data is kept in the command
history table

mon_config Collects information about the database server’s
configuration file (onconfig). Only collects
parameters that have changed.

mon_config_startup Collects information about the database servers
configuration file (onconfig). Only collects
parameters that have changed.
 Chapter 5. The administration free zone 163

You can expand on this list by creating new tasks and scheduling them according
to your needs. The SQL Administration APIs can help with this activity. For
example, to schedule an administrative task, such as adding a chunk to a
dbspace, you must rely on the SQL Administration API. But to schedule an
administrative task, such as executing a checkpoint, you can use the onmode
command in the scheduler. In the sections that follow, we explain how to perform
administrative tasks by using SQL and show how this helps in scheduling tasks.

5.2 SQL-based administration

In IDS 11, most administrative tasks performed by finderr, oninit, onmode,
onspaces, onparams, ondblog, oncheck (-c options only), onlog, and onstat
utilities can be performed by executing SQL commands. Using SQL-based
administration facilitates administering multiple instances with a single database
connection. It also makes remote administration possible. In the following
sections, we see how this is implemented and describe examples of SQL
administrative commands.

mon_sysenv Tracks the database server’s startup environment.

mon_profile Collects the general profile information.

mon_vps Processes the time of the virtual processors.

mon_checkpoint Tracks the checkpoint information.

mon_memory_system Tracks server memory consumption.

mon_table_profile Collects SQL profile information by table or
fragment. Index information is excluded.

mon_table_names Collects table names from the system.

mon_users Collects information about each user.

check_backup Checks to ensure a backup has been taken.

ifx_ha_monitor_log_replay_task Monitors the high availability (HA) secondary log
replay position.

mon_user_count Counts the number of users.

Table Description
164 Customizing the Informix Dynamic Server for Your Environment

5.2.1 The sysadmin database

A new database, sysadmin, is created by default in IDS 11. If upgrading to
Version 11 from a previous version of IDS, the sysadmin database is created
automatically as part of the conversion process. To verify that the database has
been created successfully, check the online log.

The sysadmin database is a logged database that contains tables that are used
by the DBScheduler. These tables contain tasks that are created by the
Scheduler for collecting data and monitoring system activities.

The sysadmin database also contains the following items:

� The built-in admin() function

� The built-in task() function

� The command_history table that contains information about all the admin()
and task() functions that are executed

The sysadmin database is created in the root dbspace by default. If you have a
number of tasks scheduled and heavily use the SQL Administration APIs, the
root dbspace can fill up fast. If you usually use the root dbspace for your
databases, then you can run out of space soon. In that case, you can move the
sysadmin database to another dbspace to make more space in the root dbspace.

To move the sysadmin database:

1. Make sure that the following message is displayed in the online message log
after server startup:

SCHAPI: Started 2 dbWorker threads.

2. If necessary, create a new dbspace for the sysadmin database. For example,
you might call it new_dbspace.

3. As user informix, run the following commands:

dbaccess sysadmin -
execute function task("reset sysadmin", "new_dbspace");

In this example, new_dbspace is the name of the dbspace that will store the
sysadmin database. The command returns the following message:

SCHAPI: 'sysadmin' database will be moved to 'new_dbspace'.
See online message log.

Important: Never drop or alter the sysadmin database, because several
database components use this database.
 Chapter 5. The administration free zone 165

The internal thread, bld_sysadmin, waits up to five minutes to obtain exclusive
access to the sysadmin database. The progress of the bld_sysadmin thread
is logged in the online message log.

4. Terminate the dbaccess session with the close database statement. If this
operation completes successfully, the sysadmin database is dropped and
recreated in the new dbspace. The Scheduler and dbWorker threads are
started automatically. The sysadmin database contains the tables shown in
Table 5-2.

Table 5-2 sysadmin database tables

Each row in the ph_task table is a task or a sensor that is executed by the
DBScheduler as defined. The task properties determine what SQL or stored
procedures to execute, when to execute them, and where the results should be
stored.

The ph_run table contains an entry for every execution of a task or a sensor from
the ph_task table. You can query this table to see if a task or a sensor has been
executed successfully.

The ph_alert table also contains user-defined and system-defined alerts. If a task
or a sensor created in the ph_task table failed to execute, there is a row in the
ph_alert table indicating that the SQL specified in the task failed to execute and
the error it returned. These are system-defined alerts. You can also insert rows in
to the ph_alert table to create an alert for when a specific event occurs. These
are user-defined alerts.

Table Description

PH_ALERT Contains a list of errors, warnings, or information messages
that must be monitored.

PH_GROUP Contains a list of group names. Each task is a member of a
group.

PH_RUN Contains information about how and when each task was
executed.

PH_TASK Lists tasks and contains information about how and when the
database server will execute each task.

PH_THRESHOLD Contains a list of thresholds that you defined. If a threshold is
met, the task can decide to take a different action, such as
inserting an alert in the PH_ALERT table.

Note: Only user informix has permissions to access the sysadmin database
by default.
166 Customizing the Informix Dynamic Server for Your Environment

5.2.2 SQL Administration APIs

SQL Administration APIs are a set of UDRs that can be executed against the
sysadmin database. Most of the administrative tasks can be executed by using
these UDRs, which are task() and admin(). They both perform exactly the same
function, but are different in the return codes provided.

The routine task() returns a descriptive message indicating the success or failure
of the command. The routine admin() returns an integer whose absolute value
can be used to query the command_history table in the syasadmin database to
obtain more information about the command that was executed. A positive
integer indicates a success and a negative integer indicates a failure. The
function task() can be used to execute a command by itself and see the return
message. The function admin() can be used in SQL scripts or stored procedures.

Each execution of task() and admin() gets logged into the command_history
table automatically. You can query this table to retrieve information about the user
who executed the command, the time the command was executed, the command
itself, and the message returned when the database server completed running
the command.

5.2.3 Examples of task() and admin() usage

When your available dbspaces are filling up, you must add more space for new
tables and for updating existing tables. You might receive different error message
indicating that the storage space is full, depending on the task that is being
performed. For example, you receive SQL error -330 if you attempt to create a
database in a dbspace and where there is not sufficient space. SQL error -502 is
returned if a shortage of disk space is found when the database server was
building a new copy of the table with rows in clustered sequence.

Adding more space is done by using the onspaces command, as in previous IDS
versions. We now describe how to add a dbspace using the SQL Administration
API. Example 5-1 shows the commands to create a 20 MB dbspace with 0 offset
by using the task() UDR.

Example 5-1 Creating dbspace dbs2 by using task()

database sysadmin;
execute function task(“create dbspace”, “dbs2”,
“$INFORMIXDIR/chunks/dbs2”, “20MB”, “0”);

Note: Only the database server administrator (DBSA), root user, and informix
user have permission to execute the task() and admin() functions.
 Chapter 5. The administration free zone 167

Example 5-2 shows the results of the create dbspace command.

Example 5-2 Results for executing the above task() example

(expression) Space 'dbs2' added.

The SQL in Example 5-2 creates the dbs2 file with correct permissions in
$INFORMIXDIR/chunks as part of creating the dbspace. If a file named dbs2
already exists, then this SQL command will fail.

The same results can be obtained by executing the function admin() as shown in
Example 5-3.

Example 5-3 Creating dbspace dbs2 by using admin()

database sysadmin;
execute function admin(“create dbspace”, “dbs2”,
“$INFORMIXDIR/chunks/dbs2”, “20MB”, “0”);

The SQL in Example 5-3 creates the dbs2 file with correct permissions in
$INFORMIXDIR/chunks while creating the dbspace. The only difference to task()
is in the return value. Example 5-4 shows the return value.

Example 5-4 Return value from admin() example

(expression)

 179

To see detailed information about the admin() function executed in Example 5-3,
query the command_history table as shown in Example 5-5.

Example 5-5 SQL to query the command_history table

database sysadmin;

select * from command_history where cmd_number=179

The information contained in the command_history table is returned as shown in
Example 5-6. You can see that the command executed successfully and space
dbs2 was added.

Example 5-6 Results from the query of the command_history table

cmd_number 179
cmd_exec_time 2007-10-08 12:38:37
cmd_user informix
168 Customizing the Informix Dynamic Server for Your Environment

cmd_hostname yogi
cmd_executed create dbspace
cmd_ret_status 0
cmd_ret_msg Space 'dbs2' added.

1 row(s) retrieved.

Suppose that you need to update a table and the dbspace does not have enough
room to fit the table after the update. You can add more space to the dbspace by
adding a chunk to it. Example 5-7 on page 169 shows how you can add a 10 MB
chunk to dbspace dbs1 by using the admin() function.

Example 5-7 Usage example of admin()

database sysadmin;

execute function admin(“add chunk”, ”dbs1”, "/work7/chunks/chk2", 0,
"10MB");

When adding a chunk, the file should exist in the specified directory with the
correct permissions.

Validating database tables and indexes is performed periodically in all database
environments to ensure data integrity. Usually such validation is done by
executing the oncheck command. The SQL in Example 5-8 checks all tables and
fragments in dbspace1 by using the task() function.

Example 5-8 SQL API for oncheck -cD

database sysadmin;

SELECT task("check data",partnum)
 FROM sysmaster:systables
 WHERE trunc(partnum/1048575)=1 ;

In IDS 11, checkpoints are non-blocking, which means that transactions can
make updates while a checkpoint is active. These transactions consume physical
log and logical log space during their processing. If the server is short of critical
resources, such as physical log and logical log space, then the transactions are
blocked to let the checkpoint finish.

In an online transaction processing (OLTP) environment, it might be more
important that the checkpoints are non-blocking to facilitate more server
availability. Suppose that you have an OLTP environment and do not want
transactions to block during checkpoint.
 Chapter 5. The administration free zone 169

If the physical log is too small and the blocking of transactions happens during
checkpoint, you see performance advisories in your online.log recommending
you to increase the physical log size.

To increase the physical log size, use the onparams command or use the SQL
Administration API as shown in Example 5-9.

Example 5-9 SQL API to change physical log size

database sysadmin;
execute function task("alter plog","physdbs","30 MB");

execute function task("checkpoint");

If the logical log is too small and blocking of transactions happens during
checkpoint, you see performance advisories in your online.log recommending
you to increase the logical log size. To increase the logical log size, add more
logical logs by using the SQL Administration API shown in Example 5-10.

Example 5-10 SQL API to add logical logs

database sysadmin;
execute function task(“add log”, “logdbs”, “15MB”, “3”, “true”);
execute function task(“checkpoint);

If needed, you can also drop a logical log file to increase the amount of space in
a dbspace. The database server requires a minimum of three logical log files at
all times. You cannot drop a log if your logical log is composed of only three log
files.

The following rules apply for dropping log files:

� If a log file is dropped that has never been written to (status A), the database
server deletes it and frees the space immediately.

� If a used log file (status U-B) is dropped, the database server marks it as
deleted (D). After you take a level-0 backup of the dbspaces that contains the
log files and the root dbspace, the database server deletes the log file and
frees the space.

� A log file that is currently in use or contains the last checkpoint record (status
C or L) cannot be dropped.
170 Customizing the Informix Dynamic Server for Your Environment

To drop all logical logs in rootdbs except the current one, use the SQL
Administration API shown in Example 5-11.

Example 5-11 SQL command to drop the logical logs

database sysadmin;
select task("drop log", number)
 from sysmaster:syslogfil
 where chunk = 1 and sysmaster:bitval(flags,"0x02")==0;
execute function task("checkpoint");

Some of the command line commands can also be passed as arguments to the
task() and admin() functions, as shown in Example 5-12. Here the onmode -l
command is passed as an argument to the task() function. Then onmode -l is
executed to switch to the next logical log. You might want to switch to the next
logical log file before the current log file becomes full for the following reasons:

� Back up the current log
� Activate new blobspaces and blobspace chunks

Execute the command shown in Example 5-12 to switch to the next available log
file.

Example 5-12 SQL API to switch to the next logical log

database sysadmin;
select task("onmode", "l") from sysmaster:syslogfil
 where chunk = 1 and sysmaster:bitval(flags,"0x02")>0;
execute function task("checkpoint");

Suppose you are packaging the database server in your application and the
database server in each package should have the space configuration as shown
in Table 5-3.

Table 5-3 Space configuration

Space Name Size

dbspace1 40 MB

dbspace2 30 MB

sbspace1 50 MB

bspace1 50 MB

physdbs 40 MB

logdbs 40 MB
 Chapter 5. The administration free zone 171

The requirement might be to add the spaces after the server comes online. To do
this, develop an SQL script that creates a table that contains the name, type,
path, offset, and size of the dbspaces needed and another table that contains the
information about the chunks. Example 5-13 shows the SQL Administration API
functions to create the dbspaces and chunks.

Example 5-13 SQL script for system setup

database sysadmin;

create table dbspaces
 (
 type varchar(255),
 dbspace varchar(255),
 path varchar(255),
 offset varchar(255),
 size varchar(255)
);

insert into dbspaces values
("sbspace", "sbspace1", "$INFORMIXDIR/CHUNKS/sblob1", 0 , "50 MB");
insert into dbspaces values
("dbspace", "dbspace1", "$INFORMIXDIR/CHUNKS/dbspace1", 0 , "40 MB");
insert into dbspaces values
("dbspace", "dbspace2", "$INFORMIXDIR/CHUNKS/dbspace2", 0 , "30 MB");
insert into dbspaces values
("dbspace", "physdbs", "$INFORMIXDIR/CHUNKS/physdbs", 0 , "40 MB");
insert into dbspaces values
("dbspace", "logdbs", "$INFORMIXDIR/CHUNKS/logdbs", 0 , "50 MB");
insert into dbspaces values
("tempdbspace", "tempdbs", "$INFORMIXDIR/CHUNKS/tempdbs", 0 , "10 MB"
);
insert into dbspaces values
("blobspace", "bspace1", "$INFORMIXDIR/CHUNKS/blobdbs", 0 , "50 MB");

create table chunks
 (
 dbspace varchar(255),

tempdbs 10 MB

$INFORMIXDIR/chunks/chunk1 in dbspace1 10 MB

$INFORMIXDIR/chunks/chunk2 in dbspace1 10 MB

Space Name Size
172 Customizing the Informix Dynamic Server for Your Environment

 path varchar(255),
 offset varchar(255),
 size varchar(255)
);
insert into chunks values
("dbspace1", "$INFORMIXDIR/CHUNKS/chunk1",0 , "10 MB");
insert into chunks values
("dbspace1", "$INFORMIXDIR/CHUNKS/chunk2",0 , "10 MB");

SELECT task("create "|| type , dbspace, path, size, offset)
 FROM dbspaces;

select task("add chunk", dbspace, path, size, offset) from chunks;
}

Now create a UNIX script, as shown in Example 5-14, to initialize the server and
then execute the SQL script to create the specified dbspaces and chunks. The -w
option that is used with oninit makes the shell script wait until the server is
online. It saves you from writing additional code to check whether the server is
online before executing dbaccess.

Example 5-14 Shell script to call system_setup.sql

#!/bin/sh
oninit -iwy;
if [$? -gt 0]
then
 echo "Error starting IDS"
 onstat -m
 exit -1
fi
dbaccess sysadmin system_setup.sql;

You can also perform more administrative tasks by using the SQL Administration
API functions. To see a full list of available SQL Administration APIs, refer to
Chapter 7 of the Redbooks publication Informix Dynamic Server 11: Advanced
Functionality for Modern Business, SG24-7465.

5.2.4 Remote administration

SQL can be executed across different databases and instances. Because the
sysadmin database is a database, other instances with the proper connect
privileges can connect to this database. The commands that are executed
against the database are SQL. Therefore, remote administration can be
 Chapter 5. The administration free zone 173

accomplished quite easily. Example 5-15 shows how to check the extents of a
remote database server, called remote1, while you are logged onto your local
server.

Example 5-15 Checking extents on a remote database server

database sysadmin@remote1;
execute function admin(“check extents”);

5.3 Scheduling and monitoring tasks

In IDS 11, you can schedule an SQL stored procedure or UDR by using the DB
Scheduler. This gives the DBA more flexibility in managing administrative tasks.
The administrative tasks can be created in the sysadmin database and can be
scheduled to run at predefined times or as determined internally by the server.
Because these tasks are in the form of SQL commands, the same tasks can be
executed on instances that are on different hardware platforms.

Only task properties, not configuration parameters, define what the Scheduler
collects and executes.

5.3.1 Tasks

A task is a means to execute a specific job at a specific time or interval. A task is
executed by invoking an SQL statement, a stored procedure, a C UDR, or a Java
UDR. It is a way to monitor the database server and take corrective actions as
needed.

All database servers need to do checkpoints at some frequency to ensure that
there is a point in time when the data in memory and disk are consistent. It is
from this consistency point that the server tries to restart in the event of an
unexpected outage. In IDS 11, the checkpoint frequency is determined by
configuration parameters, such as CKPTINTVL, RTO_SERVER_RESTART and
AUTO_CKPTS. These parameters are set depending on your particular needs.

In IDS 11, checkpoints are non-blocking. That is, transactions can make changes
to the data while the checkpoint is in progress. The server still blocks
transactions from making any updates, if it is short of critical resources, such as
physical log and logical log, to complete the checkpoint.

In an OLTP environment, it is beneficial to set AUTO_CKPTS to avoid blocking
checkpoints. Setting AUTO_CKPTS to 1 triggers more frequent checkpoints as
needed to ensure that the transactions are not blocked while the checkpoint is in
174 Customizing the Informix Dynamic Server for Your Environment

progress. In other environments, such as Decision Support Systems (DSS),
transaction blocking might not be a critical factor. Therefore, CKPTINTVL can be
used to perform checkpoints at fixed intervals.

If the availability of the database server is important, you can configure
RTO_SERVER_RESTART to any value between 60 and 1800. This value
specifies the time in seconds in which the server should be online in the event of
an expected outage. For more information about configuring and tuning these
parameters, refer Chapter 4, “Robust administration” on page 113.

Suppose that you have an OLTP environment and have configured
AUTO_CKPTS and RTO_SERVER_RESTART, and the physical log and logical
log are big enough not to cause too frequent checkpoints. But you want to ensure
that you have a consistency point everyday. You can configure the database
server to do it automatically by creating a simple task that does a checkpoint
every day at 5 a.m. as shown in Example 5-16.

Example 5-16 Task to do a checkpoint every day at 5 a.m.

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description,tk_execute,tk_start_time,
tk_stop_time,tk_frequency,tk_next_execution)
VALUES(
“Checkpoints","TASK",“SERVER",
“Do a checkpoint frequently",
“execute function task (‘onmode’,’c’);",
DATETIME(05:00:00) HOUR TO SECOND,
NULL,
INTERVAL (1) DAY TO DAY,
DATETIME(05:00:00) HOUR TO SECOND
);

If you create this task at a time later than 5:00 a.m., it is executed immediately on
that day, but it executes at 5:00 a.m. on all subsequent days. You can also specify
a date in the tk_next_execution field if you want the task to start executing from
that day.

To check if your scheduled task was executed successfully, query the ph_run
table by using the tk_id of the task in ph_task. In Example 5-17, tk_id is of the
task in the ph_task table that you want to check.

Example 5-17 Query to ph_run table with tk_id

database sysadmin;
select * from ph_run where run_task_id = tk_id;
 Chapter 5. The administration free zone 175

DBAs must update the statistics of a database or databases periodically.
Updating the statistics is important because it affects the query performance. But
this is an expensive operation because of the time it takes, which depends on the
number of tables and indexes in the database and the size of them. We advise
that you schedule it when there are relatively few users on the database in OLTP
environments and Web environments where performance is crucial.
Example 5-18 shows a task that executes the update statistics command on a
database every Sunday at 5:00 a.m. The Scheduler executes this task
automatically at the specified day and time.

Example 5-18 Task to run the update statistics on the mydb database

INSERT INTO ph_task(
tk_name,tk_type,tk_group,tk_description,tk_execute,tk_start_time,
tk_stop_time, tk_frequency, tk_next_execution)
VALUES(
“UpdateStat_mydb","TASK",“SERVER",
“Do update stasticis on mydb every Sunday at 5am",
“database mydb; update statistics high;",
DATETIME(05:00:00) HOUR TO SECOND,
NULL,
“7 0:00:00”,
“2007-11-04 05:00:00”,
);

Improvements are expected in the next release that will provide even more
flexibility and power with this feature.

5.3.2 Sensors

Sensors are specialized tasks that are more geared toward collecting data.
Sensor data can be purged for status logging or later analysis. Sensors provide a
portable and simple way of collecting information without using OS calls.
However, because of their purging capability, they are useful in creating reports.

Example 5-19 on page 177 demonstrates the creation of a sensor to track the
number of sessions on the database server every 5 minutes and to delete the
data every day. This is one of the predefined tasks that is automatically created in
the sysadmin database.
176 Customizing the Informix Dynamic Server for Your Environment

Example 5-19 Sensor to track the number of sessions

database sysadmin;
INSERT INTO ph_task
(tk_name,tk_type,tk_group,tk_description,tk_result_table,
tk_create,tk_execute,tk_start_time,tk_stop_time,tk_frequency,tk_delete)
VALUES
("mon_user_count",
"SENSOR",
"SERVER",
"Count the number of user count ",
"mon_user_count",
"create table mon_user_count (ID integer, session_count integer)",
"insert into mon_user_count select $DATA_SEQ_ID, count(*) from
sysmaster:syssessions",
NULL,NULL,
INTERVAL (5) MINUTE TO MINUTE,
INTERVAL (1) DAY TO DAY);

Tasks and sensors can be used for diagnostic purposes. Suppose there is a
memory leak in your environment every day between 4 a.m. and 5 a.m. You must
determine the sessions that are active during that time and the total memory
used by these sessions to help determine the session that is causing the
memory leak. Example 5-20 shows how to create a sensor that collects this
information and stores it in a table, called sess_mem, every 60 seconds during
the time frame in question.

Example 5-20 Sensor to track the total memory used by sessions

database sysadmin;
INSERT INTO ph_task (tk_name, tk_type,tk_group,tk_description,
tk_result_table,tk_create,tk_execute,tk_start_time,tk_stop_time,
tk_delete,tk_frequency,tk_next_execution)
VALUES
(“Total Session Memory",
"SENSOR",
"SERVER",
“Total Session Memory.",
“sess_mem",
"create table sess_mem (sid integer, memtotal int, memused int,
updatedate datetime year to second); ",
 Chapter 5. The administration free zone 177

“insert into sess_mem select sid,memtotal,memused,current from
sysmaster:sysscblst where dbinfo(‘UTC_TO_DATETIME’,connected)>current
- interval(1) hour to hour“,
“04:00:00”, “05:00:00”,NULL,
INTERVAL (1) minute TO minute, DATETIME(04:00:00) HOUR TO SECOND);

5.3.3 Startup tasks

A startup task is executed once when the database server starts. Startup tasks
are executed 60 seconds after the server comes online by default. You can
configure the startup tasks to run at a different time by specifying a value in the
tk_frequency field.

An example of a start up task is to check the table spaces and extents of a
database server. When you create a table, the database server allocates a fixed
amount of space to contain the data to be stored in that table. When this space
fills, the database server must allocate space for additional storage. The physical
unit of storage that the database server uses to allocate both the initial and
subsequent storage space is called an extent.

As rows are added to a table, the database server allocates disk space in units of
extents, which is a block of physically contiguous pages from the dbspace. Even
when the dbspace includes more than one chunk, each extent is allocated
entirely within a single chunk, so that it remains contiguous.

Contiguity is important to performance. When the pages of data are contiguous,
and when the database server reads the rows sequentially during read-ahead,
light scans, or lightweight I/O operations, disk-arm motion is minimized.

Because table sizes are not known, the database server cannot preallocate table
space. Therefore, the database server adds extents only as they are needed, but
all the pages in any one extent are contiguous for better performance. In addition,
when the database server creates a new extent that is adjacent to the previous
one, it treats both as a single extent.

Monitoring disk usage by table is particularly important when you are using table
fragmentation, and you want to ensure that table data and table index data are
distributed appropriately over the fragments.

Important: The tk_create and tk_delete fields in the ph_task table are
enabled only for sensors. Even if you specify a value for these fields when you
create tasks, it will be ignored.
178 Customizing the Informix Dynamic Server for Your Environment

Example 5-21 shows how to check the extents of a database server
automatically each time the server starts. The SQL Administration API is used to
check the extents and is created as a start up task by inserting a row into the
ph_task table.

Example 5-21 Startup task to check extents

database sysadmin;
INSERT INTO ph_task
(tk_name, tk_type, tk_group, tk_description, tk_execute,
tk_start_time, tk_stop_time, tk_frequency)
VALUES
("mon_disk_history",
"STARTUP TASK",
"TABLES",
"Monitor data via the oncheck -ce command",
"execute function task('check extents') ",
NULL,
NULL,
INTERVAL (1) DAY TO DAY);

You can also use startup tasks to turn on diagnostic flags at server startup time.
Suppose that you need to set AFDEBUG 5 minutes after the server starts.
AFDEBUG is set for hanging the engine in case of an assertion failure to enable
you to collect diagnostic information. Example 5-22 shows how to create a
startup task for this.

Example 5-22 Task to set AFDEBUG at system startup

database sysadmin;
INSERT INTO ph_task(
tk_name, tk_type, tk_group, tk_description,tk_execute,
tk_start_time,tk_stop_time, tk_frequency)
VALUES(
“AFDEBUG”, “STARTUP TASK”, “SERVER”, “Set AFDEBUG to 1”, “onmode -A 1”,
NULL, NULL, “0 00:05:00”);

5.3.4 Startup sensors

A startup sensor, like a startup task, is executed once when the database server
starts. Startup sensors are executed 60 seconds after the server comes online
by default. You can configure the sensor by specifying a time in the tk_frequency
field.
 Chapter 5. The administration free zone 179

Example 5-23 shows an example of a startup sensor. This is a predefined sensor
in IDS 11 to track the database server startup environment.

Example 5-23 Startup sensor to track the database server startup environment

INSERT INTO ph_task (
tk_name,
tk_type,
tk_group,
tk_description,
tk_result_table,
tk_create,
tk_execute,
tk_stop_time,
tk_start_time,
tk_frequency,
tk_delete)
VALUES (
"mon_sysenv",
"STARTUP SENSOR",
"SERVER",
"Tracks the database servers startup environment.",
"mon_sysenv",
"create table mon_sysenv (ID integer, name varchar(250), value
lvarchar(1024))",
"insert into mon_sysenv select $DATA_SEQ_ID, env_name, env_value FROM
sysmaster:sysenv",
NULL,
NULL,
"0 0:01:00",
"60 0:00:00");

5.4 Monitoring and analyzing SQL statements

The ability to monitor and analyze SQL statements executed on a database
server is particularly useful when troubleshooting performance problems. It is
important to identify which application or user is consuming most of the database
resources, such as memory, disk I/O, CPU, and locks. By using this information,
the DBA can analyze system performance, make changes in the system
configuration, and make suggestions to developers for changing the application
logic to enable improvement in the performance of the database system.
180 Customizing the Informix Dynamic Server for Your Environment

IDS 11 provides methods to identify performance bottlenecks. The SQL Query
Drill-Down feature enables you to collect different levels of trace information
about the SQL statements and displays the information in a format that is
understandable by the DBA. The Query Drill-Down feature helps answer the
following questions among others:

� How long do SQL statements take?
� How many resources are individual statements using?
� How long did statement execution take?
� How much time was involved waiting for each resource?

By default this feature is turned off, but you can turn it on for all users or for a
specific set of users. When this feature is enabled with its default configuration,
the database server tracks the last 1000 SQL statements that ran, along with the
profile statistics for those statements.

Be aware that the memory required by this feature is quite large if you plan to
keep historical information. The default amount of space required for SQL history
tracing is 2 MB. You can expand or reduce the amount of storage according to
your requirements or disable SQL history tracing.

The following information is an example of what the SQL trace output shows:

� The user ID of the user who ran the command

� The database session ID

� The name of the database

� The type of SQL statement

� The duration of the SQL statement execution

� The time this statement completed

� The text of the SQL statement or a function call list (also called stack trace)
with the statement type

� Statistics including:

– Number of buffer reads and writes
– Number of page reads and writes
– Number of sorts and disk sorts
– Number of lock requests and waits
– Number of logical log records
– Number of index buffer reads
– Estimated number of rows
– Optimizer estimated cost
– Number of rows returned

� Database isolation level
 Chapter 5. The administration free zone 181

In the following sections, we explain how to use this feature to enable tracing for
SQL statements and how to view and use the trace information with different
methods.

5.4.1 Enabling and disabling tracing

There are two ways to enable and configure SQL tracing. One way is to use the
SQLTRACE configuration variable in the $INFORMIXDIR/etc/$ONCONFIG file to
specify tracing at server startup time. Another way is to use the SQL
Administration API commands that were described in 5.2.2, “SQL Administration
APIs” on page 167, when the server is online.

The SQLTRACE onconfig variable
Use the SQLTRACE configuration parameter to enable and control the default
tracing behavior when the database server starts. The information that you set
includes the number of SQL statements to trace, tracing mode, trace level, and
trace size. This is useful when you want the tracing to be on at the same time that
the database server comes online.

Any user who can modify the $INFORMIXDIR/etc/$ONCONFIG file can modify
the value of the SQLTRACE configuration parameter and affect the startup
configuration.

The following syntax can be specified with SQLTRACE:

SQLTRACE [Level=off|low|med|high],[Ntraces=number of traces],[Size=size
of each trace buffer],[Mode=global|user]

SQLTRACE has the following range of parameters and values:

� Level

This parameter determines the amount of information traced:

– Off specifies no SQL tracing occurs and is the default.

– Low captures statement statistics, statement text, and statement iterators.

– Medium captures all of the information included in low-level tracing, plus
table names, the database name, and stored procedure stacks.

– High indicates that all of the information included in medium-level tracing
is captured, plus host variables.

� Ntraces

This parameter indicates the number of SQL statements to trace before
reusing the resources. The range is from 500 to 2147483647.
182 Customizing the Informix Dynamic Server for Your Environment

� Size

This parameter specifies the number of KBs for the size of the trace buffer. If
this buffer size is exceeded, the database server discards the saved data. The
range is 1 KB to 100 KB.

� Mode

This parameter specifies the type of tracing that is performed:

– Global is for all users on the system.

– User is for users who have tracing enabled by an Administration API task()
function. Specify this value if you want a sample of the SQL that a small
set of users are running.

The SQL Administration API
The SQL Administration API functions provide more flexibility in configuring the
SQL tracing parameters. If you do not want to set the SQLTRACE configuration
parameter to turn on the tracing at server startup time or you decide to make
changes to the initial settings, you can use the SQL Administration API functions.

The built-in SQL Administration API functions or task() and admin() from the
sysadmin database provide the same functionality as the configuration variable
SQLTRACE. However, setting or changing the tracing values by using the API
functions does not require you to restart the server. With tracing enabled or
disabled, using these API functions is effective only until the engine is restarted.
After the engine is restarted, the SQLTRACE setting from the configuration file is
used.

Do you know of a way to enable tracing when the database server starts without
using the SQLTRACE onconfig variable?

5.4.2 Global and user modes of tracing

There are two modes of tracing: global and user. In global mode, the tracing is
enabled for all sessions that are running on the system. In user mode, tracing is
enabled only for the users that you have asked the system to trace.

Tip: Use the Scheduler to enable tracing when the database server starts.
 Chapter 5. The administration free zone 183

Global tracing is useful in the following situations:

� When doing a quick comparative analysis on resource usage of all the
sessions that are running

� When you are unsure of which specific user or users to trace and you must
identify the sessions to trace

User-mode tracing is useful in the following situations:

� When you must narrow tracing to a specific set of users or just one user
� When you know which user or user sessions to trace

Because the tracing data is stored in memory buffers, setting the tracing only to
required sessions gives you more control of the tracing memory usage.

5.4.3 Examples of enabling and disabling tracing

In this section, we look at some scenarios where we must enable and disable the
different modes of SQL tracing.

Performance is more important in environments such as OLTP and Web, than in
environments such as DSS. If you see a performance problem in your
environment, use the SQL tracing feature to help narrow down the sessions or
users who are causing it.

When you notice a performance degradation, but are not sure what sessions to
trace, switch on the global mode of tracing. Monitor the sessions and SQL history
trace information to help identify the sessions that do not need tracing. You can
disable tracing at the session level by using the SQL Administration API
functions.

Example 5-24 specifies the database server to gather low-level trace information
for all sessions with default values. The server collects about 1000 KB of trace
information for 1000 SQL statements.

Example 5-24 Switching on low-level global tracing

SQLTRACE Level=low,Mode=global

Setting adjustment: Adjust the trace settings to make the trace buffers big
enough on systems where there are many users.
184 Customizing the Informix Dynamic Server for Your Environment

As shown in Example 5-25, you should see a line in the message log, when the
server starts indicating that the tracing is switched on.

Example 5-25 Message in the log file

SQLTRACE: SQL History Tracing set to 1000 SQL statements.

To enable low-level global tracing with default values when the server is online,
use the SQL Administration API shown in Example 5-26.

Example 5-26 SQL Administration API to switch on tracing with default values

dbaccess sysadmin -

Database selected.

> execute function task("set sql tracing on");

(expression) Global Tracing ON Number of Traces 1000 Trace Size 984
Mode Low

1 row(s) retrieved.

Example 5-27 specifies that the database server is to gather medium-level trace
information for all sessions. It specifies to trace 3000 SQL statements and to
collect 4 KB of trace data for each SQL statement. Medium-level tracing gathers
more information than low-level tracing.

Example 5-27 Switching on medium-level global tracing

SQLTRACE=medium,Ntraces=3000,Size=4,Mode=global

Example 5-28 shows how you can gather the same information by using the SQL
Administration API function of task().

Example 5-28 Switching on sql trace by using task()

dbaccess sysadmin -

Database selected.

> execute function task("set sql tracing on", "3000", 4 , "med",
"global");
 Chapter 5. The administration free zone 185

(expression) Global Tracing ON Number of Traces 3000 Trace Size 4056
Mode Med

1 row(s) retrieved.

After monitoring the system for a while, it is possible to determine which sessions
do not need tracing. Suppose that you decide that you want to disable tracing for
a particular session, for example session 20. Use the SQL Administration API
shown in Example 5-29 to disable tracing.

Example 5-29 Disabling tracing for session 20

database sysadmin -

Database selected.

> execute function task("set sql user tracing off", 20);

(expression) SQL user tracing off for sid(20)

After enabling global tracing, you might decide that the informix user sessions
are acceptable. To disable tracing for all sessions of user informix, use the SQL
shown in Example 5-30.

Example 5-30 Switching off tracing by using task()

database sysadmin;
select task(“set sql user tracing off”, session_id)
FROM sysmaster:syssessions
WHERE username not in (“informix”);

When you know which user sessions must be traced, switch on the user mode of
tracing. You can monitor the sessions by a specific user or set of users to help
identify the sessions that are causing a performance bottleneck.

Example 5-31 shows how to enable user-mode tracing when the database server
starts. The actual tracing does not start until an SQL Administration API is
executed to indicate which user sessions to trace.

Example 5-31 Switching on low-level user tracing

SQLTRACE=high,Ntraces=2000,Size=2,Mode=User
186 Customizing the Informix Dynamic Server for Your Environment

To enable the user-mode tracing after the server comes online, use the SQL
shown in Example 5-32.

Example 5-32 Enabling user-mode tracing by using task()

dbaccess sysadmin -

Database selected.

> execute function task("set sql tracing on",2000,2, "high", "user");

When user-mode tracing is enabled by the SQLTRACE onconfig parameter, use
the task() or admin() function to start the tracing. For example, the SQL in
Example 5-33 starts tracing for all user sessions of users usr1 and usr2.

Example 5-33 Starting tracing for usr1 and usr2

select task("set sql user tracing on", session_id)
FROM sysmaster:syssessions
WHERE username in ("usr1", “usr2”);

The tracing is switched on for all user sessions of usr1 and usr2 by using the
tracing values specified in the SQLTRACE onconfig parameter.

To start tracing a particular session, when the user-mode tracing is enabled, use
the SQL shown in Example 5-34.

Example 5-34 Starting tracing session 31

database sysadmin;
execute function task(“set sql user tracing on”, 31);

5.4.4 Displaying and analyzing trace information

In this section, we discuss methods of displaying and analyzing trace
information.

The onstat command
The onstat option -g his is available to retrieve the SQL history tracing
information. The output of the onstat -g his command contains trace
information for a few SQL statements and prints the output as a single trace.

The onstat -g his command shows the host variable values for a statement if
the tracing has captured them and those same values cannot be found in the
 Chapter 5. The administration free zone 187

sysmaster tables. If you must see the host variable values for a statement, the
only way you can see them is to use onstat.

Example 5-35 shows the output of the onstat -g his command. It has been
truncated to show the trace information for one SQL statement.

Example 5-35 Output of the onstat -g his command

IBM Informix Dynamic Server Version 11.10.FC1 -- On-Line -- Up 00:07:20 -- 57344
Kbytes

Statement history:

Trace Level Low
Trace Mode Global
Number of traces 1000
Current Stmt ID 332
Trace Buffer size 984
Duration of buffer 413 Seconds
Trace Flags 0x00001611
Control Block 10bbb4028

Statement # 332: @ 10bbc2488

 Database: 0x1000B2
 Statement text:

SELECT FIRST 1 {+first_rows} tk_id, (tk_next_execution -
 CURRENT)::INTERVAL SECOND(9) TO SECOND::char(20)::integer as tm_rem FROM
 ph_task WHERE tk_id NOT IN (?,?,?,?,?,?,?,?,?,?) AND
 tk_next_execution IS NOT NULL AND tk_enable ORDER BY tk_next_execution,
 tk_priority

 Iterator/Explain
 ================
 ID Left Right Est Cost Est Rows Num Rows Type
 2 0 0 8 1 16 Seq Scan
 1 2 0 1 1 1 Sort

 Statement information:
 Sess_id User_id Stmt Type Finish Time Run Time
 19 200 SELECT 16:14:06 0.0028

 Statement Statistics:
 Page Buffer Read Buffer Page Buffer Write
 Read Read % Cache IDX Read Write Write % Cache
 0 45 100.00 0 0 0 0.00
188 Customizing the Informix Dynamic Server for Your Environment

 Lock Lock LK Wait Log Num Disk Memory
 Requests Waits Time (S) Space Sorts Sorts Sorts
 0 0 0.0000 0.000 B 0 0 0

 Total Total Avg Max Avg I/O Wait Avg Rows
 Executions Time (S) Time (S) Time (S) IO Wait Time (S) Per Sec
 35 0.3202 0.0091 0.0088 0.000000 0.000000 363.1610

 Estimated Estimated Actual SQL ISAM Isolation SQL
 Cost Rows Rows Error Error Level Memory
 8 1 1 0 0 DR 27824

As you can see in Example 5-35, the onstat -g his output shows the following
information:

� Trace settings information

– This information includes the trace level, trace mode, size of the buffer,
number of statements to trace, trace flags and control block. Some of
these are dynamically configurable using the SQL Administration API
functions.

– From the output shown in Example 5-35, you can see that it is a low-level
global trace for 1000 SQL statements. The buffer size is shown as 984
bytes, which is almost equal to 1 KB.

� Statement information

– This information shows the statement text, the database name, iterator,
and explain information for the statement. From this information, it is
possible to determine the type of query, the user ID, session ID, the
estimated number of rows, and the type of scans done on the tables.

– The database name shows up correctly only for medium and high levels of
tracing.

� Statement statistics

– This information is most important because it is required for
troubleshooting performance problems. It shows the time spent in page
reads, buffer reads, lock waits, and I/O waits.

– From the output in Example 5-35, you can see that there are zero page
reads and 45 buffer reads. Therefore, the percentage read from the cache
is 100%.

All of this information is stored in a buffer that is allocated in memory. Because
the buffer size is configurable, use care when setting it. Setting the buffer size too
 Chapter 5. The administration free zone 189

large takes up too much memory unnecessarily. Setting the buffer size too small
truncates the trace information.

The sysmaster database
The SQL history trace information is stored in the following in-memory pseudo
tables that are part of the sysmaster database.

� The syssqltrace table stores information related to statement statistics.

� The syssqltrace_info table contains information about the trace settings.

� The syssqltrace_iter table contains information about the iterators and the
explain output.

You can query these tables to get trace information related to a specific SQL
statement or SQL statements related to a specific user or session.

Suppose that you want to retrieve the SQL trace information for a particular
session, for example 19, to see the SQL statements executed by that session
and their statistics. Use the query in Example 5-36 to see the trace information
for session 19.

Example 5-36 SQL trace information for a session

database sysmaster;
select * from syssqltrace where sql_sid=19;

Example 5-37 shows the output for this query. The output has been truncated to
show just one row of data. If many SQLs are executed in that session, the output
is long, so that you can unload the output to a file and analyze it later.

Example 5-37 Output of the SQL trace information for a session

sql_id 669
sql_address 4491906104
sql_sid 19
sql_uid 200
sql_stmttype 2
sql_stmtname SELECT
sql_finishtime 1192573934
sql_begintxtime 1192568820
sql_runtime 0.0025896
sql_pgreads 0
sql_bfreads 45
sql_rdcache 100.0000000000
sql_bfidxreads 0
sql_pgwrites 0
190 Customizing the Informix Dynamic Server for Your Environment

sql_bfwrites 0
sql_wrcache 0.00
sql_lockreq 0
sql_lockwaits 0
sql_lockwttime 0.00
sql_logspace 0
sql_sorttotal 0
sql_sortdisk 0
sql_sortmem 0
sql_executions 168
sql_totaltime 1.508025200000
sql_avgtime 0.008976340476
sql_maxtime 0.0079508
sql_numiowaits 0
sql_avgiowaits 0.00
sql_totaliowaits 0.00
sql_rowspersec 386.1600247142
sql_estcost 9
sql_estrows 1
sql_actualrows 1
sql_sqlerror 0
sql_isamerror 0
sql_isollevel 1
sql_sqlmemory 27824
sql_numiterators 2
sql_database <None>
sql_numtables 0
sql_tablelist None
sql_statement SELECT FIRST 1 {+first_rows} tk_id,
(tk_next_execution - C
 URRENT)::INTERVAL SECOND(9) TO
SECOND::char(20)::integer as t
 m_rem FROM ph_task WHERE tk_id NOT IN (
?,?,?,?,?,?,?,?,?,?
) AND tk_next_execution IS NOT NULL AND tk_enable
ORDER
 BY tk_next_execution, tk_priority
 Chapter 5. The administration free zone 191

You might want to compare the execution of the same statement at different
times to see if there is a performance degradation. To retrieve the trace
information of a particular statement, use the query in Example 5-38.

Example 5-38 SQL trace information for a particular statement

database sysmaster;
select * from syssqltrace a , syssqltrace_iter b where a.sql_id =
b.sql_id and a.sql_id=329;

You can unload the output to a file if this query has been executed a number of
times.

To see a complete description of these tables, refer Chapter 8 of the Redbooks
publication Informix Dynamic Server 11: Advanced Functionality for Modern
Business, SG24-7465.

5.5 The Open Admin Tool for administration

A Web-based GUI application called the Open Administration Tool is available to
administer the IDS. It is open source and can be downloaded from the IBM
Informix Free Product Download page at the following address:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&so
urce=swg-informixfpd

OAT uses SQL-based administration in IDS 11 to do most of the administrative
tasks. For the same reason, this tool works only with IDS 11. You can use one
installation to administer multiple instances of IDS 11 that are local or remote to
your machine. Because the OAT is developed by using PHP, it can be customized
easily by adding new functions.

You can find instructions to install and configure the OAT in Chapter 2,
“Optimizing IDS for your environment” on page 15. In this section, we focus on
the different functionality of OAT.
192 Customizing the Informix Dynamic Server for Your Environment

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-informixfpd

After you log into your database server by using the login page, you can
administer and manage it by using the OAT interface. Figure 5-1 shows the Menu
and Map view, with the Menu on the left side.

Figure 5-1 OAT Menu and Map view

Home is the first item in Menu. By clicking Home, you see the Map view on the
right side of the page.
 Chapter 5. The administration free zone 193

Logs is the next item in Menu and it contains three subitems:

� Show Command shows the administrative commands that were executed in
the sysadmin database by using the task() or admin() function. The
commands are displayed in the order of execution with the most recent ones
appearing first as shown in Figure 5-2.

Figure 5-2 Show Command page

� Online Log displays the database server message log. The MSGPATH
configuration parameter specifies the full path name of the database server
message log. You should specify a path to an existing directory with an
appropriate amount of space available. If you specify a file name only in the
MSGPATH configuration parameter, the server creates the message log in the
working directory in which you started the database server. For example, if
you started the server from /usr/mydata on UNIX, the message log is written
to that directory. This is the log hat the server uses to write all messages,
errors, and warnings.
194 Customizing the Informix Dynamic Server for Your Environment

When you view the Online Log in OAT, errors, warnings and informational
messages are displayed in different colors so that you can easily notice them.
Figure 5-3 shows how this log is displayed in OAT.

Figure 5-3 Online Log page

� Onbar Activity Log displays the ON-Bar activity log file. The BAR_ACT_LOG
configuration parameter specifies the full path name of the ON-Bar activity
log. You should specify a path to an existing directory with an appropriate
amount of space available or use $INFORMIXDIR/bar_act.log. Whenever a
backup or restore activity or error occurs, ON-Bar writes a brief description to
the activity log. The format of the file resembles the format of the database
server message log.

You can examine the activity log to determine the results of ON-Bar actions. If
you specify a file name only in the BAR_ACT_LOG parameter, ON-Bar
creates the ON-Bar activity log in the working directory in which you started
ON-Bar. For example, if you started ON-Bar from /usr/mydata on UNIX, the
activity log is written to that directory.
 Chapter 5. The administration free zone 195

The next item in the menu is the Health Center, which can be used to view the
scheduled tasks and sensors in the DB Scheduler and their details, such as run
times and return codes. You can also view the user-defined and system-defined
alerts.

Health Center has the following subitems:

� Show Alerts shows the user-defined and system-defined alerts in the
database server. This is basically the ph_alert table in the sysadmin
database. Figure 5-4 shows the Alert List. The second alert in Figure 5-4
indicates that error 201 was returned when the server tried to execute the
UpdateStat_mydb task. The third alert in Figure 5-4 indicates that dbspace
rootdbs has not had a level 0 backup for 5 days, 4 hours, 51 minutes, and 7
seconds.

The alerts can be errors, warnings, or informational messages and can be in
different states, such as new, addressed, or ignored. They can also appear in
different colors depending on the alert_color field in the ph_alert table.

Figure 5-4 Show Alerts page in Health Center

For more information about the alert colors, refer to Table 5-4 on page 197.
You can selectively view the alerts depending on their Severity (color), Error
Type, or State.

Alert List

ID Type Message Time Recommendation Alert
State

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

7481

7472

7272

7275

7273

7276

7274

TASK NAME mon_user_count_t LOCATION ERROR – 206
The specified table (mon_user_count_t is not in the
database. ERROR – 111 ISAM error: no record found.

2007-10-30
10:39:06

NEW
Re-Check

Ignore

NEW
Re-Check

Ignore

NEW
Re-Check

Ignore

NEW
Re-Check

Ignore

NEW
Re-Check

Ignore

NEW
Re-Check

Ignore

TASK NAME UpdateStat_mydb LOCATION ERROR – 201 a
A syntax error has ocurred.

2007-10-30
09:57:16

2007-10-29
17:41:02

2007-10-29
17:41:02

Dbspace [dbs2] has not had a backup for 13816

Immediately.
04:51:07. Recommend taking a level 0 backup

Dbspace [rootdbs] has not had a level 0 backup for 5

01:41:02. Recommend taking a backup immediately.

Immediately.
04:51:07. Recommend taking a level 0 backup

Dbspace [DBS1] has not had a level 0 backup for 5

Immediately.
04:51:07. Recommend taking a level 0 backup

Dbspace [DBS3 has not had a level 0 backup for 5

Dbspace [DBS2 has never had a level 0 backup.

2007-10-29
17:41:02

2007-10-29
17:41:02

2007-10-29
NEW

Re-Check
196 Customizing the Informix Dynamic Server for Your Environment

Table 5-4 Alert color definitions

� Task List shows the different tasks and sensors that are created in the
Scheduler. This page shows the name, group, description, time of next
execution, and frequency of execution of each task in the ph_task table of the
sysadmin database. You can view this page to monitor the tasks that are
created in the database and to know the names of the existing tasks when
you are ready to create a new one.

On the Task List page shown in Figure 5-5 on page 197, you can see such
predefined tasks as mon_config_startup and mon_sysenv as discussed in
5.1, “IDS administration” on page 162. You can view all the tasks or
selectively view the tasks by using the Group to View drop-down list, which is
also shown in Figure 5-5.

Figure 5-5 Task List page

Type Green Yellow Red

Informative Indicates a component
operation status

Indicates a component
operation status

Requires action.

Warning From the database that was
automatically addressed

A future event that needs
to be addressed

A predicted failure is imminent.
Action is necessary now.

Error A failure in a component
corrected itself

A failure in a component
corrected itself but might
need DBA action

A failure in a component
requires DBA action.
 Chapter 5. The administration free zone 197

� Run Times shows the tasks that are executed in the system and their name,
the number of times each task was executed, and the total time and average
time of execution. This information is taken from the ph_run table in the
sysadmin database.

You might want to look here to see when and if your scheduled tasks were
executed. For example, the first line in Figure 5-6 shows that the Checkpoints
task was executed 13 times, the average time of execution of this task is 4.12
seconds, and the total time of execution is 53.61 seconds. You can view all of
them or selectively view them by using the Group to View drop-down list.
Figure 5-6 shows all the executed tasks.

Figure 5-6 Run Times page

� Scheduler shows part of the information from the ph_task table about
scheduled tasks, such as start time, stop time, and frequency.
198 Customizing the Informix Dynamic Server for Your Environment

OAT also shows the Space details of the database server, which includes the
following subitems:

� DBspaces shows the details of all the dbspaces, temp spaces, blobspaces,
and sbspaces that are created. It also provides an interface to add these
spaces to the server.

In Example 5-1 on page 167, we show how a dbspace named dbs2 can be
added by using the SQL Administration API task() function. Figure 5-7 shows
how you can do the same by using the OAT interface.

Figure 5-7 Dbspaces page

By clicking the Name column, you see detailed information about each
dbspace.
 Chapter 5. The administration free zone 199

Example 5-7 on page 169 explains how you can add a chunk to dbspace
dbs1 by using the admin() function. To do the same task by using the OAT
interface, click dbs1 and select the Admin tab. Now you have the interface to
add a chunk to dbs1. Refer Figure 5-8 to see the OAT interface for adding a
chunk.

Figure 5-8 Adding a chunk

� Chunk shows details about all the chunks in each dbspace, such as size,
page size, offset, free space, and used space. It also shows the reads and
writes in each of the chunks.
200 Customizing the Informix Dynamic Server for Your Environment

� For Reserved Space, the first two tabs at the top of the page can be used to
view the logical log details and the physical log details. The next tab, Admin,
provides a GUI to perform a checkpoint to add and drop logical logs, and to
move the physical log.

Example 5-9 on page 170, Example 5-10 on page 170, and Figure 5-11 on
page 171 show SQL Administration API functions that can be used to move a
physical log and to add and drop logical logs. Figure 5-9 shows the OAT
interface to do these administrative tasks on the system Reserved Space.

Figure 5-9 Admin tab on the Reserved Space page

The Performance menu item has the following subitems:

� Checkpoints shows detailed information about checkpoints, such as the
checkpoint interval, the type, Log Sequence Number (LSN) at the time of
checkpoint, what triggered the checkpoint, the flush time, and the block time.
This is basically the output from onstat -g ckp command. The same
information can also be obtained from syscheckpoint. This information can be
analyzed by the DBAs to use in checkpoint tuning. For example, if a small
physical log caused a blocking checkpoint, you can see from this output that
transactions are blocked because of a small physical log and then decide to
increase the physical log size.
 Chapter 5. The administration free zone 201

� SQL Trace shows an SQL Statement Summary report (Figure 5-10) that
contains a summary of the different types of SQL statements that are
executed on the system. We discussed how to enable and disable tracing for
SQL statements and how to view the trace information in 5.4, “Monitoring and
analyzing SQL statements” on page 180. The OAT provides an interface to
view detailed trace information for SQL statements.

Figure 5-10 SQL Statement Summary page from SQL Trace

Usually the queries executed on a system are monitored to see if they take
longer than expected. If they do, they are analyzed further to see if they are
performing sequential scans, and then decisions are made regarding whether
to create indexes on the tables involved. By using the OAT SQL Trace
interface, you can monitor a particular type of query or all queries.
202 Customizing the Informix Dynamic Server for Your Environment

For example, to monitor the SELECT statements that are taking the longest
time, you must determine if more indexes are needed on the table that is
involved. From the SQL Statement Summary page, you can click the SELECT
statement and drill down further to see a list of those types of statements
executed on the system, along with details such as response time, I/O wait
time, and lock wait time. By clicking the Drill Down button, you can see more
information and statistics about each statement. You can sort the SELECT
queries on the Average Run Time, as shown in Figure 5-11, to see a list of
SELECT statements with the slowest ones on top.

Figure 5-11 SQL Drill Down
 Chapter 5. The administration free zone 203

If you follow the Drill Down button for that statement, the final page is shown
as in Figure 5-12. You can see details such as the tables involved, the rows
processed, and the types of scans to help you to determine whether more
indexes must be created on the tables involved.

Figure 5-12 Query Drill Down
204 Customizing the Informix Dynamic Server for Your Environment

The SQL Tracing Admin tab (Figure 5-13) is the interface to enable and
disable global and user mode of SQL tracing. It also shows the current tracing
information.

Figure 5-13 SQL Tracing Admin page from SQL Trace

� System Reports helps you take reports on the following items:

– Disk space usage
– Online log
– Logical logs
– System backups
– Server memory usage
– Table actions
– Session list
– SQL Statement Summary
– SQL with most I/O time
– Virtual processors
– Disk I/O levels
– Server admin commands
– Physical logs
– Memory pools
– Network overview
– Server configuration
– View SQL caches
– Slowest five SQL statements
– SQL with most buffer activity
– Databases
 Chapter 5. The administration free zone 205

Some of these reports, such as SQL with most I/O time and the slowest five
SQL statements, are useful in troubleshooting performance problems.
Meanwhile, others can be used to evaluate the disk space needed and
general system monitoring.

� Session Explorer shows a list of active sessions and their details.

SQL Tool Box is a powerful menu in OAT and contains the following subitems:

� Databases shows a list of databases (Figure 5-14). When each database is
clicked, the tables and SPLs created in them are displayed. The tables can be
further examined to see the column details and the data.

Figure 5-14 Databases
206 Customizing the Informix Dynamic Server for Your Environment

� Schema Browser shows the same view as when you click each database. It
shows the tables and their details (Figure 5-15). You can also browse the
tables by using the Browse button to see the different rows in it.

Figure 5-15 Schema Browser

� SQL shows the SQL Query Editor like the example in Figure 5-16. You can
write an SQL statement or import from a file and execute it against any of the
databases in the server.

Figure 5-16 SQL Query Editor
 Chapter 5. The administration free zone 207

The OAT also provides Really Simple Syndication (RSS) feeds, which facilitates
automatic checking possible through an RSS reader. The RSS menu item shows
the RSS feeds that are available. RSS feeds are available for chunks, databases,
dbspaces, environment variables, logical logs, onconfig, online log, physical log,
sessions, SQL statements, and virtual processors.

The Dashboard menu item shows a graphical view of the memory, space, locks,
and transactions in the server.

Mach11 shows the Mach11 cluster topology. It is explained in more detail in
Chapter 3, “Enterprise data availability” on page 75.

5.6 The Database Admin System

The Database Admin System is a framework that can simplify many tasks for
DBAs, application developers and end users. In addition, these tasks can be
easily integrated into a graphical admin system, such as, the OAT for IDS.

In this section, we examine how a DBA can take advantage of the different
components of the Database Admin System to solve a real life problem. The
problem the we explore is to how to remove users who have been idle for more
than a specified length of time, but only during work hours. Prior to the database
admin system, a DBA used several different operating system tools, such as
shell scripting and cron. In addition, if this is a pre-packaged system, these new
scripts and cron entries must be integrated into an installed script. In addition,
this must be portable across all supported platforms.

If you are to use the Database Admin System, you only have to add a few lines to
your schema file and you are done. Since this is only SQL, it has the advantage
of being portable across different flavors of UNIX and Windows.

We use the following components:

� Database Scheduler
� Alert System
� User Configurable Thresholds
� SQL Administration API

We break the problem into the following separate parts:

1. Creating a tunable threshold for the idle time out
2. Developing a stored procedure to terminate the idle users
3. Scheduling this procedure to run at regular intervals
208 Customizing the Informix Dynamic Server for Your Environment

Lastly we view pages that show the completed work in the OAT for IDS. These
pages graphically shows all the tasks in the system and allow users to drill down
and see the scheduling details and parameters of a specific task.

5.6.1 Creating an idle timeout threshold

To create a threshold that can be easily changed, we insert a row into the
ph_threshold table in the sysadmin database. This table stores all the threshold
or configuration values that are used by the scheduler. When creating a
threshold, we must supply the information provided in Table 5-5.

Table 5-5 Columns in the ph_threshld table

We insert a new parameter into the ph_threshold table that can be updated to
reflect the current idle timeout period, saving the work of re-writing the stored
procedure if conditions change as shown in Example 5-39. We then allow the
OAT to display this as a configurable item for the task.

Example 5-39 Insert statement for our threshold value

INSERT INTO ph_threshold
 (name,task_name,value,value_type,description)
 VALUES
 ("IDLE TIMEOUT", "Idle Timeout","60","NUMERIC",
 "Maximum amount of time in minutes for non-informix users to be
idle.");

Column Description

name The parameter name

task_name The name of the task in the ph_task table associated with this threshold

value The value associated with the parameter

value_type The data type of this parameter (STRING or NUMERIC)

description A description of what this threshold does
 Chapter 5. The administration free zone 209

5.6.2 Developing a stored procedure to terminate idle users

When creating a stored procedure to be called by the scheduler, it can optionally
take in two parameters that inform the procedure of when it was invoked and the
procedure’s unique task ID as shown in Example 5-40. This is often useful when
passing information to other parts of the Database Admin System, such as, the
Alert System.

Example 5-40 Passing two parameters to the stored procedure

CREATE FUNCTION idle_timeout(task_id INT, task_seq INT) ;

Next we retrieve the thresholds from the ph_threshold table. We do this by using
a simple select and casting the result into our desired data type (an integer). See
Example 5-41.

Example 5-41 Select statement to retrieve the threshold from ph_threshold table

SELECT value::integer
 INTO time_allowed
 FROM ph_threshold
 WHERE name = "IDLE TIMEOUT"

The main part of our stored procedure is the SELECT statement (Example 5-42
on page 210) to find all users who have been idle for more than a specified
number of minutes. From the systcblst table, we select the last time a thread has
executed on a virtual processor. If this time is longer than our predetermined idle
threshold and this thread is an sqlexec thread (that is, not a system thread), then
we pass the session ID (sid) to the SQL Administration API function admin(). The
admin() function has been set up to call onmode -z to terminate a session.

Example 5-42 Main SELECT statement

SELECT admin("onmode","z",A.sid), A.username, A.sid, hostname INTO rc,
sys_username, sys_sid, sys_hostname
FROM
sysmaster:sysrstcb A , sysmaster:systcblst B, sysmaster:sysscblst C
WHERE
A.tid = B.tid AND C.sid = A.sid AND lower(name) in ("sqlexec") AND
CURRENT - DBINFO("utc_to_datetime",last_run_time) > time_allowed UNITS
MINUTE AND lower(A.username) NOT IN("informix", "root")
210 Customizing the Informix Dynamic Server for Your Environment

The last part of the stored procedure checks the return code of the admin()
procedure to see if the session successfully terminated. If the session terminated
successfully, then an alert is inserted, logging the termination of an idle user as
shown in Example 5-43. The optional arguments to the stored procedures that
are used to uniquely identify the task and the task sequence are required by the
alert system. This allows the alert system to know who generated this alert and
when this alert was generated. Several other items are required by the alert
system, such as the alert_type (ERROR, WARNING, INFO) or the alert_color
(ERROR, WARNING, INFO), and a message indicating what has happened.

Example 5-43 INSERT statement to add an alert to ph_alert table

INSERT INTO ph_alert(ID, alert_task_id,alert_task_seq, alert_type,
alert_color, alert_state, alert_object_type,
alert_object_name,alert_message, alert_action) VALUES
(0,
task_id,
task_seq,
"INFO",
"GREEN",
"ADDRESSED",
"USER",
"TIMEOUT",
“User "||TRIM(sys_username)||"@"||TRIM(sys_hostname)||
" sid("||sys_sid||")"||
“terminated due to idle timeout.",
NULL
);
 Chapter 5. The administration free zone 211

After an alert is created, the OAT for IDS shows it under the Health Center menu
option of Show Alerts. If you do not see this alert at first, make sure that you have
selected the ADDRESSED check box. This problem is automatically managed by
the stored procedure. Therefore, the alert is already addressed. The second line
in Figure 5-17 shows this alert.

Figure 5-17 Show Alerts page showing that session 689 has been terminated

Complete stored procedure
Example 5-44 shows the complete stored procedure for the scenario that we
defined.

Example 5-44 Complete stored procedure

/*
 **
 * Create a function which will find all users that have
 * been idle for the specified time. Call the SQL admin API to
 * terminate those users. Create an alert so we can track which
 * users have been terminated.
 **
 */
CREATE FUNCTION idle_timeout(task_id INT, task_seq INT)
RETURNING INTEGER

ID Type Message Time Recommendation Alert State

WARNING

INFO

WARNING

WARNING

WARNING

6337

6336

6294

6097

6098

TASK NAME mon_user_count_t LOCATION ERROR – 206
The specified table (mon_user_count_t is not in the
database. ERROR – 111 ISAM error: no record found.

2007-10-26
13:24:06

NEW
Re-Check

Ignore

ADDRESSED
Re-Check

Ignore

NEW
Re-Check

Ignore

Re-Check

Ignore

NEW
Re-Check

Ignore

User suma@yogi sid(689) terminated due to idle
timeout.

2007-10-26
13:19:29

2007-10-26
09:57:16

2007-10-25
17:41:02

Dbspace [dbs2] has never had a level 0 backup.

TASK NAME UpdateStat_mydb LOCATION ERROR -201
A syntax error has occurred.

Recommend taking a backup immediately.

Immediately.
01:41:02. Recommend taking a backup

Dbspace [DBS2] has not had a backup for 13812
2007-10-25
17:41:02

Alert List

NEW
212 Customizing the Informix Dynamic Server for Your Environment

DEFINE time_allowed INTEGER;
DEFINE sys_hostname CHAR(16);
DEFINE sys_username CHAR(257);
DEFINE sys_sid INTEGER;
DEFINE rc INTEGER;

 {*** Get the maximum amount of time to be idle ***}
 SELECT value::integer

 INTO time_allowed
 FROM ph_threshold

 WHERE name = "IDLE TIMEOUT";

 {*** Find all users who are idle longer than the threshold ***}
 FOREACH SELECT admin("onmode","z",A.sid), A.username, A.sid,
hostname
 INTO rc, sys_username, sys_sid, sys_hostname
 FROM sysmaster:sysrstcb A , sysmaster:systcblst B,
 sysmaster:sysscblst C
 WHERE A.tid = B.tid
 AND C.sid = A.sid
 AND lower(name) in ("sqlexec")
 AND CURRENT - DBINFO("utc_to_datetime",last_run_time) >
time_allowed UNITS MINUTE
 AND lower(A.username) NOT IN("informix", "root")

 {*** If we sucessfully terminated a user log ***}
 {*** the information into the alert table ***}
 IF rc > 0 THEN
 INSERT INTO ph_alert
 (
 ID, alert_task_id,alert_task_seq,
 alert_type, alert_color,
 alert_state,
 alert_object_type, alert_object_name,
 alert_message,
 alert_action
) VALUES (
 0,task_id, task_seq,
 "INFO", "GREEN",
 "ADDRESSED",
 "USER","TIMEOUT",

 "User "||TRIM(sys_username)||"@"||TRIM(sys_hostname)||
 " sid("||sys_sid||")"||

 " terminated due to idle timeout.",
 NULL
 Chapter 5. The administration free zone 213

);
 END IF
 END FOREACH;
 RETURN 0;
END FUNCTION;

5.6.3 Scheduling a procedure to run at regular intervals

The last part is to schedule the idle_timeout stored procedure that was previously
created to run at regular intervals. This is accomplished by inserting a row into
the ph_task table in the sysadmin database (see Table 5-6).

Table 5-6 Relevant columns in ph_task table

Column Description

tk_name The name of the task. Must be a unique name.

tk_type The type of task (TASK, SENSOR, STARTUP TASK, and STARTUP
SENSOR).

tk_group The name of the group to associate the task with, for organization
purposes. See the tk_group table for more details.

tk_description A comment to describe what this task is doing.

tk_execute A function name of the SQL statement to execute.

tk_start_time Time of day to start executing this task.

tk_stop_time Time of day to stop executing this task.

tk_frequency Time of day to stop executing this task.
214 Customizing the Informix Dynamic Server for Your Environment

While many scheduling options are available, we keep it simple. In
Example 5-45, the idle_timeout procedure is set to run every day between the
hours of 6 a.m. and 6 p.m. at 10 minute intervals. While most of the insert
statements look straightforward, the one key point to highlight is that the
tk_execute column is receiving the name of the stored procedure to run.

Example 5-45 Task to schedule the idle_timeout

INSERT INTO ph_task
(
tk_name,
tk_type,
tk_group,
tk_description,
tk_execute,
tk_start_time,
tk_stop_time,
tk_frequency
)
VALUES
(
"Idle Timeout",
"TASK",
"USER",
"Remove all idle users from the system.",
"idle_timeout",
DATETIME(06:00:00) HOUR TO SECOND,
DATETIME(18:00:00) HOUR TO SECOND,
INTERVAL (10) MINUTE TO MINUTE
);
 Chapter 5. The administration free zone 215

5.6.4 Viewing the task in the Open Admin Tool

After these three components are built, you can see how the OAT for IDS shows
the tasks. Looking at the current overview of the task in Figure 5-18, the task that
was added, Idle Timeout, is displayed in the overview.

Figure 5-18 Idle_Timeout task on the Task List page
216 Customizing the Informix Dynamic Server for Your Environment

Drilling down into the details of the Idle Timeout task, you see a complete list of
scheduling details along with any associated parameters. Figure 5-19 shows the
details of this task. In this example, we have one parameter called IDLE
TIMEOUT.

Figure 5-19 Details of task Idle_Timeout
 Chapter 5. The administration free zone 217

218 Customizing the Informix Dynamic Server for Your Environment

Chapter 6. An extensible architecture
for robust solutions

In this chapter, we begin to change the subject matter, by moving from topics
about the installation and configuration of the data server to the customization of
its functional capabilities. The dimension of customization forms the boundary for
the topics that are presented in the remainder of this book.

By extending the data server with new data types, functions, and
application-specific structures, developers build solutions that have the following
characteristics:

� Take advantage of data models that closely match the problem domain
� Depart from strict relational normalization to achieve better performance
� Implement powerful business logic in the data tier of the software stack
� Handle new types of information

We call these solutions robust because the elegance and economy of their
architecture gives them higher performance, maintainability, responsiveness, and
flexibility in the face of changes in environment, assumptions, and requirements.
Here, we introduce object-relational extensibility, which is the concept that
makes it all possible. We also show how the Informix Dynamic Server (IDS) has
taken this key ingredient farther than any other data server, putting the full power
of customization in the hands of developers and users, to enable customization
of IDS for your environment.

6

© Copyright IBM Corp. 2008. All rights reserved. 219

6.1 DataBlades: Components by any other name

The basis for functional customization in IDS is the ability to add components,
which are packages that contain data types, functions, index methods, and
anything else that enhances or expands the functional capabilities.
Component-based software is ubiquitous, from Web browsers, such as Firefox,
and office productivity tools, such as Excel, to development platforms, such as
Eclipse.

While relational database management systems (RDBMS) have long allowed for
scripting through stored procedures, they are mostly large, closed, monolithic
programs with no facility for adding new capabilities. IDS has the well-crafted
architecture, tools, and interfaces to make it an effective container for
components big and small, allowing it to respond to any data management
challenge. Instead of the plugins, add-ons, and add-ins of other software, for IDS
we use the term DataBlade or, more generically, extension. However, they are
basically other words for the same idea of software components.

6.1.1 Object-relational extensibility

The basis for these data server components is object-relational extensibility,
which entails combining the power of object-oriented programming with the
proven data management advantages of the relational model. In application
programming languages, such as Java, there are facilities for creating classes
and objects with inheritance, encapsulation, function polymorphism, and other
concepts that together support object-oriented programming. This is a style that,
when used skillfully, results in maintainable, flexible, and reusable code.

A problem arises when such code must connect to a database. That is, the
relational model forces us to map the problem structure to a schema consisting
of tables with visible columns whose types come from a limited set of
fundamental alphanumeric types, whose connections are encoded with primary
and foreign keys, and whose general structure is a poor match with the
object-oriented picture.

To address this impedance mismatch, in the late 1990s, several enhancements
were made to SQL to make it possible to build a schema from elements that
more closely match the object class structure of the application. Row types,
collection types, user-defined routines (UDRs), typed tables, and table
inheritance are some of these enhancements. They enhanced the expressive
power of SQL and brought some benefits of object-oriented design to databases.
However, it is useful to remember that IDS is still much a relational database and
that SQL is still SQL. Therefore, the object-relational capabilities tend to have
more to do with relational capabilities and less with object-orientated capabilities.
220 Customizing the Informix Dynamic Server for Your Environment

More significant, however, is that IDS went further along this general trend and
came up with such features as opaque types, virtual table and index interfaces,
and user-defined aggregates. It also came up with a well-documented, powerful
DataBlade API to support the development of high-performance user-defined
types (UDTs) and UDRs implemented in C. While these capabilities may or may
not look like object orientation, they are critical enablers of extensibility.
Extensibility is the key ingredient that makes IDS the right data foundation for
such a wide variety of applications.

In this book, the emphasis is on these programming-based extensibility features
rather than the more widely supported object-oriented enhancements to SQL.
They make entirely new classes of applications possible and allow the data
server to perform its central role in the solution architecture by hosting its share
of application logic.

In the following sections, we explore, at a high level, this power of extensibility
and show how it supports a more robust software solution architecture. The
chapters that follow give real examples in greater detail.

6.2 Data types that match the problem domain

One of the great advantages of object-oriented programming is that the problem
can be modeled in code that describes what it is about in terms of the application
domain and hides the details of the implementation. The details of the
implementation can even change without affecting anything that calls or uses it.
To develop in this way, among other things, you need a language that lets you
define new classes of objects. IDS supports SQL statements that let you do just
that with UDTs in a few different ways. These are the model building blocks.
 Chapter 6. An extensible architecture for robust solutions 221

6.2.1 Coordinates

To illustrate coordinates, consider an example from the world of geographic or
spatial data. In many situations, we want to manage data that represents
locations in the real world. The most common way to represent a location is by a
set of coordinates. Coordinates are numeric values that give you the distance
from some reference origin in each of two or three dimensions. To keep it simple,
assume that we are dealing with two dimensions in space, as you do when you
use a paper map. In that case, a point location is mathematically represented as
a coordinate pair (x,y) as illustrated in Figure 6-1 on page 222.

Figure 6-1 A point (x,y) in a two-dimensional coordinate system

In a relational table, you can easily represent this, as shown in Example 6-1.

Example 6-1 A table with spatial coordinate columns

CREATE TABLE sites (id INT, name VARCHAR(40), ..., x FLOAT, y FLOAT);
INSERT INTO sites VALUES (1, 'one', ..., 20.0, 10.0);
...

X

Y

O x

y (x,y)
222 Customizing the Informix Dynamic Server for Your Environment

It is not difficult to think of interesting spatial queries that are easily expressed in
SQL, such as finding the distance to a given location by using a simple
Pythagorean theorem calculation, as illustrated in Figure 6-2.

Figure 6-2 Calculation of distance, d, between two points

Example 6-2 shows the corresponding spatial query.

Example 6-2 A spatial query on coordinate columns

-- The given location is (x,y) = (15,12)
SELECT id, name, Sqrt((x-15)*(x-15)+(y-12)*(y-12)) AS distance
FROM sites ORDER BY 3;

id name distance
1 one 5.38516

...

Even better, we can write user-defined routines (UDRs) in SPL, C, or Java that
make such queries easier to express and more self-documenting. We can also
put the implementation in one place to be used by every client application. For
the sake of simplicity, Example 6-3 uses SPL to implement a distance function.
The output is the same as in Example 6-2, and therefore, it is not repeated here.

Example 6-3 An SPL function for distance on coordinate columns

CREATE FUNCTION Distance(x1 FLOAT, y1 FLOAT, x2 FLOAT, y2 FLOAT)
RETURNING FLOAT
WITH (NOT VARIANT)

RETURN Sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));

X

Y

O x

y (x,y)

(15,12)

x – 15

y – 12

d = √(x – 15)2 + (y – 12)2

15

12

d

 Chapter 6. An extensible architecture for robust solutions 223

END FUNCTION

SELECT id, name, Distance(x, y, 15, 12) AS distance
FROM sites ORDER BY 3;

Still, the problem is that, for nearly all purposes, x and y only have meaning when
used together. Individually, they mean (almost) nothing. Moreover, the distance
function takes four FLOAT arguments. But, is the relationship between them, for
example, x1-y1-x2-y2 or x1-x2-y1-y2? It can quickly become confusing if we add
more arguments, for example, for working in three dimensions or to carry along
information about the coordinate system for each location.

Named row types
A solution is to combine the coordinates into a single named row type and apply
the Distance function to it as shown in Example 6-4. Again, the query result is the
same as in Example 6-2, and therefore, it is not repeated here.

Example 6-4 A spatial table and function using a row type

CREATE ROW TYPE Point (x FLOAT, y FLOAT);
CREATE FUNCTION Point (x FLOAT, y FLOAT) -- Create a constructor
RETURNING Point -- function for better
WITH (NOT VARIANT) -- syntax

RETURN ROW(x, y)::Point;
END FUNCTION;

CREATE FUNCTION Distance (point1 Point, point2 Point)
RETURNING FLOAT
WITH (NOT VARIANT)

RETURN Sqrt((point1.x-point2.x)*(point1.x-point2.x) +
(point1.y-point2.y)*(point1.y-point2.y));

END FUNCTION

CREATE TABLE sites (id INT, name VARCHAR(40), ..., location Point);
INSERT INTO sites VALUES (1, 'one', Point(20, 10));
...
SELECT id, name, Distance(location, Point(15, 12)) AS distance
FROM sites ORDER BY 3;
224 Customizing the Informix Dynamic Server for Your Environment

To make it more realistic, we can search for points in a specified rectangular
window, for example, to retrieve the points needed to draw a map as shown in
Example 6-5.

Example 6-5 Selecting points from a rectangular window

SELECT * FROM sites
WHERE location.x BETWEEN 15 AND 35

AND location.y BETWEEN 5 AND 25;

This still puts too much of the implementation (the BETWEEN predicates) in the
application. To avoid this, we can define a new type, called Box. It represents a
rectangular area, whose edges are parallel to the coordinate axes by its
southwest (or lower-left) and northeast (or upper-right) corners as shown in
Figure 6-3.

Figure 6-3 Expressing a window query by using a box object

X

Y

O x

y (x,y)

ysw sw

ne

xne

yne

xsw
 Chapter 6. An extensible architecture for robust solutions 225

We can then use it to define a Within function, which we use in turn to express
the same query as in Example 6-5 on page 225. This is illustrated in
Example 6-6.

Example 6-6 A window query using a Box data type and Within predicate function

CREATE ROW TYPE Box (sw Point, ne Point);
CREATE FUNCTION Box (sw Point, ne Point) -- Constructor function
RETURNING Box -- for better syntax
WITH (NOT VARIANT)

RETURN ROW(sw, ne)::Box;
END FUNCTION;

CREATE FUNCTION Within (loc Point, window Box)
RETURNING BOOLEAN
WITH (NOT VARIANT)

IF (loc.x BETWEEN window.sw.x AND window.ne.x AND
loc.y BETWEEN window.sw.y AND window.ne.y) THEN
RETURN ‘t’;

ELSE
RETURN ‘f’;

END IF
END FUNCTION;

SELECT * FROM sites
WHERE Within (location, Box (Point (15, 5), Point (35, 25)));

All of this is from a problem modeling perspective, because it is closer to the way
we think of maps and coordinate systems with points, distances, and rectangles.
The spatial column has the type Point, and the Distance function simply takes
two Point arguments. For a query that selects on points that lie within a given
rectangular window, we use a Box data type and apply a Within predicate.
Further, we have created reusable functions, Distance and Within. These
functions give the significant benefit of having a single implementation of our
logic, in the part of the software stack that is closest to the data. Applications can
use them, and any changes and enhancements apply to those applications
without difficult roll-out and installation of updates.

Naturally, to do this right, we need to create an index on a Point column that
supports the Within predicate. If these queries must perform well and perhaps
carry out more complex calculations, we want to implement the functions in a
lower-level language such as C. But ignore these considerations for the moment,
because there is a more important issue that has to do with the use of row types.
226 Customizing the Informix Dynamic Server for Your Environment

Opaque types: Encapsulation and better performance
Row types are helpful in organizing the database schema and making a data
model a better representation of the application domain so that it is easier to
understand. Some useful features, such as table inheritance, depend on row
types. As such, they are an important feature of object-relational data servers.
However, when it comes to the next level in extensibility, which is building
powerful, reusable components, row types fall short.

The main problem with row types, aside from performance limitations, is that they
offer no encapsulation. The implementation of the Point data type as two FLOAT
elements is visible for all to see, and likewise for the Box type. In effect, row types
and their elements are merely a twist on tables and their columns. Row types
tend to be inextricably tied to the data model and database schema for which
they were originally developed. This means that application code can access the
elements of the row type directly (for example, location.x), which makes it
impossible for the implementation to evolve with changing requirements.

For example, what if our experience of using the data types that we developed in
the previous examples suggests any of the following improvements:

� Compress the coordinate values in Point, currently two FLOAT elements taking
16 bytes, when storing them on disk.

Perhaps there is not much to be gained in a single point value, but you can
see that it can make a big difference for geometric shapes with many points,
such as lines and polygons.

� Use INTEGER coordinates.

For performance and algorithmic robustness, some spatial software packages
internally use integer, not floating-point coordinates.

� Implement a Box as (southwest corner, width, height) instead of
(southwest corner, northeast corner).

This is largely a matter of taste, but sometimes one implementation can be
more efficient than the other.

� Implement a Box as (center point, width, height).

For some map display software, the center of the window is a much more
important location than the corners. Therefore, it might make sense to reflect
that in the implementation.

� Implement a Box as (center point, radius).

This might look like a mistake, but in some situations, it makes little sense to
talk about rectangles, while searching over a circular area is highly efficient.
Yet mapping applications expect to deal with boxes.
 Chapter 6. An extensible architecture for robust solutions 227

If existing applications access row type elements directly through expressions,
such as window.ne.x, then our implementation must always include these
elements. Even if you provide additional functions, sometimes called accessors or
get and set methods, to get to the elements (so the window.ne.x becomes
X(NE(window)), you cannot be sure that applications rigorously adhere to that
style and never use the type.element notation. That is, you cannot hide
information about the type’s implementation.

To protect applications from implementation changes and, conversely, to avoid
freezing the implementation because of existing applications, which in short is to
achieve encapsulation, use a different kind of UDT called opaque types. In IDS,
an opaque type is a type whose implementation is not known or visible to the
data server nor, therefore, to any user or application that is using SQL. All
interaction between the server, or the client, and the type goes through UDRs,
including a prescribed set of callback UDRs called support functions.

Usually an opaque type is implemented as a data structure with associated code
in C, but C++ and Java are also possible. A rich, stable DataBlade API gives C
implementations the power to do almost anything. For example, they can perform
IDS-specific memory management, file and stream I/O, connection
management, tracing and exception handling, and smart large object
manipulation.

Let us go back to the example with Point and Box. Figure 6-4 shows how the
principle of encapsulation applies in this context. The specific implementation of
each type as a C structure with supporting functions (functions not shown) is
hidden inside a box whose border is opaque. Only the public interfaces (UDRs)
are visible to the developer or user.

Indexing: For all but the simplest extensions, it is important to support any
new data types by an index. Good data modeling is helpful, but offers little
practical value if the data server cannot perform queries fast. Consider the
type of information that is represented by a new data type that does not lend
itself to B-tree indexing (because it cannot be ordered numerically or
alphabetically). In this case, a new secondary access method must be added,
by using the Virtual Index Interface (VII). The only realistic method for
implementing an access method is to use a tight, procedural language such
as C. Therefore, it is not a big step to use C for the type itself.
228 Customizing the Informix Dynamic Server for Your Environment

Figure 6-4 Example of Point and Box as opaque data types with encapsulation

Multiple implementations for each are possible, hidden from the application code.
Only the public methods or interfaces, indicated by the ball-on-stick symbols, can
be used by the application code. Many alternative interfaces can be published,
regardless of actual implementation.

Of course, there is nothing new in this to the object-oriented application
programmer. But in traditional SQL data servers, you cannot practice information
hiding in this manner. In regard to the SQL for implementing UDRs and queries,
nothing much changes except that we can no longer use the type.element
notation in our SPL UDRs. Instead, we can only use the public interfaces that are
defined for the type, as shown in Example 6-7.

Example 6-7 Distance and Within functions with opaque types

CREATE FUNCTION Distance (point1 Point, point2 Point)
RETURNING FLOAT
WITH (NOT VARIANT)

RETURN Sqrt((X(point1)-X(point2))*(X(point1)-X(point2)) +
(Y(point1)-Y(point2))*(Y(point1)-Y(point2)));

END FUNCTION

typedef struct {
POINT lowerleft, upperright;

} BOX;
— OR? —

typedef struct {
double xmin, ymin, xmax, ymax;

} BOX;
— OR? —

typedef struct {
POINT lowerleft;
double width, height;

} BOX;
— OR? —

typedef struct {
double x, y, radius;

} BOX;

…

typedef struct {
int x, y;

} POINT;

— OR —
???

typedef struct {
double x, y;

} POINT;

Point(x, y)

X(pnt)
Y(pnt)

Box(xmin, ymin,
xmax, ymax)

Box(sw, ne)

Box(sw, width, height)

Box(center, width, height)

Box(center, radius)

SW(box), NE(box)

Xmin(box), Ymin(box)

Xmax(box), Ymax(box)

Width(box), Height(box)

Center(box)

Within(pnt, box)

Point implementation

Box implementation

constructor:

{accessors:

constructors:

accessors:

predicate:
 Chapter 6. An extensible architecture for robust solutions 229

CREATE FUNCTION Within (loc Point, window Box)
RETURNING BOOLEAN
WITH (NOT VARIANT)

IF (X(loc) BETWEEN X(SW(window)) AND X(NE(window)) AND
Y(loc) BETWEEN Y(SW(window)) AND Y(NE(window))) THEN
RETURN ‘t’;

ELSE
RETURN ‘f’;

END IF
END FUNCTION;

In reality, as alluded to previously, these functions are more likely to be
implemented in C, along with the opaque types themselves and indexing
support.

A real DataBlade component is the result of packaging a number of UDTs,
UDRs, access methods, custom catalog tables, documentation, demos, data,
client-side header files, and anything else that makes it useful into something that
can be distributed, installed into an IDS instance, and registered into a database
by using standard IDS tools. Nothing in this description requires that a DataBlade
be large, complex, sophisticated, or unique.

Sometimes a single UDR, or a simple type that can be a variation on a built-in
type, with one or two accompanying functions, can greatly impact the
performance, maintainability, and robustness of an entire group of applications.
To illustrate this, the following sections describe three small but real examples.
The first two examples are extensions of the data server’s support for time-based
data types. The third is a new numeric data type that is illustrated with an
extensive application example.

6.2.2 Date types

With some variations, all relational data servers have a collection of date and
time data types. IDS has DATE, TIME, and DATETIME. This is useful in many
situations. However, when a DATE column, for example, must do more than simply
record date values and return them to the application on request, the limitations
of the type can get in the way. When used in expressions and business logic,
dates often need to be differentiated according to their significance to the
business process. The regular DATE type does not do this.

A delivery service
Imagine a delivery service that has overnight, second-day, and ground (five days)
service and delivers only on business days. Simple business logic can benefit
from a variation on the DATE type that properly differentiates between business
230 Customizing the Informix Dynamic Server for Your Environment

days and non-business days (weekends and holidays). In the delivery operations
database, such columns as pick_up_date, estimated_delivery_date, and
actual_delivery_date can have a type of BusDate, for example. This type
supports the same date representations as DATE, and it understands date-interval
arithmetic. But only dates of actual business days are valid values, and only
business days count in interval computations. This allows easy implementation of
the following rules:

� Reject valid but wrong dates as pick_up_date values. Trying to enter
'11/03/2007'::BusDate (assuming a USA locale) generates an error,
because it is a Saturday, which is not a business date.

� Compute estimated_delivery_date from pick_up_date and service_type.
For example, if service_type is 'ground' and pick_up_date is '12/20/2007'
(a Thursday), the expression pick_up_date + 5 gives '12/28/2007' (which is
Friday of the following week), skipping the weekend and Christmas Day.

� Assuming that the difference between estimated and actual delivery date is
important (for customer complaint resolution or internal quality control), the
expression actual_delivery_date – estimated_delivery_date yields the
difference in business days, not elapsed calendar days.

The BusDate UDT and its BusInterval companion are conceptually simple types
that can have a big impact on application consistency and simplicity. Most
systems implement the kind of logic outlined previously in application code.
However, such code must be reused or re-implemented consistently in many
applications, which is a much more complex challenge than making it available
once, in the data server.

This is not to say that the implementation itself is trivial. Knowing about holidays
requires the maintenance of a calendar table, which must be accessible for
localization purposes and annual updates. However, that only amplifies the point.
It is better to maintain the calendar in the database, and run the computations
that use it in the data server. This is preferred to having the calendar in multiple
applications or requiring those applications to retrieve the information from the
database for their computations.

Finally, because we are discussing a fairly simple twist on a built-in data type, it is
possible to gain most of the benefits of extensibility without implementing entirely
new types. All it takes is some UDRs that operate on normal DATEs:

� A check constraint on IsBusinessDay(pick_up_date) validates entries.
� NextBusinessDay(pick_up_date, 5) computes estimated_delivery_date.
� BusinessDays(actual_delivery_date, estimated_delivery_date) calculates

a delivery delay.

In some cases, it is obvious that a new UDT is required. In others, anything but a
UDR or two is clearly overkill. Sometimes, however, it is a matter of preference
 Chapter 6. An extensible architecture for robust solutions 231

more than of objective criteria to decide when a new data type is required and
when a few well-chosen and well-named functions will do. A UDT takes more
effort to develop initially. The advantage is that, when it is implemented, it
becomes an entirely natural extension of the data server’s type system, leading,
among other things, to more natural expressions in queries: date + 5 rather than
NextBusinessDay(date, 5). And more natural and readable expressions can pay
off in reduced development time and increased maintainability of application
code.

The next example takes all its power from a single UDR.

The birthday club
Many restaurants have a birthday club (BC), which is essentially a customer
loyalty list. The benefit to the customer is that they get an announcement close to
their birthday, inviting them to come in and enjoy a free order of something.

Assume that we have a table called BC_members, that records the contact
information and date of birth (in a DATE column called dob) for all members. The
logic behind the mailing is simple enough. That is, once a week, run a query
(shown in Example 6-8) to retrieve names and addresses for all BC members
whose birthdays are coming up in a week, which is between 8 and 14 days from
now.

Example 6-8 BC mailing batch query (flawed attempt)

SELECT name, address FROM BC_members
WHERE dob BETWEEN TODAY+8 AND TODAY+14;

Unfortunately, this query not give quite the results we want, because those birth
dates have years attached to them, and none of them will be in the future. In
reality, we want to use the birth days (without the year), not birth dates, since we
really do not care how old the members are. Of course, for a different business
process, such as purging a kids-only club of members who have become adults,
the year may be significant.

In this case, a single UDR might provide the solution. NextBirthday(dob DATE)
returns a DATE value that is the actual date, in the current or the next year, of the
next birthday for someone born on the given date. This is not simply the original
date of birth stripped of its year and extended again with the current year, as in
the following expression:

EXTEND(EXTEND(dob, MONTH TO DAY), YEAR TO DAY)

In contrast, this function makes sure that any birthday earlier on the calendar
than today is placed in the following year. Perhaps more interestingly, it also
ensures that any leap day date of birth (February 29) is mapped to an
232 Customizing the Informix Dynamic Server for Your Environment

appropriate date in common years, such as February 28. Otherwise, those born
in leap years might only get their invitation once every four years.

Example 6-9 shows the new weekly mailing query and examples of the output of
NextBirthDay.

Example 6-9 BC mailing batch query (improved) with sample birthdays

SELECT name, address FROM BC_members
WHERE NextBirthday(dob) BETWEEN TODAY+8 AND TODAY+14;

If TODAY is 07/15/2006:
NextBirthday('10/24/1991') returns 10/24/2006
NextBirthday('04/12/2000') returns 04/12/2007
NextBirthday('02/29/1996') returns 02/28/2007

If TODAY is 07/15/2007:
NextBirthday('02/29/1996') returns 02/29/2008

This simple database extension, a single function, can tremendously simplify an
application and improve its performance by applying the tricky but simple logic
right where the data is. This query still requires a table scan because there is no
way to index a function result that depends on the current date (NextBirthday
must be declared a VARIANT function). But that is still much better than having to
retrieve all rows into the application to apply the one-week filter there.

A further improvement, of course, is to find a way to express this query in a way
that can be supported by an index. This requires a new data type and is left as an
exercise for you. If you develop a solution, contact IBM developerWorks by
sending an e-mail from the Feedback page at the following Web address:

https://www.ibm.com/developerworks/secure/feedback.jsp

Additional useful date manipulation examples are provided 7.1, “Manipulating
dates” on page 264.

We now turn to a more elaborate example involving a new numeric type.

6.2.3 Fractions

A cadastre is an agency that records units of land and their ownership. This
involves maintaining both the legal description and geographic survey of each
parcel (the map), as well as the ownership and other rights (such as mineral or
grazing rights) that apply to the parcel, including the recording of ownership
transactions. Naturally, a cadastre requires industrial-strength systems and
software for managing legal information, transactions, and spatial surveys and
maps. A small industry segment of IT vendors specializes in these types of
 Chapter 6. An extensible architecture for robust solutions 233

https://www.ibm.com/developerworks/secure/feedback.jsp

software, which in turn rely on more general-purpose tools, such as geographic
information systems (GIS) and data servers, such as IDS.

Some cadastral departments are faced with peculiar requirements. For example,
one department, an IDS user, received complaints about the apportionment of
ownership (and the property tax liability that goes with it) when a parcel had not
one, but many owners. This arises frequently when a parcel is owned by a family
and passed down through the generations. The problem stemmed from the use
of the DECIMAL (or NUMERIC) type, commonly used in databases of all types,
to represent the ownership fraction.

Fractions, and more generally rational numbers, cannot always be represented
as a fixed-point decimal number without rounding. In school, we learned about
continuing decimal fractions (as in 1/3 = 0.333...,). But in a digital computer, we
must round to the number of digits given in the data type of the column as
demonstrated in the following example.

In this example, A, B, and C each have one-third interest in a 1000 m2 family
property. They decide to subdivide the property and sell the back third. The new
ownership interest of A, B, and C is calculated as follows:

fractional: (1/3) x (2/3) = 2/9; (2/9) x 1000 = 222 m2

decimal: 0.33 x 0.67 = 0.221; 0.221 x 1000 = 221 m2

If you see the idea behind this problem and appreciate its importance in a
real-world situation as well as the relief that a well-chosen UDT can bring, you
may want to skip the to 6.3, “Denormalization for performance and modeling” on
page 242. However, if you need a little more convincing or want a better feel for
the specifics of a rational-number type, read on.

FLOAT and REAL: The floating-point data types FLOAT and REAL, being
approximate numeric types, are generally avoided in databases unless they
represent data of a scientific or physically measured nature, such as the
geographic coordinates discussed in 6.2.1, “Coordinates” on page 222.
234 Customizing the Informix Dynamic Server for Your Environment

Parcel ownership: A worked-out example
To put a little more substance behind the argument, consider the following table
of parcels, defined as in the following statement:

CREATE TABLE parcels
(parcel INTEGER, value MONEY, tax_rate DECIMAL(5,3));

Table 6-1 summarizes the results of the statement.

Table 6-1 Sample parcels table

The parcels’ ownership is recorded in the Ownership table (Example 6-10 and
resulting Table 6-2). Each owner’s interest in each parcel is a fractional amount
(up to 1), recorded (for illustration purposes) as both a DECIMAL(5,3) number and
a fraction.

Example 6-10 The ownership table structure

CREATE TABLE ownership
(
 parcel INTEGER,
 owner VARCHAR(255),
 interest_dec DECIMAL(5,3),
 interest_fr Fract
);

Table 6-2 Sample ownership table - Initial state

parcel value tax_rate

1 $1,000,000.00 0.015

4 $789,243.16 0.015

parcel owner interest_dec interest_fr

1 A 1.000 1/1

4 B 1.000 1/1
 Chapter 6. An extensible architecture for robust solutions 235

The Fract data type
The Fract data type is a custom UDT that helps solve this particular customer’s
problem. It can be implemented in several ways. In the spirit of the discussion in
“Opaque types: Encapsulation and better performance” on page 227, we us
assume that it is an opaque type. Therefore, the implementation is hidden from
the server. For example, the data structure in C, and the corresponding SQL type
definition, can be as shown in Example 6-11.

Example 6-11 Internal representation and SQL definition of the Fract data type

typedef struct /* Internal representation in C */
{
 mi_integer numerator;
 mi_integer denominator;
}
Fraction;

create opaque type Fract -- UDT definition in SQL
(

internallength = 8,
alignment = 4

);

An important design choice is implicit in this structure. The domain is the set of
rational numbers m/n, with m and n as whole numbers (integers) representable
by 4-byte signed integers, that is, in the range –2,147,483,647 to 2,147,483,647.
Alternatives are 8-byte (mi_int8) or short (mi_smallint) integers.
236 Customizing the Informix Dynamic Server for Your Environment

In addition to the internal representation, a UDT needs external representation: a
binary one for exchange with applications (here, probably the same set of two
4-byte integers) and a text one. The obvious choice of text representation is
something such as “n/d” (with numerator n and denominator d), as in the “1/1”
values in the Ownership table. What is left is a possible convention for the sign,
such as always attaching the sign to the numerator, so that it appears in front of
the fraction: '[–]n/d' with n meaning “not negative” and d meaning “positive.” On
input, both n and d might be negative. Therefore, internally the value is
constructed as follows:

numerator = sign(n/d)|n|, denominator = |d|

For an opaque type, the support functions that convert between the type’s
internal and external representations are identified by casts. In this case, a few
additional casts and constructors are useful to connect the Fract type to the other
numeric types:

� IMPLICIT CAST (Fract AS DECIMAL) turns 3/8 into 0.375 and lets any fraction
participate easily in numeric expressions as in the following example:

SELECT o.interest_fr*p.value*p.tax_rate FROM ...;

� IMPLICIT CAST (INTEGER AS Fract) turns 7 into 7/1, which is convenient in
the special case of whole values that must be treated as fractions.

� FUNCTION Fract(numerator INTEGER, denominator INTEGER) RETURNING
Fract is a useful constructor from the integer numerator and denominator
values, without going through a text representation. Fract(3, 6) returns 1/2.

Note: We use the name Fract, not “Fraction” to avoid any collisions with the
IDS SQL keyword FRACTION (as in DATETIME YEAR TO FRACTION(3)). The C
language has no such reserved word, so that we can freely use the full name.

In general, with IDS, you can use any name you choose. However, the SQL
parser might return an error in some situations if the name matches a
keyword, unless it is used as a delimited identifier (enclosed in double
quotation marks; environment variable DELIMIDENT must be set). It is better to
avoid any potential for collision and not use keywords. For more information
about keywords, refer to the IBM Informix Guide to SQL: Syntax,
G229-6375-01.

The preferred convention is to apply a unique three-character prefix to all type
names and some or all other identifiers (such as names of functions and
operator classes) associated with a given DataBlade. Therefore, we have the
types ST_Point in the Spatial DataBlade, GeoPoint in the Geodetic DataBlade,
the function bts_contains in Basic Text Search, and so on.
 Chapter 6. An extensible architecture for robust solutions 237

A good implementation automatically simplifies the fraction in all functions
that return a Fract value.

Finally, the Fract type needs all the appropriate functions to make it as usable as
any numeric type:

� Relational operators equal (=), notequal (<> and !=), greaterthan (>),
greaterthanorequal (>=), lessthan (<), and lessthanorequal (<=)
automatically associated with their operator symbols

� A compare function, for server operations such as sorting and indexing

� Arithmetic operators plus (+), minus (–), times (*), divide (/), and negate
(unary –)

� Additional algebraic functions Abs (absolute value) and Recip (reciprocal)
(others are possible)

Important for this application are the arithmetic operations, which preserve the
rational nature of the result, as shown in Example 6-12.

Example 6-12 Arithmetic operations on Fract values

SELECT 7/8 - 2/3 AS decimal, '7/8'::Fract - '2/3' AS fraction
FROM systables WHERE tabid=1;

decimal 0.20833333333333
fraction 5/24

Tax bills and ownership transactions
Now that we have the workings of our Fract data type, let us go back to the
cadastral example. From the ownership records and the tax rate and parcel
values, we can compute the tax bill for each owner, as shown in Example 6-13.
Note the use of a collection subquery to show the list of parcels associated with
each owner, in the notation (parcel,interest_dec,interest_fr). For example,
(4,0.143,1/7) means parcel 4, with ownership interest of 0.143 (decimal) or 1/7
(fractional).

Example 6-13 Computation of owners’ tax bills

SELECT
 o1.owner AS owner,
 count(o1.parcel) AS num_parcels,

MULTISET
 (
 SELECT o2.parcel, o2.interest_dec, o2.interest_fr
 FROM ownership o2
 WHERE o2.owner = o1.owner
238 Customizing the Informix Dynamic Server for Your Environment

) AS parcels,
 Sum (o1.interest_dec*p.rate*p.value) AS tot_ownertax_dec,
 Sum (o1.interest_fr *p.rate*p.value) AS tot_ownertax_fr
FROM
 ownership o1, parcels p
WHERE
 p.parcel = o1.parcel
GROUP BY
 o1.owner
ORDER BY
 o1.owner;

Table 6-3 summarizes the results of the sample computation.

Table 6-3 Owners’ tax bills for initial state of ownership table

At this point, with each owner owning the entire parcel outright, there is no
difference between the tax bills computed by using decimal or fractional interest.

Likewise, we can compute for each parcel the total owners’ interest and tax
assessed as shown in Example 6-14.

Example 6-14 Computation of total tax and owners’ interest per parcel

SELECT
 o.oid AS parcel,

Sum (o.interest_dec) AS interest_dec,
 Sum (o.interest_fr) AS interest_fr,
 Sum (o.interest_dec*p.rate*p.value) AS totaltax_dec,
 Sum (o.interest_fr*p.rate*p.value) AS totaltax_fr
FROM
 ownership o, parcels p
WHERE
 p.oid = o.oid
GROUP BY
 o.oid
ORDER BY
 o.oid;

owner num_parcels parcels ownertax_dec ownertax_fr

A 1 (1,1.000,1/1) $15,000.00 $15,000.00

B 1 (4,1.000,1/1) $11,838.65 $11,838.65
 Chapter 6. An extensible architecture for robust solutions 239

Table 6-4 summarizes the results of the computation.

Table 6-4 Total owners’ interest and tax per parcel for initial state

As expected, the total of all owners’ interest in each parcel is exactly 1, and the
total tax assessed for each parcel is the same regardless of how the owner’s
interest is recorded.

Now let us apply some transactions:

� Owner B transfers 1/7 of parcel 4 to D.

In terms of the ownership table, this means subtracting 1/7 from B’s interest in
parcel 4 and adding 1/7 to D’s interest in parcel 4. Alternatively, since there is
no record yet for an owner D with an interest in parcel 4, we can create one
with 1/7 as the owner’s interest.

Now rerun the tax computations, shown in Table 6-5. The totals per parcel
have not changed, but the owners’ tax bills have. Also a discrepancy has
crept in between the decimal- and fraction-based tax computations. In
Table 6-5, this is indicated by the following calculation:

error = the value in the ownertax_dec column – the value in the
ownertax_fr column

The result is subsequently posted in the error column for the owner of that
particular row.

Table 6-5 Owners’ tax bills for after B transfers 1/7 of 4 to D

As shown, the total tax for parcel 4 has not changed. However, due to
rounding to three digits of the ownership interest, D is paying more than
necessary, while B is paying less by the same amount. Of course, whether
rounding really affects the end result depends on the number of digits kept
(the DECIMAL(m,n) column declaration), the parcel value, and the tax rate.

parcel interest_dec interest_fr totaltax_dec totaltax_fr

1 1.000 1/1 $15,000.00 $15,000.00

4 1.000 1/1 $11,838.65 $11,838.65

owner num_parcels parcels ownertax_dec ownertax_fr error

A 1 (1,1.000,1/1) $15,000.00 $15,000.00

B 1 (4,0.857,6/7) $10,145.72 $10,147.41 -$1.69

D 1 (4,0.143,1/7) $1,692.93 $1,691.24 $1.69
240 Customizing the Informix Dynamic Server for Your Environment

� Owner A subdivides parcel 1 and distributes its ownership evenly over the six
owners A, B, C, D, E, and F. Then, the six owners sell 1/5 of the parcel to
owner G.

In the ownership table, delete any rows having to do with parcel 1. Then
create new ownership records for each of the new owners, with a 1/6 interest
in parcel 1. Next, since the six owners end up with their original interest in
only (1 – 1/5) = 4/5 of the parcel, multiply their interest by that factor. Then
create a new record reflecting G’s 1/5 interest in parcel 1.

Again, rerun the tax computations. Table 6-6 shows the results.

Table 6-6 Owners’ tax bills for after subdividing parcel 1 and selling off a part

Now, everyone except G is paying too much, although B’s overpayment is
reduced and D’s increased by the same amount due to their joint ownership
of parcel 4. This general overpayment is reflected in the per-parcel numbers
shown in Table 6-7.

Table 6-7 Total owners’ interest and tax per parcel after subdividing parcel 1

While the total for parcel 4 is correct in both cases, masking the overpayment of
one owner as it is compensated by the underpayment of another, the total for
parcel 1 shows a discrepancy. That is, the total owner’s interest is computed by
using decimal values is greater than 100%, and the total tax for that parcel is off
by $60. This is clearly a nonsensical situation. While the actual tax error depends
on the specifics of the parcel and the number of digits recorded, it is not possible

owner num_parcels parcels ownertax_dec ownertax_fr error

A 1 (1,0.134,2/15) $2,010.00 $2,000.00 $10.00

B 2 (4,0.857,6/7),
(1,0.134,2/15)

$12,155.72 $12,147.41 $8.31

C 1 (1,0.134,2/15) $2,010.00 $2,000.00 $10.00

D 2 (4,0.143,1/7),
(1,0.134,2/15)

$3,702.93 $3,691.24 $11.69

E 1 (1,0.134,2/15) $2,010.00 $2,000.00 $10.00

F 1 (1,0.134,2/15) $2,010.00 $2,000.00 $10.00

G 1 (1,0.134,2/15) $3,000.00 $3,000.00

parcel interest_dec interest_fr totaltax_dec totaltax_fr error

1 1.004 1/1 $15,060.00 $15,000.00 $60.00

4 1.000 1/1 $11,838.65 $11,838.65
 Chapter 6. An extensible architecture for robust solutions 241

to avoid the erroneous total owners’ interest. No matter what precision we
choose for the interest_dec column, each individual value will be rounded up
and the total will be too high. However, the fractional approach is correct
regardless of the accumulation of subdivisions and partial sell-offs, always
reflecting the ownership interest, parcel value, and tax rate to the penny.

A national cadastre had this problem, was under a legislative mandate to solve it,
and did so by extending the database with a new data type for fractions. How
many databases around the world suffer from the same inaccuracies, with real
financial consequences?

6.3 Denormalization for performance and modeling

One aspect of matching the data server’s data types, in the object-oriented spirit,
to the problem domain is to let go of the relational mandate for normalization.
Lack of normalization in a database design is generally frowned upon if it is the
result of ignorance or product limitations, but denormalization is a time-honored
technique, especially in fields such as data warehousing. Denormalization is the
deliberate relaxation of normalization rules after designing a conceptually
normalized schema. Many instances of denormalization involve data redundancy
(repeating non-key attributes in multiple rows or tables). In this section, we
discuss a different type of denormalization, namely the violation of the relational
prohibition of non-atomic attributes, that is set-valued columns.

To illustrate the principle, consider a personnel department database with the
following employee tables, not normalized (as depicted in Example 6-15 and
Table 6-8 on page 243) and normalized (as depicted in Example 6-16, Table 6-9
on page 243, and Table 6-10 on page 243).

Example 6-15 An employees table

CREATE TABLE employees
(

id CHAR(5) PRIMARY KEY,
name VARCHAR(255) NOT NULL,
...
jobs_held SET(VARCHAR(30))

);
242 Customizing the Informix Dynamic Server for Your Environment

Table 6-8 An employees table

Example 6-16 Employees tables, normalized

CREATE TABLE emp_names
(

id CHAR(5) PRIMARY KEY,
name VARCHAR(255) NOT NULL

);
CREATE TABLE emp_jobs
(

id CHAR(5),
seq_no INTEGER,
job VARCHAR(30) NOT NULL,
PRIMARY KEY (id, seq_no)

);

Table 6-9 Normalized employee names table emp_names

Table 6-10 Normalized employee jobs table emp_jobs

The structure shown in Example 6-15 on page 242 and Table 6-8 violates First
Normal Form (1NF) due to the non-atomic jobs_held column. One of the
reasons this is undesirable in a relational model is that it makes it difficult to ask
questions such as, “Which employees have management experience?”, or, in

id name ... jobs_held

12C34 Alice Jones ... Developer, Manager

5G678 Bob Smith ... Clerk, Administrator, Manager

id name

12C34 Alice Jones

5G678 Bob Smith

id seq_no job

12C34 1 Developer

12C34 2 Manager

5G678 1 Clerk

5G678 2 Administrator

5G678 3 Manager
 Chapter 6. An extensible architecture for robust solutions 243

terms of a query, search for employees whose jobs_held set contains an
element Manager. Alternatively, in the normalized schema, it is a simple matter to
find the rows in emp_jobs that contain Manager in the job column.

Under some conditions, however, this type of denormalization is exactly what is
needed, enhancing both the performance of the system and the expressive
power of the logical data model. The condition that applies is that the
normalization-violating, non-atomic values are in practice accessed exclusively
(or mostly) in their entirety, not by pulling out individual elements. The jobs_held
column in the employees table holds sets of values that are individually entered
by a person. Each element is relevant independent of the other elements in the
set. This is generally not the case for numeric arrays of physically observed or
automatically recorded values, where processing tends to be done on the entire
array, or large subsets of it. We discuss examples in the following sections.

6.3.1 Line shapes

Going back to the spatial example of 6.2.1, “Coordinates” on page 222, it is easy
to imagine additional geometric shapes that could be modeled. One of these is a
curve, an arbitrary one-dimensional object in the two-dimensional plane. While
there are other possibilities, curves are commonly represented or approximated
by a shape consisting of a series of concatenated line segments and usually
called a linestring (a string of line segments), polyline (many segments), or
simply line (a completely different use of the word from Euclidian geometry,
where a line is a straight line extending infinitely in both directions). The points at
which the line segments that make up the linestring begin, end, and connect are
called vertices (singular vertex). Figure 6-5 shows the following examples:

a A curve approximated by a line; vertices indicated by open circles

b A line with six vertices that crosses itself

c A line that is closed, meaning its begin vertex and end vertex are the same
point

Figure 6-5 Three examples of lines

(a) (b) (c)
244 Customizing the Informix Dynamic Server for Your Environment

As with points and boxes, we mathematically represent each vertex in a linestring
by its (X,Y) coordinates, listing all the vertices that define the line in order, from
begin to end, uniquely defines the entire line. That is, we use an array of ordered
pairs, as shown in Figure 6-6.

Figure 6-6 Line defined by array of ordered pairs {(3,2),(5,9),(12,6),(8,3),(1,7)}

In applications, it is highly unlikely that we want to find all lines that have a vertex
at (21,6). Instead, we want to find lines that cross a given line, intersect or are
contained within a given region, lie within a given distance of a given point, and
so on. Each of these possibilities requires examining the entire line and, more
importantly, considering all points lying on the line segments that connect the
vertices. That is, the natural object that matches the problem domain most
closely is the whole line, not the individual vertex.

In a strictly relational data server, with no ability to create extended types, this
presents a problem. Because a line can have an arbitrary number of vertices
(two or more), we cannot resort to separate columns for the individual X and Y
coordinates in the main table.

X

Y

O

5

(3,2)

5 10

(5,9)

(12,6)

(8,3)

(1,7)
 Chapter 6. An extensible architecture for robust solutions 245

A 1NF solution requires an auxiliary table to accommodate the variable number
of vertices for each line, and might look something like what is shown in
Example 6-17, Table 6-11, and Table 6-12.

Example 6-17 Normalized line table with auxiliary coordinate table

CREATE TABLE lines(id INTEGER PRIMARY KEY, name VARCHAR(255) NOT NULL);
CREATE TABLE lines_coords
(

id INTEGER,
vtx_no INTEGER,
x FLOAT NOT NULL,
y FLOAT NOT NULL,
PRIMARY KEY (id, vtx_no)

);

Table 6-11 shows the sample main line table for Figure 6-6.

Table 6-11 Main line table

Table 6-12 shows the sample auxiliary line coordinate table for Figure 6-6.

Table 6-12 Auxiliary line coordinate table

This normalized representation is perfectly correct and can work, but it has two
serious defects. First, it forces any application or database procedure to
reassemble each line from its individual coordinate rows, potentially thousands or
even millions of them, before it can work on any spatial expression or process.
This hugely complicates all code and makes it difficult to determine the solution
when examining the schema and the application logic. This is a classic
consequence of the mismatch between the application object domain and the
relational model.

id name

117 open loop

id vtx_no x y

117 1 3 2

117 2 5 9

117 3 12 6

117 4 8 3

117 5 1 7
246 Customizing the Informix Dynamic Server for Your Environment

Second, its performance and overhead are prohibitively bad. The solution
involves an index scan over id in table lines_coords for each line found to get
the coordinates. Each vertex has its own row, with all the overhead that entails,
rather than a single row for each line. In addition, there is not much chance of a
spatial indexing scheme to help spatial searches. In fact, solutions based on
normalized models have been marketed in the past, including by major database
vendors, but were quickly seen as of only academic interest and of no practical
value precisely because of these defects.

With extensibility, the right design is easy to see. (How you implement a
variable-length data type that can get arbitrarily large is another matter, which we
are not concerned with here). An opaque UDT, Line, can represent the entire
shape as a single column value, as in Example 6-18 and Table 6-13.

Example 6-18 Line table with UDT (constraints omitted)

CREATE TABLE lines(id INTEGER, name VARCHAR(255), shape Line);

The results of the lines table creation in Example 6-18 are depicted in Table 6-13.
It is the sample line table, lines, with UDT (arbitrary text representation shown).

Table 6-13 Sample line table, lines, with UDT

With the Line data type, we incur the row and column overhead only once for
each line. We also have the ability to create a spatial index on the shape column
and apply predicates and functions, such as Within and Distance (see
Example 6-7 on page 229) to formulate spatial queries. Best of all, the schema is
simple and matches how we think of geometric shapes.

Fundamentally, the encapsulation provided by the opaque data type renders the
value atomic from the point of view of the logical schema. There is no difference
in principle between a Line value that contains an array of ordered pairs and, say,
a VARCHAR value that contains an array of characters. Nor is there a difference
between such a Line value and a FLOAT that contains 64 bits in several groups
(sign, mantissa, exponent) with a specific meaning.

The next example is less obviously a modeling improvement and more purely a
performance trick.

id name shape

117 open loop {(3,2),(5,9),(12,6),(8,3),(1,7)}
 Chapter 6. An extensible architecture for robust solutions 247

6.3.2 Time series

A time series is a time-indexed array, that is, a linear sequence where each
element represents an observation at a specific point in time. Each element’s
time point is later than that of the preceding element. The elements themselves
can be simple numeric values, such as a measured temperature. Or they can be
an entire vector or record of many different values, such as the day’s open, close,
high, and low prices and trading volume for a specific security traded on a stock
exchange. The time interval from element to element can be regular and
predictable (for example, a daily precipitation measure) or irregular (for example,
individual stock trades).

Macroeconomic (such as inflation and unemployment) and finance (such as
stock symbols and indices) data are classic examples of time series. Figure 6-7
shows a graph of two regular time series and the share price (at market close) of
the symbols IBM and ORCL. The time series is regular in that it is sampled at
predetermined intervals (daily at close of trading), even though no observations
are recorded on weekends and holidays.

Figure 6-7 Regular time series: Daily share prices at close
Separate Y-axes: IBM (dark) on left, ORCL (light) on right

The relational and, with a few specialized exceptions, most common way to
handle a time series is to give each observation or element its own row.
Depending on the number and volatility of sources (such as telemetry devices
and stock symbols), each source can have its own table, or all sources of the
same type of information can share a single table.

IBM and ORCL share prices - 3rd Quarter, 2007

100

105

110

115

120

2-Jul 16-Jul 30-Jul 13-Aug 27-Aug 10-Sep 24-Sep

IB
M

18

19

20

21

22

23

O
R

C
L

IBM

ORCL
248 Customizing the Informix Dynamic Server for Your Environment

Example 6-19 shows the single-table approach for share price data, tracking any
number of quantities or variables, including the obvious high, low, open, and
close prices.

Example 6-19 Sample time series table for share prices

CREATE TABLE share_prices
(

symbol CHAR(6),
market_date DATE,
high MONEY,
low MONEY,
open MONEY,
close MONEY,
volume INTEGER,

...
PRIMARY KEY (symbol, market_date)

)

Table 6-14 shows the first three days’ worth of data from the two time series of
Figure 6-7 on page 248.

Table 6-14 Sample contents of table share_prices

For moderate amounts of data, this works fine. But as the table grows, and
especially as the rate at which the data comes in accelerates, the overhead of
recording each sample in its own row hurts the server’s ability to keep up and to
return query results quickly. Figure 6-8 on page 250 shows the conceptual data
volume for a database managing 3,000 stock symbols over 24 years, tracking 65
different quantities or variables, such as open, close, high, low, and volume.

Symbol market_date high low open close volume ...

IBM 7/2/2007 $105.01

ORCL 7/2/2007 $21.65

IBM 7/3/2007 $106.58

ORCL 7/3/2007 $21.63

IBM 7/5/2007 $108.05

ORCL 7/5/2007 $21.77

...
 Chapter 6. An extensible architecture for robust solutions 249

In Figure 6-8, the total number of rows is 3,000 x 24 x 250 = 18,000,000 in a
single or multiple tables. Each row contains a symbol, time stamp, and 65 other
columns.

Figure 6-8 Volume of rows in a relational representation of share price time series

In contrast, assume that we have a TimeSeries data type, which the Line type of
6.3.1, “Line shapes” on page 244, can hold a data array of arbitrary length.
Unlike the Line type with its fixed (X,Y) coordinate pair elements, it can handle
array elements of any structure, as long as that structure has been defined as a
row type. The table now looks something like the one represented by
Example 6-20 and Table 6-15 on page 251.

Example 6-20 Table for share prices using time series UDT

CREATE ROW TYPE DailyStats
(

market_date DATE,
high MONEY,
low MONEY,
close MONEY,
volume INTEGER,

...
);
CREATE TABLE share_prices_ts
(

symbol CHAR(6) PRIMARY KEY,
history Timeseries(DailyStats)

);

Important: What follows is loosely based on the design and capabilities of the
IBM Informix TimeSeries DataBlade product, but it only discusses the general
principles, not the specific implementation of the DataBlade. Do not use this
book as a reference for the product or draw conclusions from this discussion
about its behavior, capabilities, or implementation.

3,000
Securities

65 Variables

24 years
@ 250 days

of data

One Row
(symbol,
timestamp,
variables…)
250 Customizing the Informix Dynamic Server for Your Environment

Table 6-15 Sample contents of table share_prices_ts

Now the data quantity, in terms of rows, looks like a two-dimensional stack as in
Figure 6-9, rather than the three-dimensional volume of Figure 6-8 on page 250.
Here the total number of rows is 3,000. Each row contains two columns. Symbol
and time stamp are not repeated for each element in the time series array.

Figure 6-9 Stack of rows in UDT-based representation of share price time series

This two-column, denormalized structure embodies several optimizations:

� Because there is only one row for each tracked source (stock symbol, in the
example), each symbol is only recorded once, not in every one of the 6,000
rows that comprise its time series.

� If the time series is regular, we can also omit the time stamp from the time
series elements. We only need external mapping (a calendar) between date
and array index. This not only takes care of matching the start of the time
series to a specific date, but can account for regular gaps, such as weekends,
and exceptions, such as holidays and other non-trading days. The calendar
can be shared among all the time series.

Note: The notation TimeSeries(DailyStats) defines a time series of elements
that are DailyStats row type objects. TimeSeries here is a type constructor,
which is analogous to a collection type constructor such as SET(<row-type>).
IDS supports the creation of type-constructor opaque types, and they have
been used by IBM to create DataBlade products. However, they are not
described in public documentation nor do we discuss them further in this book.

symbol history

IBM {(07/02/2007,...,$105.01,...),(07/03/2007,...,$106.58,...),(07/05/2007,...,$108.05,...), ...

ORCL {(07/02/2007,...,$21.65,...),(07/03/2007,...,$21.63,...),(07/05/2007,...,$21.77,...), ...

... ...

3,000
Securities

65 variables, 24 years @ 250 days

Timeseries(DailyStats)symbol
 Chapter 6. An extensible architecture for robust solutions 251

In the normalized, relational case, rows that make up a time series are spread
in unpredictable fashion over the disk. Unless there is a mechanism to keep
the table clustered as it grows, we cannot expect the rows that make up a
single time series to be stored close together or in order. (In a way, Figure 6-8
on page 250 is misleading: rows are not stored in a three-dimensional
volume, but end-to-end in pages on disk.)

With a TimeSeries UDT, however, we can implement separate, highly
optimized storage for these variable-length arrays. For example, using a
B-tree as the internal structure governing the pages for each time series
object. This not only optimizes access to all the elements of a given time
series, but also makes retrieval of the information for a given date or range of
dates highly efficient.

As mentioned previously, this use of extensibility primarily addresses
performance. But what about the problem modeling aspect? Clearly, if you want
to analyze individual time series with specialized statistical and signal processing
algorithms, the time series array is a natural data structure for your application,
and retrieving individual time series or time-bracketed subsections of them is
easy in this implementation. But queries that cut across time series, as in the
following example, are more difficult to express:

Which stock had the highest volume relative to its average volume on
November 1?

Moreover, an off-the-shelf analysis package, such as a spreadsheet program,
might not understand the custom UDT. This is where some of the advanced
extensibility facilities that set IDS apart from the rest come in. Using the Virtual
Table Interface (VTI), discussed in Chapter 10, “The world is relational” on
page 401, we can make a table that is implemented as shown in Example 6-20
look like the table in Example 6-19. This gives us the following benefits:

� The performance advantages of denormalized, specialized array storage
� Array-object manipulation for applications that can handle them
� Standard-client access through a relational, normalized virtual-table view
� Flexible semantics for non-array-based queries through a virtual table

In the next section, we briefly discuss how the time series idea can be
generalized to other areas.
252 Customizing the Informix Dynamic Server for Your Environment

6.3.3 Arrays

An obvious generalization of the time series idea is to allow storage and
manipulation of arrays and matrices (multidimensional arrays), not just
time-indexed ones. Many statistical and measured-data processing applications
can benefit from these types. All considerations of 6.3.2, “Time series” on
page 248, apply.

IDS already has a collection type, LIST, that can manage ordered sets of arbitrary
element structures. It can even manage lists of elements that are themselves
LIST objects, which would simulate a multidimensional array. However, the
collection types were implemented as a simple extension to SQL to aid the
management of small collections of manually entered values, not arbitrarily large
arrays of automatically collected information. In addition, their semantics are
limited and not tailored to specific applications such as statistical analysis.

Therefore, if you want a high-performance, scalable solution that supports
matrices as well and allows you to add functions that specifically support your
application, an opaque UDT-based implementation is the right choice. IBM used
this approach to create data types for vectors and matrices whose elements are
double-precision numbers for the IBM Informix NAG DataBlade module
(implementing a subset of the Numerical Algorithms Group subroutine library;
withdrawn as an IBM product in 2005).

6.4 Business logic where you need it

In the previous sections, we show that extensibility brings modern component
techniques to the data server, helps match the data server’s data types and their
semantics to the problem domain, and can improve performance through
denormalization. In this section, we briefly highlight more benefits of extensibility
that can affect the performance, ease of development, consistency, and
maintainability, in short the robustness, of software solutions.

6.4.1 Integration: Doing multiple customizations

Many application-level solutions exist for specific problem domains, and many of
these solutions require special services from the data management layer.
Commonly, they have been implemented through special-purpose middleware,
which translates the domain-specific needs (sometimes in the form of a
domain-specific query language that looks like a superset of standard SQL) of
the application to the generic capabilities (read, standard SQL) of the data
server.
 Chapter 6. An extensible architecture for robust solutions 253

Such solutions exist for spatial information, text search, XML handling, digital
media content, and a host of more specialized areas. To the extent that they are
well implemented and do not violate best practices for data management, they
can work quite well. For a specific client, the data access translation layer can
hide the specifics of the underlying data server, making the application more
database-independent. Alternatively, because the client interface to this layer is
usually a product-specific API and not more-or-less standard SQL, it is more
difficult for additional client programs to take advantage of the its capabilities.

Real problems occur, however, when a solution requires queries that involve
more than one of these unusual types of information. Consider a simple query for
a location-based service, for example, in which we search for restaurants that
serve a specific dish and are located in a given search area. Let us say that our
restaurants table has the columns menu, which contains XML or PDF documents
that can be searched through a text index, and location, a spatial point whose
location with respect to a search area can be checked through spatial predicates.
In this case, the query looks as shown in Example 6-21.

Example 6-21 A simple location-based service query

SELECT name, address, phone FROM restaurants r
WHERE

Within(r.location, Circle(:my_location, 5000)) AND
Contains(r.menu, 'Peking Duck');

Assume that the table contains a million restaurants, 5000 serving Peking Duck,
and 100 that are in a 5 km-radius search area. Only two restaurants both serve
Peking Duck and are in the search area. Ideally, the optimizer has enough
information to determine that the spatial Within predicate is more selective, runs
an index scan on the spatial index, and applies the text Contains predicate as a
filter on the 100 rows in the intermediate result set.

The data server performs the least possible amount of work and returns only the
desired results to the client in response to a single query. Even if the situation is
not ideal, performance suffers only a little. Most text search implementations
require an index, in which case, it is not possible to apply the Contains predicate
as a filter. The text index must be used for the primary index scan, and the Within
predicate will be applied as a filter. In our example, this means that the
intermediate result set has 5000 rows, not 100. Still, the data server can handle
this sort of situation efficiently and only returns the two-row final result to the
application.
254 Customizing the Informix Dynamic Server for Your Environment

If we must execute this query through two distinct middleware processes, our
code becomes complicated and inefficient, as illustrated in Figure 6-10. The
circled numbers in the figure correspond to the steps described in the test that
follows.

Figure 6-10 Multiple-middleware query

The application must formulate two separate middleware requests and send one
(1) to the spatial and the other (2) to the text search middleware. Each
middleware process submits its own translated query to the database (3, 4),
some of which might involve access to local, proprietary index files (4a), and
retrieves the rows found (5, 6). The application receives the results returned by
the middleware processes and merges them into an intersection (7), keeping
only those rows that occur in both result sets. To reduce network load, the
application might request only primary key results on the first pass and issue a
third query (8) to retrieve the full row contents for the final result set (9).

The case for an extensible data server is obvious: improved performance,
reduced network bandwidth requirements, and vastly simplified application
architecture.

6.4.2 Consistency: Deploying once, supporting all applications

Another aspect of enterprise solution architecture that has traditionally favored
implementing business logic in the database is that it is the one level in the
software stack that is shared among all applications. Thus, any logic
implemented there is automatically applied to all processes and transactions and
does not depend on tightly controlled deployment of software modules and their
updates to all client platforms.

Spatial

Text search

1,000,000
rows

5 km WHERE …

WHERE …

5,000 rows

100 rows

2 rows 2 rows

WHERE id IN (…)

1

2

3
5

4

6

7
8

9

4a

Peking Duck
 Chapter 6. An extensible architecture for robust solutions 255

With the current preference for service-oriented architecture (SOA), it is tempting
to conclude that the need for application logic in the data server has gone away.
After all, instead of relying on client-side software (with all its deployment
headaches) for the implementation of various bits of business logic, we invoke a
service somewhere on the enterprise service bus (ESB). But services in SOA are
loosely coupled, high-level-of-abstraction computing units. Their flexibility comes
at a cost in performance that can be prohibitive for certain types of logic, in
particular those that require accessing or selecting from large collection of data,
or combining data from many different tables.

Thus, the need for a data server platform with the ability to support any kind of
business logic never goes away. And extensibility, of course, is the key ingredient
that makes this ability truly powerful and universally flexible.

6.4.3 Resiliency: Responding to changing requirements

DataBlade technology supports customization to environments and requirements
that vary from site to site, as does this kind of component-based extensibility,
which allows us to respond to changes over time. In both cases, it is difficult or
impossible to come up with a design that applies to all places and for all time.
Therefore, it is an important characteristic that DataBlade components are
relatively small, self-contained software packages, implemented by relatively
small teams working on relatively small projects over a relatively short time. Even
for major products, such as the TimeSeries and Geodetic DataBlades, this is true
when compared to the development effort that goes into the data server as a
whole.

Moreover, DataBlade development and integration are based on a well defined
and documented set of interfaces, SQL statements, and library functions. Their
code and installation scripts can be kept completely separate from the IDS
product itself. This not only means that partners and users can create their own
DataBlades without worrying that they might stop working or need to be rebuilt
with every new release of IDS. It also means that the DataBlades themselves can
go through rapid evolution without requiring changes in IDS.

In short, by enabling the development of small, manageable, independent
components, IDS extensibility lets in-house and independent software
developers, as well as IBM itself, innovate quickly in response to changing times.

6.4.4 Efficiency: Bringing the logic to the data

One of the most obvious performance gains from implementing business logic in
the data server is that it eliminates the need to retrieve large amounts of data
when the end result is not those data records themselves but some derived,
256 Customizing the Informix Dynamic Server for Your Environment

much smaller result. A simple example of this is an aggregate such as an
average. That is, if the desired result is an average column value over a group of
rows, it is much more efficient to let the data server perform that computation
than to send the entire group of rows over the network to the client so that it can
compute the average.

Stored procedures written in SPL have long been used for this kind of server-side
processing. However, SPL is limited as an algorithmic language, and performance
for computationally intensive steps is not as good as in a mainstream procedural
language such as C. Moreover, the set of standard SQL data types is limiting for
many problem domains. Often, this has forced processing outside the database.
Extensibility simply means that the limitations no longer apply. Business logic can
now be implemented in the software tier where it makes the most sense, not
where the limitations of traditional SQL and SPL force it.

6.5 Dealing with non-traditional data

A strong case for the object-relational extensibility movement in the 1990s was
the need to manage data that did not fit the traditional model for relational
databases, of business data that was mostly entered by hand, through forms and
the like. An explosion in environmental and other scientific data collection, GPS
devices, media (text documents, pictures, sound, and video), and other sources
all pointed to the need for databases to evolve to deal not only with the new data
structures, but also with the dramatic increase in sheer data volume that these
automatically recorded data represent. In this section, we briefly discuss a few of
the challenges and the tools that IDS provides to meet those challenges.

6.5.1 Virtual Table Interface and Virtual Index Interface

Some types of data inherently do not fit the relational model, need to be
managed in a denormalized fashion, nor live in devices outside the control of the
data server. Alternatively, relational access of normalized table structures
through the unified interface of standard SQL is of huge value to application
development productivity and architectural robustness.

Enter the Virtual Table Interface, a specification and interface that gives
developers the power to make anything look like a regular table, including such
diverse objects as the following types:

� A hydrological stream gauge
� An operating system’s file system
� An in-memory structure for ingesting high-volume, real-time data streams
� Another table that contains a time series column
 Chapter 6. An extensible architecture for robust solutions 257

In some cases, it can be regarded as a database view with added powers. In
other cases, it makes accessible through SQL what cannot normally be mapped
to a relational schema.

Nearly identical to the VTI in interface and internal mechanism is the Virtual
Index Interface, which has a different purpose. With the VII, developers can
create new indexing methods to manage those new types of data for which the
traditional B-tree index is inadequate. That is, what VTI does for primary access
methods (tables), VII does for secondary access methods.

Like UDTs and UDRs, user-defined access methods are an important tool in the
solution developer’s toolbox. They convey the same benefits of performance,
simplicity, flexibility, and so on to the overall solution. Many database products
support views, database federation, and external data sources, which to one
degree or another do some of what VTI can do. Likewise, many database
products support the extension of the B-tree index to other types of data, as long
as that data type can be mapped to a linear value domain. Only IDS, however,
has VTI and VII, which like opaque data types, represent the extra level of power
and performance that are required to turn the underlying concept from an
interesting research topic to a practical mechanism for robust solutions. We
discuss VTI and VII further in Chapter 10, “The world is relational” on page 401.

6.5.2 Real-time data

Because recorded-data volumes quickly dwarf anything that has ever been
stored in databases, a new consideration emerges. It involves inserting, indexing,
and making available large amounts of data immediately, as it is generated and
time-stamped with the real-world clock time. This often means that traditional
transaction processing, with log records, rollback capability, and locks, might be
too expensive or even inappropriate. If a delay occurs, it is generally impossible
to catch up. Instead, new techniques are needed that guarantee that the data
server keep up with the incoming data stream, possibly sacrificing the
comfortable integrity guarantees of old-style OLTP. We present two examples in
the following sections.

Stock trades
In the previous time series example, we kept track of daily market data, which is a
cumulative measure of all the individual trades that go on during a day. But what
if we want to record and analyze all those individual transactions, as soon as they
come in on one of the proprietary financial-data feeds?

It was for just this application that the Real-Time Loader DataBlade, which works
specifically with the TimeSeries DataBlade, was developed. It employs tricks
such as shared-memory storage of incoming data, making that in-memory
258 Customizing the Informix Dynamic Server for Your Environment

structure immediately available for queries through a VTI-based primary access
method, and flushing accumulated data into TimeSeries values in regular tables,
batching up thousands of individual updates into a single transaction. The
Real-Time Loader allows IDS to process and keep up with hundreds of
thousands of individual stock trade events per second.

GPS-enabled devices
Cars and trucks, PDAs and mobile phones, jets and missiles are pretty much all
moving and movable things that now locate themselves by using a global
positioning system (GPS) and report their changing position as they move.

Imagine tracking the millions of subscribers, updated every few seconds, for a
mobile phone service provider. In many ways, it is exactly the same problem as
that of the stock trades of the previous section, and the same tricks apply. We
can keep up with hundreds of thousands of moving objects whose position is
updated every second. This includes not only updating each object’s position as
the new coordinates come in, but querying the new configuration for spatial
relationships to detect conditions such as objects on a collision course, objects of
a specific description being closer than a specified distance, or objects entering
or leaving a specified area.

6.5.3 Emerging standards

One of the characteristics of non-traditional types of data is that the standards
that govern them and make them usable across systems are either nonexistent
or just emerging. This means that we must be prepared over time to change our
interfaces, add or rename functions, support new or changing external
representations, and generally let our design evolve.

As stated earlier, it is easier to do so when the implementation is in a separate
component than it would be as an integral part of the data server. This not only
applies to the developer of the component but also to the user. If properly
implemented, with a complete registration script, and perhaps version-stamped
type data structures to allow for changes while maintaining backward
compatibility, it is easier to upgrade a DataBlade than the entire server.

6.5.4 A word of caution

Because this chapter is about data server extensibility and its benefits, perhaps
the enthusiasm it conveys leads you to think that DataBlades are the answer to
almost every challenge. Certainly, many of us who were introduced to this
technology and building DataBlades in the early days were guilty of this
unwarranted exuberance. Of course, no technological breakthrough is the
 Chapter 6. An extensible architecture for robust solutions 259

solution to all problems. Instead, its proper place is as just another tool in the IT
practitioner’s toolbox. It is one that enhances our options in choosing the right
place at which to implement business logic, keeping in mind considerations such
as performance, maintainability, consistency, and resiliency. In this chapter, we
have attempted to sketch some of the considerations that favor the decision to
use UDTs, UDRs, and the other elements that make up DataBlade technology.
Here are a few final words that may temper the tendency to dive headlong into an
all-DataBlades approach.

First and foremost, a data server is about managing data. Apparently
tautological, this adage is worth keeping in mind in the context of IDS
extensibility, which effectively makes the data server a platform that we can
program to perform any task we want. But an application server is a platform with
similar programmability and integration capabilities. Therefore, we need a few
guidelines to decide where to put the programmed logic.

Another way of expressing the rule from the previous paragraph is that the data
server’s first priority is to keep your data safe and preserve its integrity, and then
to let you find the data you are looking for with speed and precision. This has
strong implications for deciding what is appropriate for a DataBlade. For
example, a spatial data type, with spatial predicate functions (for example,
Within) supported by a spatial index, can help quickly find rows of data by spatial
criteria. Alternatively, we can implement a DataBlade that adds sophisticated
image processing functionality (Fourier Transforms, filters, multispectral
classification) to the data server, but why burden a data management program
with this kind of highly specialized, CPU-intensive computational load?

One question is used to separate the promising ideas from the merely curious
and bad ones, when the novelty of the DataBlade idea prompted many to
propose DataBlades for everything: “Does it go in the WHERE clause?” While not
every function that is not an index-supported predicate is useless, it forces us to
think a little harder before proposing an extension that does not come with
index-supported query capability.

Another way to look at it is to think of the Model-View-Controller (MVC) style of
application architecture. In MVC, the Model is often understood to be embodied
in the database and its schema. In most of the examples in the first part of this
chapter, the enhanced modeling power that a well-chosen data type can provide
is one of the main arguments. When a particular function seems too much like a
View or Controller feature, perhaps it does not belong in the DataBlade.

Naturally, there will always be gray areas. Sometimes it is convenient to find the
same functionality in the data tier as in other tiers of the software stack. But in
260 Customizing the Informix Dynamic Server for Your Environment

prioritizing what should, rather than what could, be implemented, a good
guideline is to look for elements that offer the following support:

� Enhance the fit between the data model and the problem being modeled
� Support fast queries (predicate functions, index support)
� Reduce the volume of data returned (aggregates, summary properties)
� Help implement triggers and stored procedures for automated business logic

With this, the case for extensibility should be clear. The rest of this book looks at
specific applications of extensibility and the details of some of the facilities and
tools IDS that provides.
 Chapter 6. An extensible architecture for robust solutions 261

262 Customizing the Informix Dynamic Server for Your Environment

Chapter 7. Easing into extensibility

In this chapter, we describe how to get started with extensibility in the Informix
Dynamic Server (IDS). We demonstrate simple examples on how to manipulate
dates and discuss how to create user-defined records (UDRs) using C, SPL, or
Java. Finally, we discuss the DataBlade modules that are available from IBM or
downloadable from other sites.

7

© Copyright IBM Corp. 2008. All rights reserved. 263

7.1 Manipulating dates

IDS includes two date data types: DATE and DATETIME. DATE represents a
particular day, and DATETIME represents a specific moment with a precision in
the range of year to fraction of a second. IDS provides the following functions to
manipulate these types:

� DATE(VARCHAR(10)) returning DATE

This function takes a character string in the format specified by the
environment variable DBDATE and returns a DATE type. The default format
for the US English locale is "MDY4/".

� DATE(DATETIME) returning DATE

This is the same function as the previous one, but takes as input a DATETIME
of any precision.

� DATE(INTEGER) returning DATE

The INTEGER argument represents a number of days since 31 December
1899.

� DAY(DATE) returning INTEGER

The DAY function returns the day of the month as an INTEGER.

� DAY(DATETIME)

This is the same function as the previous one, but takes as input a DATETIME
of any precision.

� EXTEND(DATE, precision) returning DATETIME

The EXTEND function adjusts the precision of the DATE argument and
returns the appropriate DATETIME. Since this is a little vague, here is an
example:

EXTEND(DATE(1), YEAR TO SECOND)

� EXTEND(DATETIME, precision) returning DATETIME

This is the same function as the previous one, but operates on a DATETIME
instead of a DATE.

� MONTH(DATE) returning INTEGER

MONTH extracts the month number from the DATE specified as an argument.

� MONTH(DATETIME) returning INTEGER

This function extracts the month from a DATETIME of any precision.
264 Customizing the Informix Dynamic Server for Your Environment

� WEEKDAY(DATE) returning INTEGER

The WEEKDAY function returns an INTEGER that represents the day of the
week for the specified DATE. It starts with zero representing Sunday and goes
on up to six representing Saturday.

� WEEKDAY(DATETIME) returning INTEGER

This is the same function as the previous one, but operates on a DATETIME.

� YEAR(DATE) returning INTEGER

This function extracts the year from the DATE specified as an argument.

� YEAR(DATETIME) returning INTEGER

This is the same function as the previous one, but operates on a DATETIME.

� MDY(INTEGER, INTEGER, INTEGER) returning DATE

This function creates a DATE based on the three INTEGER arguments.
These arguments specify the month, day, and year, respectively. Note that the
year is a four-digit integer.

� TO_CHAR(DATE, VARCHAR(??)) returning VARCHAR(??)

This function takes a DATE and a format argument and returns a character
string representing the date formatted as requested. The format string can
include the following types:

%A Weekday name
%B Month name
%d Day of the month as a decimal number
%Y Year as a 4-digit number
%R Time in 24-hour notation

� TO_CHAR (DATETIME, VARCHAR(??)) returning VARCHAR(??)

Same as previous example.

� TO_DATE(VARCHAR(??), VARCHAR(??)) returning DATE

This is the reverse operation of TO_CHAR and uses the same format string
as the second argument.

� LAST_DAY(DATE)

This function takes a DATE and returns the last day of the month that its
argument specifies.

� LAST_DAY(DATETIME)

This one is similar to the previous function, but it operates on a DATETIME
argument.
 Chapter 7. Easing into extensibility 265

� ADD_MONTHS(DATE, INTEGER) returning DATE

This function takes a DATE and a INTEGER argument that can be used to
specify the number of months to be added or subtracted from the DATE
provided. The day and month time units in the first argument might specify the
last day of the month, or the resulting month might have fewer days than the
day in the first argument. In either case, the returned value is the last day of
the resulting month. Otherwise, it is the same day of the month.

� ADD_MONTHS(DATETIME, INTEGER) returning DATETIME

This is the same as the previous function, but it operates on a DATETIME
value instead of a DATE.

� NEXT_DAY(DATE, VARCHAR(??)) returning DATE

This function takes a DATE and a quoted string that represents the English
name for the day of the week and returns the earliest calendar date that is
later than the date specified and falls on the day of the week specified. Valid
abbreviations are ‘SUN’,’MON’,’TUE’,’WED’,’THU’,’FRI’, and ‘SAT’.

� NEXT_DAY(DATETIME, VARCHAR(??) returning DATETIME

This has the same function as the previous one, but it takes a DATETIME
argument. The value returned is a DATETIME YEAR TO FRACTION(5).

� MONTHS_BETWEEN(DATE, DATE) returning DECIMAL

This function takes two DATE arguments and computes a DECIMAL value
that represents the number of months between them based on a 31-day
calendar. If the two arguments have the same day or fall on the last days of
their respective months, a whole number is returned.

� MONTHS_BETWEEN(DATETIME, DATETIME) returning DECIMAL

This is the same as the previous function, but it operates on two DATETIME
values. The hour, minute, and second time units are also included in the
fractional part of the calculation.

� DBINFO(‘UTC_CURRENT’) returning INTEGER

This variant of the DBINFO function returns the current time expressed as the
number of seconds since 1 January 1970. The time returned corresponds to
the current time zone setting in your environment.

� DBINFO(‘UTC_TO_DATETIME’, INTEGER) returning DATETIME

This variant of the DBINFO function returns the DATETIME representation
(year to second) of a value that is generated by DBINFO(‘UTC_CURRENT’).
266 Customizing the Informix Dynamic Server for Your Environment

In addition to these functions, the following four environment variables impact the
processing of dates:

� DBDATE

This variable provides the end-user format of a date. It is described in the IBM
Informix Guide to SQL: Reference, G251-2283.

� DBCENTURY

This variable defines how to expand the year when a date is entered as a
two-digit number instead of four. The acceptable values are R, P, F, and C.
They stand for Current, Previous, Future, and Closest, respectively. The value
R is the default if DBCENTURY is not set. DBCENTURY is described in the
IBM Informix Guide to SQL: Reference, G251-2283.

� GL_DATE

This variable provides for the ability to internationalize DATE output. It is
described in the IBM Informix GLS User’s Guide, G229-6373.

� GL_DATETIME

This variable provides for the ability to internationalize DATETIME output. It is
described in the IBM Informix GLS User’s Guide, G229-6373.

Finally, IDS defines two built-in functions that return the current date value.
CURRENT returns a DATETIME value, and TODAY returns today's date.

7.1.1 The date functions

The functions described in 7.1, “Manipulating dates” on page 264, provide
functionality for input, output, formatting, and information extraction. The first
interesting usage to be discussed is the input of dates based on character
strings.

The function DATE() receives a character string as input, but processes it
differently depending on the setting of DBDATE and DBCENTURY. Let us start
with DBCENTURY.
 Chapter 7. Easing into extensibility 267

The default value for DBCENTURY is R. This means that the century is
determined by the century of the current date. Example 7-1 assumes the default
US English locale.

Example 7-1 DATE function with DBCENTURY = R

SELECT DATE(“9/2/92”) FROM systables WHERE tabid =1;

(constant)

09/02/2092

1 row(s) retrieved.

If DBCENTURY is set to P, the inferred century is the one that is closest to the
current date as described in Example 7-2.

Example 7-2 DATE function with DBCENTURY = P

SELECT DATE(“9/2/92”) FROM systables WHERE tabid = 1;

(constant)

09/02/1992

1 row(s) retrieved.

The other possible variation on date conversion is provided by the DBDATE
environment variable. For the US English locale, it defaults to "MDY4/". This
means that the elements of a date string are separated by a forward slash (/) and
their order is month, day, and year. Note that the year is expected to be a
four-digit year, but can be completed according to the rules set by DBCENTURY.
You can change the value of DBDATE to use an international date format.

The DBDATE value is "Y4MD-" as shown in Example 7-3 on page 269. In
addition to affecting the input of dates as character strings, this value also affects
how dates are converted back into character strings.
268 Customizing the Informix Dynamic Server for Your Environment

Example 7-3 DBDATE display

SELECT order_date FROM orders WHERE order_num = 1001;

order_date

2007-05-20

1 row(s) retrieved.

For a more elaborate date display, you can use the TO_CHAR function and
provide a format as previously described and shown in Example 7-4.

Example 7-4 TO_CHAR example invocation

SELECT TO_CHAR(order_date, “%d %B %Y”)
FROM orders
WHERE order_num = 1001;

(expression) 20 May 1998

1 row(s) retrieved.

You can use some of the provided functions to extract values, such as the month
and the day, and use those values when defining table fragmentation by
expression. You can also use them for grouping in SQL statements. For example,
to determine how many orders you have per month, you can use the statement
shown in Example 7-5.

Example 7-5 Extracting components from dates

SELECT YEAR(order_date) year, MONTH(order_date) month, COUNT(*) count
FROM orders
GROUP BY 1,2
ORDER BY 1,2;

This type of grouping can be useful in all sorts of reporting. You can do much
more if you are willing to take advantage of the basic extensibility features of IDS.

7.1.2 Functional indexes

IDS V9.x and higher support the concept of a functional index. This means that
you can create an index on the result of a function. Then you can use that index
to speed up the processing of the queries that include the function in their SQL
statements.
 Chapter 7. Easing into extensibility 269

The built-in functions were created before IDS added extensibility features.
Therefore, you cannot create an index on the result of a built-in function.
However, to make it work, you can wrap the built-in function in an SPL function.
For example, to create an index on the month, you can create an SPL function
such as the one that is shown in Example 7-6.

Example 7-6 Functional index SPL function

CREATE FUNCTION udr_month(dt DATE)
RETURNING INTEGER
WITH(NOT VARIANT)
RETURN month(dt);
END FUNCTION;

With this wrapper function, you can create an index such as the one shown in
Example 7-7.

Example 7-7 Creating a functional index

CREATE INDEX orders_months_ids ON orders(udr_month(order_date));

Then you can use an SQL statement such as the one shown in Example 7-8 that
takes advantage of the index.

Example 7-8 Select statement that uses a functional index

SELECT * FROM orders WHERE udr_month(order_date) = 6;

7.1.3 Creating new date functions

You can extract additional information from a date, such as the week of the year,
the week of the month, and the quarter. Let us start with the day of the year
function. Having such a function allows you to report activities by week, without
having to write specific stored procedures for each report or to write custom
application code. You can build this function by using the built-in functions that
are included in IDS. This makes it surprisingly simple, such as the one shown in
Example 7-9.

Example 7-9 Day_of_year SPL implementation

CREATE FUNCTION day_of_year(dt DATE)
RETURNS INTEGER
WITH(NOT VARIANT)
RETURN(1+dt-MDY(1,1,YEAR(dt)));
END FUNCTION;
270 Customizing the Informix Dynamic Server for Your Environment

The key to the implementation of this function is to know that a date is actually an
integer that represents the number of days since 31 December 1899. This means
that if we have the date for January 1, it becomes a simple subtraction.

You can also use the function in an EXECUTE FUNCTION statement, setting a
value in a function or stored procedure. Or you can use it in an SQL statement,
such as the one shown in Example 7-10.

Example 7-10 Using day_of_year in a SELECT statement

SELECT order_date, day_of_year(order_date) d_o_y
FROM orders
WHERE order_num = 1001;

order_date d_o_y

05/20/1998 140

1 row(s) retrieved.

The week of the year function is slightly trickier. It is a similar calculation, except
that we must divide by seven days per week, as shown in Example 7-11.

Example 7-11 Week_of_year SPL implementation

CREATE FUNCTION week_of_year(dt DATE)
RETURNS INTEGER
WITH(NOT VARIANT)

DEFINE day1 DATE;
DEFINE nbdays INTEGER;
LET day1 = MDY(1,1,YEAR(dt));
LET nbdays = dt - day1;
RETURN 1+(nbdays+WEEKDAY(day1))/7;
END FUNCTION;

The key to this function is to understand the offset provided by the WEEKDAY
built-in function. The WEEKDAY function returns zero for Sunday up to six for
Saturday. If January 1 is a Sunday, then we know that January 8 is the following
Sunday, week 2. If January 1 starts on any other day, this means that the first
week is shorter. The WEEKDAY built-in function gives us that offset that allows
us to determine the week of the year.

The week_of_year() function has a problem with the last week of one year and
the first week of the next year. For example, 31 December 2004 was a Friday and
 Chapter 7. Easing into extensibility 271

1 January 2005 was a Saturday. The week_of_year function shown in
Example 7-12 demonstrates that.

Example 7-12 Executing the week_of_year function

EXECUTE FUNCTION week_of_year(DATE(“12/31/2004”));

(expression)

53

1 row(s) retrieved.

EXECUTE FUNCTION week_of_year(DATE(“1/1/2005”));

(expression)

1

1 row(s) retrieved.

This problem has been addressed in the ISO 8601 standard. Jonathan Leffler, of
IBM, has written stored procedures that implement the standard. His stored
procedure can be found on the International Informix Users Group Web site at
the following address:

http://www.iiug.org

Example 7-13 demonstrates the week of the year implementation converted to a
user-defined function (UDF).

Example 7-13 Week of the Year implementation

CREATE FUNCTION day_one_week_one(year_param INTEGER)
RETURNING DATE
WITH (NOT VARIANT)

DEFINE jan1 DATE;
LET jan1 = MDY(1, 1, year_param);
RETURN jan1 + MOD(11 - WEEKDAY(jan1), 7) - 3;

END FUNCTION;

CREATE FUNCTION iso8601_weeknum(dateval DATE DEFAULT TODAY)
RETURNING CHAR(8)
WITH (NOT VARIANT)

DEFINE rv CHAR(8);
DEFINE yyyy CHAR(4);
DEFINE ww CHAR(2);
272 Customizing the Informix Dynamic Server for Your Environment

http://www.iiug.org

DEFINE d1w1 DATE;
DEFINE tv DATE;
DEFINE wn INTEGER;
DEFINE yn INTEGER;
-- Calculate year and week number.
LET yn = YEAR(dateval);
LET d1w1 = day_one_week_one(yn);
IF dateval < d1w1 THEN
-- Date is in early January and is in last week of prior year

LET yn = yn - 1;
LET d1w1 = day_one_week_one(yn);

ELSE
LET tv = day_one_week_one(yn + 1);

 IF dateval >= tv THEN
-- Date is in late December and is in the first week of next year

LET yn = yn + 1;
LET d1w1 = tv;

END IF;
END IF;
LET wn = TRUNC((dateval - d1w1) / 7) + 1;
-- Calculation complete: yn is year number and wn is week number.
-- Format result.
LET yyyy = yn;
IF wn < 10 THEN

LET ww = "0" || wn;
ELSE

LET ww = wn;
END IF
LET rv = yyyy || "-W" || ww;
RETURN rv;

END FUNCTION;

Jonathan also provides a standard-compliant procedure to calculate the day of
the week. Example 7-14 shows the procedure converted to a UDF.

Example 7-14 ISO8601 weekday procedure

CREATE FUNCTION iso8601_weekday(dateval DATE DEFAULT TODAY)
RETURNING CHAR(10)
WITH(NOT VARIANT)

DEFINE rv CHAR(10);
DEFINE dw CHAR(4);
LET dw = WEEKDAY(dateval);
IF dw = 0 THEN

LET dw = 7;
 Chapter 7. Easing into extensibility 273

END IF;
RETURN iso8601_weeknum(dateval) || “-” || dw;

END FUNCTION;

Let us continue our discussion on date manipulation. We ignore the ISO 8601
standard to keep the functions simple. As you have previously seen, you can
easily adapt the functions to be compliant with the standard.

To calculate the week of the month, use the same function, but instead of using
January 1 as the starting date, use the first day of the month coming from the
date passed as argument, as shown in Example 7-15.

Example 7-15 Week_of_month SPL implementation

CREATE FUNCTION week_of_month(dt DATE)
RETURNS INTEGER
WITH(NOT VARIANT)

DEFINE day1 DATE;
DEFINE nbdays INTEGER;
LET day1 = MDY(MONTH(dt), 1, YEAR(dt));
LET nbdays = dt - day1;
RETURN 1 + (nbdays + WEEKDAY(day1))/7;
END FUNCTION;

7.1.4 The quarter() function

Some database products provide a quarter() function. It typically returns a
number between one and four. The problem with providing a quarter() function is
that it assumes a specific calendar, the standard calendar year.

Many companies want to calculate the quarter based on their business year that
is different from the calendar year. There are even some organizations that must
calculate the quarter differently based on what needs to be done. For example,
some school districts must calculate a calendar quarter, a school year quarter,
and a business quarter.
274 Customizing the Informix Dynamic Server for Your Environment

Let us start with a simple implementation of a calendar year quarter, as
demonstrated in Example 7-16.

Example 7-16 Quarter function implementation

CREATE FUNCTION quarter(dt DATE)
RETURNS INTEGER
WITH(NOT VARIANT)
RETURN (YEAR(dt) * 100) + 1 + (MONTH(dt) - 1)/3;
END FUNCTION;

In this implementation, the year is included as part of the quarter. For example,
the third quarter of 2005 is represented by 200503. This simplifies the processing
when an SQL statement spans more than one year. You can decide to create a
different implementation, such as returning a character string instead of an
integer. This is determined by your particular requirements.

As previously mentioned, you might want to calculate a quarter based on a
starting date that is not January 1. This adds some complication where the
calendar year might be different from the quarter year. For example, consider a
corporation that starts its fiscal year on September 1. This means that 1
September 2005 is really the start of the first quarter 2006, December 1 is the
start of the second quarter, and so on.

Example 7-17 shows the implementation for a year starting on September 1. It is
easy to adapt this code for any starting date.

Example 7-17 Another example of a quarter function implementation

CREATE FUNCTION bizquarter(dt DATE)
RETURNS INTEGER
WITH(NOT VARIANT)

DEFINE yr INTEGER;
DEFINE mm INTEGER;

LET yr = YEAR(dt);
LET mm = MONTH(dt)+4; -- sept to jan is 4 months
IF mm > 12 THEN

LET yr = yr + 1;
LET mm = mm - 12;

END IF
RETURN (yr * 100) + 1 + (mm - 1)/3;
END FUNCTION;
 Chapter 7. Easing into extensibility 275

The additional processing in this function compared to the quarter() function is
that it moves the current month forward a number of months in order to do the
quarter calculation that matches the business year.

Using the new functions
Now that you have these functions available, you can use them in SQL
statements as though they were built into IDS. Example 7-18 shows how you
execute this function in a SELECT statement via DBAccess.

Example 7-18 Quarter function usage

SELECT quarter(order_date) quarter, COUNT(*) count
FROM orders
GROUP BY 1
ORDER BY 1;

quarter count

199802 16
199803 7

2 row(s) retrieved.

In addition, you can create indexes on the functions as shown in Example 7-19.

Example 7-19 Functional index on week_of_year

CREATE INDEX orders_weeks_ids ON orders(week_of_year(order_date));

This gives you the flexibility to have the database return the information that you
are looking for. IDS extensibility can be useful in many other areas.

It is easy to extend the capabilities of IDS to provide variations of date
manipulation. The result is less code to write and potentially fewer SQL
statements to execute, which leads to better performance. A database is not a
commodity. It is a strategic tool that can give you a business advantage.

By using these date manipulation techniques, you can adapt IDS to fit your
environment. If the date functions provided here do not exactly fit your
environment, you can easily modify them. The flexibility provided by IDS means
that the IDS capabilities should be considered early in the design phase of an
application. The result can be greater performance and scalability, and a simpler
implementation.
276 Customizing the Informix Dynamic Server for Your Environment

7.2 DataBlade API demystified

For those who want to develop their database extensions in the C programming
language, IDS contains a comprehensive set of header files, public data type
structures, and public functions via the DataBlade application programmer
interface (API). Most of the API functions, header files, and data types are
prefixed with mi. The following classes of functions are available in the API:

� Data handling
� Session, thread, and transaction management
� SQL statement processing
� Function execution
� Memory management
� Exception handling
� Smart large-object management
� Operating system file access
� Tracing

Data handling
With the data handling class of functions, you can obtain information about the
data type with which you are working, manipulate it, convert it to a different data
type, convert it to a different code set, or transfer it to another computer running
IDS. Functions in this class are typically used in UDRs that work with
user-defined types (UDTs), complex IDS types (such as sets, lists, and
collections), as well as more common tasks such as handling NULL values and
SERIAL values that have been retrieved from the server.

Session, thread, and transaction management
By using the session, thread, and transaction management class of functions,
you can obtain database connection information, open a new database
connection, manage thread and stack usage, and obtain information about
database processing state transitions. Functions in this class are used in UDRs
that must execute SQL statements, perform recursion or long running operations,
or must detect events such as the end of a transaction or even the end of a
database session.

SQL statement processing
With the SQL statement processing class of functions, you can send SQL
statements to the database server for execution. This is a multistep process
inside a UDR, as you must construct the environment wherein the query is
executed and processed. To do this, the UDR must perform the following tasks:

� Assemble the SQL statement and send it to the IDS kernel for execution

� Process the results that the IDS kernel returns to the UDR
 Chapter 7. Easing into extensibility 277

� If the SQL statement returns rows (such as a SELECT statement), obtain
each row of data

� For each row that is returned, process each column

� Complete the execution of the statement

For more information about processing SQL statements, see IBM Informix
DataBlade API Programmer's Guide, G229-6365.

Function execution
With the function execution class of functions, you can obtain information about,
and execute, UDRs from your routine. A UDR can be invoked through an SQL
statement, such as EXECUTE FUNCTION or SELECT, and its data retrieved as
with any other SQL statement. If the UDR that is called resides in the same
shared object library as the caller, then it can be invoked just as any other C
function. If it resides in a different shared object library or DataBlade, then you
must use the Fastpath interface to call the UDR. The Fastpath interface allows a
UDR to directly invoke the UDR, bypassing the overhead associated with
compiling, parsing and executing an SQL statement. There are other functions in
this class, with which you can obtain information about trigger execution as well
as HDR status information.

Memory management
Because UDRs execute inside the IDS server context, traditional operating
system memory allocation functions, such as malloc(), calloc(), realloc() and
free(), should not be used. The DataBlade API provides the memory
management class of functions so that you can manage IDS server memory
within the UDR, and allocate and free memory from the virtual pool in IDS. These
functions are mi_alloc(), mi_dalloc(), mi_zalloc(), and mi_free().

Memory that is allocated and freed during UDR execution is performed in terms
of durations. The default duration for memory during a UDR is PER_ROUTINE.
That is, memory allocated during the execution of the UDR is deallocated at the
end or when it is explicitly freed by the UDR. Table 7-1 describes the various
memory durations that are available.

Table 7-1 Memory durations

Duration Description

PER_ROUTINE One UDR invocation

PER_COMMAND Subquery

PER_STMT_EXEC Current SQL statement

PER_STMT_PREP Prepared SQL statement
278 Customizing the Informix Dynamic Server for Your Environment

This class of functions also includes the ability to create named memory. Named
memory is memory allocated from IDS shared memory, but instead of accessing
it purely by address, you can assign a name and a duration to the memory. This
makes it easier to write functions that can share state across multiple invocations
of UDRs and user sessions. There are also functions provided to lock and unlock
memory to help with concurrency.

Exception handling
With the exception handling class of functions, you can trap and manage events
that occur within IDS. The most common events are errors and transaction
events such as an instruction to rollback the current transaction. You can find
examples of this type of function in Chapter 9, “Taking advantage of database
events” on page 373.

Smart large-object management
By using the smart large-object management class of functions, you can create,
access, modify, and delete smart large objects in IDS. A smart large object is a
large object that can hold up to 4 terabytes (TB) of data in a single object that
supports recoverability and random access to its data. This differs from the
traditional simple large object (BYTE or TEXT) that provides access on a “all or
nothing” basis.

Operating system file access
The operating system file access class of functions provides file management
access and manipulation similar to what operating system file access functions
provide. The difference is that the DataBlade API functions periodically yield the
virtual processor to limit the effects of blocking I/O. Examples of these operations

PER_TRANSACTION Current client transaction (BEGIN WORK to COMMIT /
ROLLBACK WORK)

PER_SESSION Current client session

PER_SYSTEM IDS system global, persists until IDS is shut down

Important: Some objects, such as large objects and long varchars, provide
special functions for allocating and deallocating memory that is associated
with those objects. Consult the IBM Informix DataBlade API Function
Reference, G229-6364, for more information about functions related to these
objects to determine the method to allocate and deallocate memory.

Duration Description
 Chapter 7. Easing into extensibility 279

are mi_file_open(), mi_file_seek(), mi_file_read(), mi_file_write(), and
mi_file_close().

Tracing
The tracing class of functions allows for the embedding and enablement of
tracing messages during UDR run time. With this facility, you can create trace
classes and define levels of trace messages that can be embedded in your UDR.
You can also specify the file name to which the trace output is written. All IBM
DataBlades include a special trace function to help diagnose problems that are
related to that DataBlade.

When constructing a C UDR, remember to include the header file mi.h. This
reference includes most of the common definitions and other header files that will
be used in most UDRs. For more information about these functions, header files
and data types, consult the following manuals in the IDS 11 Information Center at
the following address:

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/
com.ibm.start.doc/welcome.htm

� IBM Informix DataBlade API Programmer's Guide, G229-6365
� IBM Informix DataBlade API Function Reference, G229-6364

7.3 Java UDRs made easy

IDS supports Java as a language to write UDFs, aggregates, and opaque types.
The API is tailored on the Open Database Connectivity (ODBC) interface, which
makes it easy for Java programmers to learn to write extensions for IDS.

You should be aware of the limitations to Java UDRs, including those as follows:

� Commutator functions

A UDR can be defined as the same operation as another one with the
arguments in reverse order. For example, lessthan() is a commutator function
to greaterthanorequal() and vice versa.

� Cost functions

A cost function calculates the amount of resource a UDR requires based on
the amount of system resources it uses.

� Operator class functions

These functions are used in the context of the Virtual Index Interface (VII).
280 Customizing the Informix Dynamic Server for Your Environment

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.start.doc/welcome.htm

� Selectivity functions

A selectivity function calculates the fraction of rows that qualify for a particular
UDR that acts as a filter.

� User-defined statistics functions

These functions provide distribution statistics on an opaque type in a table
column.

� User-defined table functions (Virtual Table Interface (VTI))

These functions are used in the context of creating virtual tables.

These types of functions must be written in C.

Before you start to use Java UDRs, you must configure IDS for Java support. In
brief, you must ensure the following tasks:

� Include a default sbspace (SBSPACENAME onconfig parameter).
� Create a jvp.properties file in $INFORMIXDIR/extend/krakatoa.
� Add or modify the Java parameters in your onconfig file.
� (Optional) Set some environment variables.

A Java UDR is implemented as a static method within a Java class. For example,
to create a quarter() function in Java, see the sample code provided in
Example 7-20.

Example 7-20 Java quarter function

import java.lang.*;
import java.sql.*;
import java.util.Calendar;

public class Util {
 public static String jquarter(Date my_date) {
 Calendar now = Calendar.getInstance();
 now.setTime(my_date);
 int month = now.get(Calendar.MONTH);
 int year = now.get(Calendar.YEAR);
 int q = month / 3;
 q++;
 String ret = year + "Q" + q;
 return(ret);
 }
}

 Chapter 7. Easing into extensibility 281

In this implementation, the jquarter() method takes a date as argument and
returns a character string in the format "yyyyQqq," where "yyyy" represents the
year and "qq" represents the quarter number.

To compile the class, use the javac command from the Java Development Kit
(JDK™). For Util.java, you can use the following command:

javac Util.java

If you are using Java Database Connectivity (JDBC) features or a special class,
such as one that keeps track of state information in an iterator function, you must
add two Java archive (JAR) files in your classpath. The following command
illustrates their use:

javac -classpath
$INFORMIXDIR/extend/krakatoa/krakatoa.jar;$INFORMIXDIR/extend/krakatoa/
jdbc.jar Util.java

After the Java code is compiled, you must put it in a JAR file with a deployment
descriptor and a manifest file. The deployment descriptor allows you to include in
the JAR file the SQL statements for creating and dropping the UDR. In this
example, the deployment descriptor, possibly called Util.txt, can be as shown in
Example 7-21.

Example 7-21 Deployment descriptor

SQLActions[] = {
"BEGIN INSTALL
CREATE FUNCTION jquarter(date)
RETURNING varchar(10)
WITH(parallelizable)
EXTERNAL NAME 'thisjar:Util.jquarter(java.sql.Date)'
LANGUAGE Java;
END INSTALL",

"BEGIN REMOVE
DROP FUNCTION jquarter(date);
END REMOVE"
}

The manifest file, which we call Util.mf, can be as follows:

Manifest-Version: 1.0
Name: Util.txt
SQLJDeploymentDescriptor: TRUE
282 Customizing the Informix Dynamic Server for Your Environment

With these files, you can create the JAR file with the command:

jar cmf Util.mf Util.jar Util.class Util.txt

Before you can create the function, you must install the JAR file in the database.
Identify the location of the JAR file and give it a name that is then used as part of
the external name in the create statement:

EXECUTE PROCEDURE install_jar(
 "file:$INFORMIXDIR/extend/jars/Util.jar", "util_jar");

The install_jar procedure takes a copy of the JAR file from the location given as
the first argument and loads it into a smart binary large object (BLOB) stored in
the default smart BLOB space defined in the onconfig configuration file. The JAR
file is then referenced by the name given as the second argument.

The CREATE FUNCTION statement defines a function jquarter that takes a date
as input and returns a varchar(10). The modifier in the function indicated that this
function can run in parallel if IDS decides to split the statement into multiple
threads of execution.

The external name defines the JAR file where to find the class Util. This name is
the one defined in the execution of the install_jar procedure. The class name is
followed by the static function name and the fully qualified argument name.

At this point, you can use the jquarter() function in SQL statements or by itself in
a statement such as the following example:

SELECT jquarter(order_date), SUM(amount)
FROM transactions
WHERE jquarter(order_date) LIKE "2005%"
GROUP BY 1
ORDER BY 1;

EXECUTE FUNCTION jquarter("09/02/2005");

For simple functions, such as jquarter(), it might be more desirable to use SPL or
C, rather than Java. By its nature, Java requires more resources to run than SPL
or C. However, this does not mean that it is a bad choice for extensibility.

If you do not have demanding performance requirements, it does not matter that
you use Java. In some cases, the complexity of the processing in the function
makes the call overhead insignificant. In other cases, the functionality provided in
Java makes it a natural choice. It is much easier to communicate with outside
processes or access the Web in Java than with any other extensibility interface.
Java is a natural fit to access Web services. Since the UDR runs in a Java virtual
machine (JVM™), you can also use any class library to do processing, such as
 Chapter 7. Easing into extensibility 283

the parsing of XML documents. These libraries do not require any modifications
to run in the IDS engine.

Choosing Java as the primary extensibility language does not exclude using
either SPL or C, so do not hesitate to use Java for extensibility if you feel it is the
right choice.

7.4 Development and deployment

For those of you who are new to IDS extensibility, or if a project requires more
than a few types and functions, IDS provides the DataBlade Development Kit
(DBDK) for the Windows platform. It is available for both 32-bit and 64-bit
Windows environments.

DBDK is a graphical user interface (GUI) that includes the following parts:

� BladeSmith

BladeSmith helps you manage the project and assists in the creation of the
functions based on the definition of the arguments and the return value. It also
generates header files, makefiles, functional test files, SQL scripts,
messages, and packaging files.

� BladePack

BladePack can create a simple directory tree that includes files to be
installed. The resulting package can be registered easily in a database by
using BladeManager. It assumes that you have created your project by using
BladeSmith.

� BladeManager

BladeManager is a tool that is included with IDS on all platforms. It simplifies
the registration, upgrade, and de-registration of DataBlades.

7.4.1 Building a C UDR

The first step in creating a C UDR is to write the code. For example,
Example 7-22 shows the code that implements a quarter() function in C.

Example 7-22 Creating a “C” UDR

#include <mi.h>

mi_lvarchar *quarter(mi_date date, MI_FPARAM *fparam)
{
 mi_lvarchar *RetVal; /* The return value. */
284 Customizing the Informix Dynamic Server for Your Environment

 short mdy[3];
 mi_integer qt;
 char buffer[10];

 /* Extract month, day, and year from the date */
 ret = rjulmdy(date, mdy);
 qt = (mdy[0] - 1) / 3; /* calculate the quarter */
 qt++;
 sprintf(buffer, "%4dQ%d", mdy[2], qt);
 RetVal = mi_string_to_lvarchar(buffer);

 /* Return the function's return value. */
 return RetVal;
}

The first line includes a file that defines most of the functions and constants of
the DataBlade API. Others include files that might be needed in some other
cases. This include file is located in $INFORMIXDIR/incl/public.

The line the follows defines the function quarter() as taking a date as an
argument and returning a character string (CHAR, VARCHAR, or LVARCHAR).
Note that the DataBlade API defines a set of types to match the SQL types. The
function also has an additional argument that can be used to detect whether the
argument is NULL, as well as do other tasks.

The rest of the function is straightforward. We extract the month, day, and year
from the date argument by using the ESQL/C function rjulmdy(), calculate the
quarter, create a character representation of that quarter, and transform the
result into an mi_lvarchar before returning it.

The next step is to compile the code and create a shared library. Assuming that
the C source code is in a file called quarter.c, you can do this with the following
steps:

cc -DMI_SERVBUILD -I$INFORMIXDIR/incl/public -c quarter.c
ld -G -o quarter.bld quarter.o
chmod a+x quarter.bld

The cc line defines a variable called MI_SERVBUILD because the DataBlade
API was originally designed to be available inside the server and within
application clients. This variable indicates that we are using it inside the server.
We also define the location of the directory for the include file we are using.

The ld command created the shared library named quarter.bld and includes the
object file quarter.o. The .bld extension is a convention that indicates that it is a
 Chapter 7. Easing into extensibility 285

blade library. The last command, chmod, changes the file permission to make sure
the library has the execution permission set.

Obviously these commands vary from platform to platform. To make it easier, IDS
has a directory, $INFORMIXDIR/incl/dbdk, that includes files that can be used in
makefiles. These files provide definitions for the compiler name, linker name, and
the different options that can be used. These files are different depending on the
platform in use. Example 7-23 shows a simple makefile to create quarter.bld.

Example 7-23 Makefile to create quarter.bld

include $(INFORMIXDIR)/incl/dbdk/makeinc.linux

MI_INCL = $(INFORMIXDIR)/incl
CFLAGS = -DMI_SERVBUILD $(CC_PIC) -I$(MI_INCL)/public $(COPTS)
LINKFLAGS = $(SHLIBLFLAG) $(SYMFLAG)

all: quarter.bld

Construct the object file.

quarter.o: quarter.c
$(CC) $(CFLAGS) -o $@ -c $?

quarter.bld: quarter.o
$(SHLIBLOD) $(LINKFLAGS) -o quarter.bld quarter.o

To use this makefile on another platform, you must change the include file name
on the first line from makeinc.linux to makeinc with the suffix from another
platform.

We suggest that you install your shared library in a subdirectory under
$INFORMIXDIR/extend. Assume that quarter.bld is under a subdirectory called
quarter. Then the quarter function is created using the following statement:

CREATE FUNCTION quarter(date)
RETURNS varchar(10)
WITH (not variant, parallelizable)
external name "$INFORMIXDIR/extend/quarter/quarter.bld(quarter)"
LANGUAGE C;

Important: Shared objects compiled in the Visual Studio® 8 (or later)
environment on both 32- and 64-bit Windows platforms require that you
embed the manifest for locating the Microsoft C runtime libraries.
286 Customizing the Informix Dynamic Server for Your Environment

You can use the environment variable INFORMIXDIR in the external name since
this variable is defined in the server environment. It is then replaced by the
content of the environment variable to provide the real path to the shared library.
After the function is defined, it can be used in an SQL statement or called directly
as shown previously.

If there is a need to remove the function from the database, it can be done with
the following statement:

DROP FUNCTION quarter(date);

7.4.2 Installation and registration

All DataBlade modules follow a similar pattern for installation and registration.
They are installed in the $INFORMIXDIR/extend directory. The built-in
DataBlades are already installed in the server on their supported platforms. Any
other DataBlade modules must first be installed in the data server. The
installation process is described in detail in the manual DataBlade Modules
Installation and Registration Guide, G251-2276-01. In general, the installation
can include the following steps for DataBlade modules that are available
separately from IDS:

1. Unload the files into a temporary directory. This might require the use of a
utility, such as cpio or tar, or an extraction utility, depending on the platform
that is used.

2. Execute the installation command. This command is usually called install
on UNIX-type platforms (or rpm on Linux) and setup on Windows platforms.

Starting with DataBlade modules released in 2007, such as Spatial 8.21.xC1 and
Geodetic 3.12.xC1, a single installation command can help simplify installation
and provide new capabilities such as console, GUI and silent installation. This
command is in the following format:

blade.major.minor.fixpack.platform.bin

Refer to the Quick Start guides that are provided with the DataBlade module for
more information about how to access these options.

After the installation, there is a new directory under $INFORMIXDIR/extend. The
name reflects the DataBlade module and its version. For example, the current
version of the Spatial DataBlade module directory is named spatial.8.21.UC1.

You must register a DataBlade module into a database before it is available for
use. The registration might create new types, UDFs, and tables and views. The
registration process is made easy through the use of the DataBlade Manager
 Chapter 7. Easing into extensibility 287

utility (blademgr). Example 7-24 shows the process for registering the Spatial
DataBlade module in a database called demo.

Example 7-24 DataBlade registration

informix@ibmswg01:~> blademgr
IDS 11>list demo
There are no modules registered in database demo.
IDS 11>show modules
8 DataBlade modules installed on server IDS 11:
 ifxrltree.2.00 mqblade.2.0
 Node.2.0 c LLD.1.20.UC2
bts.1.00 ifxbuiltins.1.1
 binaryudt.1.0 spatial.8.21.UC1
wfs.1.00.UC1
A 'c' indicates the DataBlade module has client files.
If a module does not show up, check the prepare log.4
IDS 11>register spatial.8.21.UC1 demo
Register module spatial.8.21.UC1 into database demo? [Y/n]
Registering DataBlade module... (may take a while).
Module spatial.8.21.UC1 needs interfaces not registered in database
demo.
The required interface is provided by the modules:
 1 - ifxrltree.2.00
Select the number of a module above to register, or N :- 1
Registering DataBlade module... (may take a while).
DataBlade ifxrltree.2.00 was successfully registered in database demo.
Registering DataBlade module... (may take a while).
DataBlade spatial.8.21.UC1 was successfully registered in database
demo.
IDS 11>bye
Disconnecting...
informix@ibmswg01:~>

In this example, we start by executing the blade manager program. The prompt
indicates with which instance we are working. This example uses the IDS 11
instance. The first command, list demo, looks into the demo database to see if
any DataBlade modules are already installed. The next command, show modules,
provides a list of the DataBlade modules that are installed in the server under
$INFORMIXDIR/extend. The names correspond to the directory names in the
extend directory. The blade manager utility looks into the directories to make sure
they are proper DataBlade directories. This means that other directories can
exist under extend, but are not listed by the show modules command.
288 Customizing the Informix Dynamic Server for Your Environment

You register a DataBlade with the register command. Upon execution, it looks
for dependencies on other modules and provides the ability to register the
required modules before registering the dependent module. After the work is
done, the bye command terminates BladeManager. After the DataBlade module
is registered, you can start using it in the specified database.

A GUI version of BladeManager is also available on Windows.

7.5 DataBlades and Bladelets

When it comes to taking advantage of IDS extensibility, you also need to look at
the available DataBlade modules that come with IDS or are available for a license
fee.

As discussed in Chapter 6, “An extensible architecture for robust solutions” on
page 219, a DataBlade is a packaging of functionality that solves a specific
domain problem. It can include UDTs, UDRs, and user-defined aggregates
(UDAs), tables, views, and potentially a client interface. They are packaged in a
way that makes it easy to register their functionality into a database.

Bladelets and example code
An alternative to using DataBlades is to take advantage of extensions that are
already written, which are known as either Bladelets (small DataBlades) or
example code. These extensions are available in a fashion similar to
open-source code, in that they come with source code but are not supported by
IBM or the original author.

With access to the source code, you can study the implementation and then
enhance it to suit your business requirements and environment. These
extensions can provide key functionality that can save time, cost, resources, and
effort.

7.5.1 DataBlades included with IDS

IDS includes the following DataBlades in the $INFORMIXDIR/extend directory in
the installation:

� Binary DataBlade

With this DataBlade, you can store and index binary data up to 253
characters in length. You can use this DataBlade to store items such as IP
addresses and Globally Unique IDentifiers (GUIDs).
 Chapter 7. Easing into extensibility 289

You can also use it as a bitmap field where several low cardinality fields can
be combined together and searched as a single higher cardinality field. The
DataBlade provides the BINARYVAR and BINARY18 type for doing this. The
BINARYVAR type is a variable length type that supports up to 253 bytes, and
the BINARY18 type is a fixed-length type that stores 18 bytes. It includes such
functions as bit_and, bit_or, bit_xor, and bit_complement.

� MQSeries® DataBlade

This DataBlade enables the exchange of asynchronous messages in a
distributed, heterogeneous environment by offering an interface between IDS
and the WebSphere MQ messaging products installed on the same machine.
WebSphere MQ products are key components of the IBM enterprise service
bus (ESB) to support service-oriented architectures (SOAs).

� Basic Text Search DataBlade

This DataBlade extends IDS so that you can conduct more powerful text
searches than the LIKE or MATCHES SQL operators currently provide. By
using Lucene indexing and query technology, this DataBlade provides the
ability to create a text search index on CHAR, VARCHAR, LVARCHAR,
NVARCHAR, NCHAR, and CLOB columns so that you can do fuzzy, wildcard,
and proximity searches.

� Web Feature Service

This Web Feature Service (WFS) DataBlade provides an Open GeoSpatial
Consortium WFS for exchanging geographic data in XML/GML using a REST
(HTTP GET/POST) interface. It can be used with geospatial mapping tools
that contain a WFS client interface or APIs such as Google Maps. For more
information about this DataBlade, see Chapter 8, “Extensibility in action” on
page 295.

� Node

With the Node DataBlade, you can manipulate hierarchies in a more efficient
manner. This type includes a set of functions, such as isAncestor(),
isDescendant(), isParent(), and so on, that provide information about the
hierarchical relationship of two node types. This information can be useful in
such applications as bill-of-material and personnel hierarchies. In some
cases, you can get more than an order of magnitude faster processing as
compared to traditional relational processing.

� Spatial

The Spatial DataBlade implements a set of data types and functions that
allow for the manipulation of spatial data within the database. By using this
DataBlade, some business-related questions become easier to answer, for
example:
290 Customizing the Informix Dynamic Server for Your Environment

– Where are my stores located in relation to my distributors?

– How can I efficiently route my delivery trucks?

– How can I micro-market to customers fitting a particular profile near my
worst performing store?

– How can I set insurance rates near flood plains?

– Where are the parcels in the city that are impacted by a zoning change?

– Which bank branches do I keep after the merger based on my customer
locations (among other things)?

Locations and spatial objects are represented with new data types in the
database, such as ST_Point, ST_LineString, and ST_Polygon. Such functions
as ST_Contains(), ST_Intersects(), and ST_Within() operate on these data
types.

� Large Object Locator (LLD)

The Large Object Locator module presents a consistent interface for storing
large objects in the database (such as CLOBs or BLOBs) and others outside
the database in the file system. It is a prerequisite for the Excalibur Text
DataBlade and includes the following interfaces:

– SQL interface

This is a set of functions that are used in SQL statements to manipulate
the LLD objects. It includes loading an LLD object from a file or writing an
LLD object to a file.

– API library

This interface is used when there is need to manipulate the LLD objects in
UDFs that are written in C.

– ESQL/C library

With this library, client programs that are written in ESQL/C can
manipulate LLD objects.

7.5.2 Other available DataBlades

The following DataBlades are also available for license:

� Geodetic DataBlade

The Geodetic DataBlade module manages geographical information system
(GIS) data in IDS. It does so by treating the earth as a sphere instead of a flat
map. This is an important difference from the Spatial DataBlade module.
Since the earth is not a perfect sphere, it is seen as an ellipsoid.
 Chapter 7. Easing into extensibility 291

The coordinate system uses longitude and latitude instead of the simple x and
y coordinates that are used for flat maps. On a flat map, distances between
points with the same difference in longitude and latitude are at the same
distance from each other. With an ellipsoid earth, the distance varies based
on the location of the points.

� Excalibur Text DataBlade

The Excalibur Text DataBlade provides the ability to conduct textual searches
of not only traditional database character columns that store comments and
descriptions, but the ability to search documents (such as Microsoft Word or
Adobe® PDF) as well. It supports exact match, phrase search, wildcard
searches, and boolean searches. It also supports the ability to provide
synonyms, stop words (words that you do not want to index), and customized
character sets.

� Web DataBlade

The Web DataBlade module provides a way to create Web applications that
generate dynamic HTML pages. These Web applications are called
appPages. The appPages use SGML-compliant tags and attributes that are
interpreted in the database to generate the desired resulting document.
These few tags allow for the execution of SQL statements, manipulation of
results, conditional processing, and error generation. The creation of pages is
not limited to HTML. Any tags can be used in the generation of a page. This
means that the Web DataBlade module can easily generate XML documents.

� TimeSeries DataBlade

The TimeSeries DataBlade module provides a solution to optimize the
storage and processing of data based on time. It includes features, such as
user-defined timeseries data types, calendars and calendar patterns, regular
and irregular timeseries, and a set of functions to manipulate the data. It
provides advantages over traditional relational tables by eliminating duplicate
information as well as storing the data in time order. There are methods for
accessing and manipulating the TimeSeries data for C, SQL, and Java.

� C-ISAM DataBlade

With this DataBlade, you can access existing ISAM files to add existing
features to your C-ISAM environment or assist in migrating C-ISAM
applications to IDS. It does this by providing a VTI.

� Video Foundation DataBlade

The Video Foundation DataBlade module is an open and scalable software
architecture that allows third-party development partners to incorporate
specific video technologies, such as video servers, external control devices,
compression codes, or cataloging tools, into relational database management
system (RDBMS) applications. It also extends the capabilities of IDS by
providing data types and functions that can be used to manage and index
292 Customizing the Informix Dynamic Server for Your Environment

both content and metadata, while the actual video content can be maintained
elsewhere.

7.5.3 Available Bladelets

Several Bladelets are available on IBM developerWorks that you can incorporate
into your environment. Table 7-2 shows a sample of the available Bladelets.

Table 7-2 Bladelets available on developerWorks

For a more complete list of Bladelets and example code, refer to the following
Web address:

http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db
_downloads.html

Bladelet Description

Exec Provides dynamic SQL functionality with an SPL
procedure.

Flat File Access Method A complete access method that lets you build virtual tables
based on operating system files.

JPEG Image Bladelet Provides a UDT for JPEG images so that you can
manipulate images and extract and search on image
properties.

Multirepresentational
lvarchar Opaque Type

Creates the ids_mrLvarchar opaque type, which stores
character data up to 2 GB.

Regexp Creates routines so that you can manipulate character and
CLOB data by using regular expressions.

Shapes Creates several opaque types for managing simple spatial
data, including R-tree index support.

XSLT Creates new SQL functions that allow transformation of
XML documents from one format to another using XSLT
style sheets.

SqlLib SqlLib is a Bladelet that adds several other database
compatibility functions to IDS. Versions are implemented
in both Java and C languages.
 Chapter 7. Easing into extensibility 293

http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html
http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html

7.6 Summary

In this chapter, we have introduced basic extensibility that uses C, SPL, and Java
and demonstrated how you can use it to enhance your applications to save
development time and database processing time. We also introduced the
DataBlade API and the power that can be harnessed to provide even richer data
types and functions. In addition, we discussed the other DataBlades that can be
added to customize your environment for bigger business advantage.

IDS has the extensibility components and functionality that can help as you
customize IDS for your particular environment.
294 Customizing the Informix Dynamic Server for Your Environment

Chapter 8. Extensibility in action

In previous chapters, we discuss the business case and how to get started with
extensibility in Informix Dynamic Server (IDS). In this chapter, we show how you
use IDS in the following ways:

� Reduce the load on client applications for generating data that is sent to the
database

� Aggregate it in the database so that it does not have to come back to the
client

� Improve performance by using views

We also discuss how to consume Web Services and explain new capabilities for
geospatial mapping and location-based services by using the Web Feature
Service (WFS) available in IDS 11. Finally, we show how you can index your data
in a non-traditional way by using the “sound” of the data.

8

© Copyright IBM Corp. 2008. All rights reserved. 295

8.1 Pumping up your data with iterators

An iterator function is a user-defined function (UDF) that returns to its calling
SQL statement several times, each time returning a value. Iterator functions can
be written in SPL, C, or Java. IDS gathers these return values together in an
active set. To access a value in the active set, you must obtain it from either an
implicit or explicit database cursor. An implicit cursor can be found when calling
the iterator function from a SELECT statement. An explicit cursor is created by
the user for retrieving the values.

The simplest example of an iterator function is an SPL function that uses the
RETURN WITH RESUME construct, which is shown in Example 8-1. This
function takes two arguments that represent the start and end date and returns
all of the business days (defined as Monday through Friday) between them.

Example 8-1 Simple iterator example that uses SPL

CREATE FUNCTION busdaycal(startdate DATE, enddate DATE)
RETURNS DATE
DEFINE loopvar INTEGER;
DEFINE numiters INTEGER;
DEFINE currdate DATE;
LET numiters = enddate - startdate;
LET currdate = startdate;
FOR loopvar = 1 TO numiters

IF weekday(currdate) > 0 AND weekday(currdate) < 6 THEN
RETURN currdate WITH RESUME;

END IF;
LET currdate = currdate + 1;

END FOR;
RETURN currdate;
END FUNCTION;

Sample usage:

EXECUTE FUNCTION busdaycal(‘11-19-2007’,’11-27-2007’);

(expression)

11/19/2007
11/20/2007
11/21/2007
11/22/2007
11/23/2007
296 Customizing the Informix Dynamic Server for Your Environment

11/26/2007
11/27/2007

7 row(s) retrieved.

8.1.1 Writing a C-based iterator function

Iterator functions can also be written in C by using the DataBlade API. Doing so
gives you the ability to construct functions that work with complex data types,
examine data structures, and link to outside libraries to provide your application
with powerful new capabilities. Iterators written in C are called with state
information. There are three possible states of an iterator function:

� SET_INIT

This state is set on the first invocation of the iterator function. When the
function is in this state, such tasks as memory allocation and other
initializations are done. Also, no values that are returned from this state are
included in the active set.

� SET_RETONE

This state is the iteration state where values are returned from the iterator
function to IDS. The iterator function remains in this state until
mi_fp_setisdone(fparam, MI_TRUE) is called.

� SET_END

This state is the end state for the iterator, as triggered by the
mi_fp_setisdone() function discussed later in this section. When the function
is in this state, any memory that was allocated in the SET_INIT portion should
be freed. Also, as with the SET_INIT state, any values that are returned
during this state are not included in the active set.

This state information is passed internally via the MI_FPARAM structure. This
structure is declared for all user-defined routines (UDRs) written in C that can be
accessed from SQL. This structure is commonly used to examine and modify
information such as the type, length, precision, and null state of the arguments
passed to the UDR. It can also examine and modify the same type of information
for the return arguments from the UDR.

The iterator state information is examined and modified by using the following
two functions:

� mi_fp_request(MI_FPARAM)

This function is an accessor function, with which you can obtain the current
state of the iterator. It takes a pointer to an MI_FPARAM structure that was
 Chapter 8. Extensibility in action 297

declared in your function. The return value is one of SET_INIT,
SET_RETONE, or SET_END, which we discussed earlier.

� mi_fp_setisdone(MI_FPARAM, INTEGER)

By using this function, you can terminate processing for the iterator. It takes a
pointer to an MI_FPARAM structure that was declared in your function, as well
as an INTEGER argument that can 0 (MI_FALSE) or 1 (MI_TRUE). After this
function is executed, no further results are returned from the function.

In addition, you can also store the address of private-state information, called
user-state information, in a special field of the MI_FPARAM structure. IDS
passes the same MI_FPARAM structure to each invocation of the UDR within the
same routine sequence. When your user-state information is part of this
structure, your UDR can access this across all invocations. This user-state
information is examined and modified by using the following two functions:

� mi_fp_funcstate(MI_FPARAM)

With this function, you can obtain the user-state pointer from the MI_FPARAM
structure of the UDR. It takes a pointer to an MI_FPARAM structure as its only
argument. It returns a void pointer that should be cast to a pointer to your
user-state information structure.

� mi_fp_setfuncstate(MI_FPARAM, void)

With this function, you can set the user-state pointer in the MI_FPARAM
structure of the UDR. It takes a pointer to the MI_FPARAM structure for your
UDR, as well as a pointer to your user-state information structure. It does not
return any values.

To construct a C-based iterator function:

1. Declare the iterator function so that the return value has a data type that is
compatible with the items in the active set. Therefore, if your iterator function
returns a set of integers, then declare the iterator function mi_integer.

2. Include a pointer to the MI_FPARAM structure as the last parameter of the C
declaration. As discussed earlier, this holds the iterator status, iterator

Important: Make sure that your iterator UDR includes a call to
mi_fp_setisdone(), or your function will execute indefinitely.

Memory protection: When you allocate memory for the user-state
information, you must protect this memory so that it is not reclaimed by IDS
while it is still in use. We recommend that you define a memory duration of
PER_COMMAND used with the mi_dalloc() memory allocation function or
explicitly change the current duration via mi_switch_mem_duration().
298 Customizing the Informix Dynamic Server for Your Environment

completion flag, and the user-state pointer. Remember that this parameter is
not declared in the SQL CREATE FUNCTION definition that we discuss later.

3. In the body of the iterator function, obtain the iterator status from the
MI_FPARAM structure via the mi_fp_request function that we discuss earlier.

4. For each of the iterator status values of SET_INIT, SET_RETONE, and
SET_END, take the appropriate actions as needed by your requirements.
Example 8-2 shows a skeleton of a C-based iterator.

Example 8-2 C skeleton for iterator function

typedef struct myIterState1
{
/* declare the necessary components here */
}myIterState;

mi_integer MyIterator(..., MI_FPARAM *fparam)
{

mi_integer next;
myIterState *myState = NULL;
switch (mi_fp_request(fparam))
{

case SET_INIT:
/* Allocate memory in this function */
next = myIterator_init(..., fparam);
break;

case SET_RETONE:
next = myIterator_retone(fparam);
myState = (myIterState *)mi_fp_funcstate(fparam);
if (end condition)
{

mi_fp_setisdone(fparam, MI_TRUE);
next = 0; /* value is not part of the set */

}
break;

case SET_END:
/* Deallocate any memory allocated in the init function */
next = myIterator_end(fparam);
break;

}
return(next);

}

5. After compiling the file or files that contain your C-based iterator into a shared
library, as discussed in Chapter 7, “Easing into extensibility” on page 263,
 Chapter 8. Extensibility in action 299

register the iterator function as a UDF with the ITERATOR routine modifier in
the CREATE FUNCTION statement, as demonstrated in Example 8-3.

Example 8-3 SQL definition for user-defined iterator function

CREATE FUNCTION myIterator(INTEGER)
RETURNS INTEGER
WITH (ITERATOR)
EXTERNAL NAME “$INFORMIXDIR/extend/myfuncs/myiterfunc.so(MyIterator)”
LANGUAGE C;

The iterator function that you created can be used in either an SQL EXECUTE
FUNCTION statement or an SQL SELECT statement, as demonstrated in
Example 8-4.

Example 8-4 Methods of invoking iterator functions

Method 1:

EXECUTE FUNCTION myIterator(100);

Method 2:

SELECT myit.val FROM TABLE(FUNCTION myIterator(100)) AS myit(val)

8.1.2 Generating data with iterators

One of the principle uses of an iterator function is to generate data directly in IDS
without a client application or needing to store the values that must be returned
to the client. For example, a retailer who has multiple locations might want to use
an iterator function to generate the rows that needed for a SKU-store relationship
table without forming individual rows in the client application.

To help demonstrate how to construct a data generation iterator, Example 8-5 on
page 301 provides a UDR. This iterator function generates telephone numbers
that are given an area code, an exchange, and the number of telephone numbers
requested. For simplicity in the example, we use a simple one-up sequence
starting at 0. However, you can customize this example in a number of ways,
including using IDS collection types, such as SET or LIST for the area codes, and
ranges for the exchange numbers and actual number itself. The iterator function
returns the telephone number as a character field with the format

FUNCTION keyword: The keyword FUNCTION that appears in the TABLE
clause for the SELECT statement is optional in IDS version 11 and later.
300 Customizing the Informix Dynamic Server for Your Environment

“999-999-9999”. For brevity, customary error checks for memory allocations and
boundary conditions have been removed.

Example 8-5 Source code for telephone number generator

#include <mi.h>
#include <strings.h>
/* Declare user-state information structure */
typedef struct TelIterator1 {
mi_integer currval;
mi_integer remvals;
mi_string *initval;
} TelIterState;

UDREXPORT mi_lvarchar *GenTelNumbers(mi_integer npa, mi_integer nxx,
mi_integer numvalues)
{

mi_lvarchar *retval = NULL;
mi_string retstring[13];
mi_string myscratch[5];
TelIterState *TelIterator = NULL;

switch (mi_fp_request(fp))
{

case SET_INIT:
/* Allocate memory for user-state information */
TelIterator = mi_dalloc(sizeof(TelIterState), PER_COMMAND);
memset(TelIterator, 0, sizeof(TelIterState));
TelIterator->currval = 0;
TelIterator->remvals = numvals;
/* All allocations in the structure need same duration */
TelIterator->initval = mi_dalloc(8, PER_COMMAND);
memset(TelIterator->initval, 0, 8);
sprintf(TelIterator->initval,”%03d-%03d-”, npa, nxx);
/* Store the user-information state */
mi_fp_setfuncstate(fp, (void *)TelIterator);
mi_fp_setreturnisnull(fp, 0, MI_TRUE);
break;

case SET_RETONE:
/* Retrieve the user-information state */
TelIterator = (TelIterState *)mi_fp_funcstate(fp);
if (TelIterator->remvals-- == 0)
{

/* We are done, terminate the active set */
mi_fp_setisdone(fp, MI_TRUE);
 Chapter 8. Extensibility in action 301

retval = NULL;
mi_fp_setreturnisnull(fp, 0, MI_TRUE);

}
else
{

memset(retstring, 0, sizeof(retstring));
memset(myscratch, 0, sizeof(myscratch));
sprintf(myscratch,”%04d”, TelIterator->currval++);
strncat(retstring, TelIterator->initval, 8);
strncat(retstring, myscratch, 4);
mi_fp_setreturnisnull(fp, 0, MI_FALSE);
retval = mi_string_to_lvarchar(retstring);

}
break;

case SET_END:
/* Free the memory allocated earlier */
if (TelIterator)

mi_free(TelIterator);
mi_fp_setreturnisnull(fp, 0, MI_TRUE);
break;

}
return(retval);

}

After compiling this file into a shared object, we register it to the database as
shown in Example 8-6.

Example 8-6 Registering the telephone number generator

CREATE FUNCTION GenTelNumbers(INTEGER, INTEGER, INTEGER)
RETURNS LVARCHAR
WITH (ITERATOR)
EXTERNAL NAME
“$INFORMIXDIR/extend/redbook_funcs/IterExample.bld(GenTelNumbers);
LANGUAGE C;

Now that the function is registered, we can use it as shown in Example 8-7.

Example 8-7 Execution of the telephone number generator

SELECT tel.newnumber FROM TABLE(GenTelNumbers(801,438,100))
AS tel(newnumber);

newnumber 801-438-0000
newnumber 801-438-0001
302 Customizing the Informix Dynamic Server for Your Environment

newnumber 801-438-0002
newnumber 801-438-0003
...
newnumber 801-438-0097
newnumber 801-438-0098
newnumber 801-438-0099

100 row(s) retrieved.

8.1.3 Improving performance with iterator functions

Many customers and application vendors use IDS views to help abstract and
sometimes secure access to their data. A common issue faced when using IDS
views is that, when a view definition includes GROUP BY and ORDER BY
elements, the entire view must be materialized in order to apply any filters to
restrict the amount of data coming back to the application.

Since IDS does not provide the capability to parameterize views, we demonstrate
a technique that can be used to provide the equivalent functionality. This
technique involves using a combination of global variables that can be defined by
using an SPL stored procedure and an SPL iterator function that accesses it. A
global SPL variable has the following characteristics:

� Requires a DEFAULT value

� Can be used in any SPL routine, although it must be defined in each routine in
which it is used

� Carries its value from one SPL routine to another until the session ends

� Can be of any type, but a collection data type (SET, MULTISET, or LIST)

It is also possible to use a C UDR that declares a piece of named memory that is
valid for a given session or even for all sessions, but we do not discuss this in
detail here. For simplicity in showing the example, we use SPL. Example 8-8
shows how to define and access a global variable in SPL, as well as sample
usage.

Example 8-8 Defining and using GLOBAL variables in SPL

CREATE PROCEDURE set_sessvar(globvar INTEGER)
DEFINE GLOBAL myglobalint INTEGER DEFAULT 0;
LET myglobalint = globval;

END PROCEDURE;

CREATE FUNCTION use_sessvar()
RETURNS INTEGER
 Chapter 8. Extensibility in action 303

DEFINE GLOBAL myglobalint INTEGER DEFAULT 0;
RETURN((myglobalint * myglobalint) + 2);

END FUNCTION;

Sample usage:

EXECUTE PROCEDURE set_sessvar(1000);

Routine executed.

EXECUTE FUNCTION use_sessvar();

(expression)
1000002

1 row(s) retrieved.

In addition to global variables, IDS has several built-in variables that can also be
referenced in this manner. They come in the form of operators, such as
CURRENT, SYSDATE, TODAY, and USER, but there are also ones that can be
accessed via the SQL DBINFO(), such as DBINFO('sessionid'). These variables
can be useful if you want to control the result set based on the user name that is
using USER, but also can be maintained in a table based on the current session
identifier.

We have now established a communication mechanism with session variables.
Therefore, we can define a simple SPL function that uses a FOREACH loop with
RETURN WITH RESUME to retrieve all of the rows in the query whose key
matches the session level variable that was set. This has the effect of applying
the desired filter to the portions of the query that must be materialized in full prior
to being filtered. This is turn reduces the amount of rows that are typically joined
in a nested-loop join and improves the overall performance of the query. To
demonstrate this technique, we have prepared the sample schema shown in n
Example 8-9.

Example 8-9 Table schema for parameterized view example

CREATE TABLE custs (
id SERIAL NOT NULL,
cust_name VARCHAR(50),
PRIMARY KEY (id));

CREATE TABLE manufacts (
id INTEGER,
name VARCHAR(50),
304 Customizing the Informix Dynamic Server for Your Environment

PRIMARY KEY (id));

CREATE TABLE mobile_phones (
phone_number CHAR(12),
cust_number INTEGER,
manufact_id INTEGER,
PRIMARY KEY (phone_number));

CREATE TABLE call_log (
call_number SERIAL NOT NULL,
phone_number CHAR(12),
called_number CHAR(12),
call_time DATETIME YEAR TO FRACTION(5),
duration DECIMAL(16),
PRIMARY KEY (call_number));

CREATE INDEX c_log_idx ON call_log (phone_number) USING BTREE;

This is a simplified version of a common master-detail schema that involves
views. We used mobile phone billing in the example, but there are many other
types of applications that use this type of relationship. To build data for the
example, we use the information in 8.1.2, “Generating data with iterators” on
page 300, to generate phone numbers.

In Example 8-10, we define the initial view that gets materialized in full. The first
view shown summarizes the call_log table with a count of calls and sum of the
call durations by phone number. The second view combines the first view with
some other metadata to expand the detail. A sample explain output for the query
is also shown.

Example 8-10 View definitions and initial query plan

View definitions:

CREATE VIEW call_summary_view (phone_number, callcnt, total_mins) AS
SELECT phone_number, COUNT(*) AS callcnt, SUM(duration) AS total_mins
FROM call_log
GROUP BY 1;

CREATE VIEW phone_bill_view (customer_name, phone_number,
equip_manufact, number_of_calls, total_minutes) AS
SELECT c.cust_name AS customer_name, m.phone_number, mf.name AS
equip_manufact, csv.callcnt, csv.total_mins
FROM mobile_phones m, custs c, manufacts mf, call_summary_view csv
WHERE m.cust_number = c.id AND
 Chapter 8. Extensibility in action 305

m.phone_number = csv.phone_number AND
m.manufact_id = mf.id;

Sample query:

SELECT * FROM phone_bill_view WHERE phone_number = ‘801-555-0015’

Explain output:

Estimated Cost: 105
Estimated # of Rows Returned: 19

 1) (Temp Table For View): SEQUENTIAL SCAN

 2) informix.mobile_phones: INDEX PATH

 (1) Index Keys: phone_number (Key-First) (Serial, fragments:
ALL)
 Lower Index Filter: informix.mobile_phones.phone_number = (Temp
Table For View).phone_number
 Index Key Filters: (informix.mobile_phones.phone_number =
'801-555-0015')
NESTED LOOP JOIN

 3) informix.manufacts: INDEX PATH

 (1) Index Keys: id (Serial, fragments: ALL)
 Lower Index Filter: informix.mobile_phones.manufact_id =
informix.manufacts.id
NESTED LOOP JOIN

 4) informix.custs: INDEX PATH

 (1) Index Keys: id (Serial, fragments: ALL)
 Lower Index Filter: informix.mobile_phones.cust_number =
informix.custs.id
NESTED LOOP JOIN

As you can see in the explain output in the query, a temporary table is necessary
to materialize the call_summary_view embedded in the definition of the
phone_bill_view.

To improve the query plan, and thus performance, we define the two SPL
functions to set and retrieve a session global variable, as well as a modified view
306 Customizing the Informix Dynamic Server for Your Environment

that uses the iterator function to help subset the data in Example 8-11. This
iterator function essentially replaces the call_summary_view defined in
Example 8-10, by calling the view text in a FOREACH .. RETURN WITH
RESUME loop. This is combined with the phone number that is initialized with
the set_phone_number() procedure. Note that we do not parameterize the
Filter_Call_Detail() function because this gets compiled into the new view. Also
we want the values to come from the session global variables, not from any
parameters that are declared to the function.

Example 8-11 Iterator function and modified view definition

CREATE PROCEDURE set_phone_number(telnumber CHAR(12))
DEFINE GLOBAL globphone CHAR(12) DEFAULT ‘000-000-0000’;
LET globphone = telnumber;

END PROCEDURE;

CREATE FUNCTION Filter_Call_Detail()
RETURNS CHAR(12), INTEGER, DECIMAL

DEFINE GLOBAL globphone CHAR(12) DEFAULT ‘000-000-0000’;
DEFINE cd_phone CHAR(12);
DEFINE cd_callcnt INTEGER;
DEFINE cd_totmins DECIMAL;
FOREACH SELECT phone_number, COUNT(*) AS call_cnt, SUM(duration) AS

total_mins INTO cd_phone, cd_callcnt, cd_totmins FROM call_log WHERE
phone_number = globphone GROUP BY 1

RETURN cd_phone, cd_callcnt, cd_totmins WITH RESUME;
END FOREACH;

END FUNCTION;

CREATE VIEW phone_bill_view_new(customer_name, phone_number,
equip_manufact, number_of_calls, total_minutes) AS
SELECT c.cust_name AS customer_name, m.phone_number, mf.name AS
equip_manufact, cd.callcnt, cd.totmins
FROM mobile_phones m, custs c, manufacts mf,
TABLE(Filter_Call_Detail()) AS cd(phone_number, callcnt, totmins)
WHERE m.cust_number = c.id AND
m.phone_number = cd.phone_number AND
m.manufact_id = mf.id;

Now that we have created a new view that uses this iterator function, we
demonstrate how it is executed in Example 8-12. First, we initialize the value to
pass to the iterator function. Next, we query the new view, still providing a
phone_number to be queried. This is still necessary for the filter to get folded into
the view execution when it attempts to retrieve data from the mobile_phones
table.
 Chapter 8. Extensibility in action 307

Finally, we provide a new EXPLAIN PLAN that shows the difference in execution.
The temporary table that is necessary for the materialized view is now gone and
replaced with a iterator scan. The iterator scan is using an index to retrieve the
summarized call data.

Example 8-12 New query plan that uses the iterator

Variable set up:

EXECUTE PROCEDURE set_phone_number(‘801-555-0015’);

Query:
SELECT * FROM phone_bill_view_new WHERE phone_number = ‘801-555-0015’;

Explain output:

Estimated Cost: 66
Estimated # of Rows Returned: 19

 1) informix.filter_call_detail: ITERATOR SCAN

 Filters: informix.filter_call_detail.phone_number =
'801-555-0015'

 2) informix.mobile_phones: INDEX PATH

 (1) Index Keys: phone_number (Serial, fragments: ALL)
 Lower Index Filter: informix.mobile_phones.phone_number =
informix.filter_call_detail.phone_number
NESTED LOOP JOIN

 3) informix.manufacts: INDEX PATH

 (1) Index Keys: id (Serial, fragments: ALL)
 Lower Index Filter: informix.mobile_phones.manufact_id =
informix.manufacts.id
NESTED LOOP JOIN

 4) informix.custs: INDEX PATH

 (1) Index Keys: id (Serial, fragments: ALL)
 Lower Index Filter: informix.mobile_phones.cust_number =
informix.custs.id
NESTED LOOP JOIN
308 Customizing the Informix Dynamic Server for Your Environment

We have shown that this can be a simple but powerful technique that leverages
the extensibility features of IDS to improve performance when using views.

8.1.4 A challenge

As discussed in 8.1.2, “Generating data with iterators” on page 300, one of the
potential uses of iterator functions is to create new data sets. One of the biggest
challenges faced by developers and database administrators is testing
applications when the data sets are small and do not include all the ranges of
values that should be exercised through the system. It is possible, by using the
DataBlade API, to construct an iterator function that examines the structure of a
table and produces test data based on the data types that it finds.

For example, the iterator function can take a table name, the number of rows
desired, and an unnamed IDS ROW type that represents valid values for each
column. These values can include specific values, ranges, and sequences. The
return from this iterator can be an unnamed ROW type that can be inserted via
an SQL INSERT statement.

This type of function would be enjoyed by many others in the IDS community. We
encourage you to either submit your completed function to the International
Informix User’s Group (IIUG) Software Repository or to IBM via developerWorks
at the following address:

https://www.ibm.com/developerworks/secure/myideas.jsp?start
=true&domain=

In this section, we have discussed creating iterator functions using SPL and C
that can be used to generate data or to improve performance by subsetting
complex views. By using this functionality, you can truly pump up your data, not
only to save processing time on the client, but create data in larger volumes that
can help you test applications and database layouts and tune configurables.

8.2 Summarizing your data with user-defined
aggregates

An aggregate is a function that iterates, or operates repeatedly, over a group of
rows and returns one value to a query. For each input row, an aggregate iteration
receives a column value (called the aggregate argument), updates a variable
containing the state of the aggregate so far, and returns this state variable as an
intermediate result. After receiving the last input value, the aggregate returns the
final result.
 Chapter 8. Extensibility in action 309

https://www.ibm.com/developerworks/secure/myideas.jsp?start=true&domain=

One of the more powerful features in IDS extensibility is its ability to define a new
method of aggregating your data. A user-defined aggregate (UDA) is similar in
concept to any other aggregate function that is available on the server, such as
COUNT, AVG, and SUM. IDS supports extensions of aggregates in the following
ways:

� Extensions of built-in aggregates
� User-defined aggregates

8.2.1 Extensions of built-in aggregates

Extensions of built-in aggregates are done by overloading internal IDS
comparison and arithmetic functions and operators. This means that if you define
a new data type, you can create the functions that will implement operators such
as equal (=) and greater than (>). This is done by providing functions with special
names, which can include the following functions:

� concat
� divide
� equal
� greaterthan
� greaterthanorequal
� lessthan
� lessthanorequal
� minus
� negative
� notequal
� plus
� positive
� times

Table 8-1 describes the various built-in aggregates and the operators that
support them.

Table 8-1 Operators for IDS built-in aggregates

Aggregate Required operators Return type of
aggregate

AVG plus(udt, udt)
divide (udt,integer)

Return type of divide()

COUNT No new operators are required Integer

COUNT DISTINCT equal(udt, udt) Boolean

DISTINCT (or UNIQUE) compare(udt, udt) Boolean
310 Customizing the Informix Dynamic Server for Your Environment

To extend an existing IDS aggregate with a new data type, you must write the
appropriate C-based UDR or UDRs that implement the required operator
functions for the new data type and register them by using SQL CREATE
FUNCTION statements. For a detailed example of how to implement this type of
aggregate, see Chapter 15 of the IBM Informix DataBlade API Programmer’s
Guide, G229-6365.

8.2.2 User-defined aggregates

Not all possible aggregations have been provided by IDS. That is why IDS also
includes the ability to create UDAs. This type of aggregate can be used, for
example, to generate XML from a table stored in an IDS database or to union
spatial geometries together to form new geometries. UDAs can be defined for
almost all IDS data types (built-in and opaque) with the exception of the following
types:

� Collection data types (LIST, MULTISET, SET)
� Unnamed row types
� Smart-large-object data types (CLOB or BLOB)
� Simple-large-object data types (TEXT or BYTE)

In order to define a UDA, you must provide aggregate support functions that
implement the tasks of initializing, calculating, and returning the aggregate result.

MAX greaterthanorequal(udt,udt) Boolean

MIN lessthanorequal(udt,udt) Boolean

RANGE lessthanorequal(udt,udt)
greaterthanorequal(udt,udt)
minus(udt,udt)

Return type of minus()

SUM plus(udt,udt) Return type of plus()

STDEV times(udt,udt)
divide(udt,integer)
plus(udt,udt)
minus(udt,udt)
sqrt(udt)

Return type of divide()

VARIANCE times(udt,udt)
divide(udt,integer)
plus(udt,udt)
minus(udt,udt)

Return type of divide()

Aggregate Required operators Return type of
aggregate
 Chapter 8. Extensibility in action 311

One of the principal concepts behind the UDA implementation is that it must
operate within the IDS multi-threaded architecture. This means that it must be
able to merge partial results that might be created by multiple readers into a final
result. There are four types of aggregate support functions:

� INIT
� ITER
� COMBINE
� FINAL

The purpose of the optional INIT aggregate function is to return a pointer to the
initialized aggregate state. Whether the INIT function is required depends on
whether the aggregate has a simple state or non-simple state.

A simple state is an aggregate state variable whose data type is the same as the
aggregate argument. This is enough in aggregates such as the built-in aggregate
SUM(), which requires only a running sum as its state. However, the AVG()
built-in aggregate requires both a sum and a running count of records processed.
Therefore, it is said to have a non-simple state, because special processing is
needed after all the iterations to produce the final result.

As with the iterator functions described in 8.1.2, “Generating data with iterators”
on page 300, the state must be maintained in the PER_COMMAND memory
pool, so that the different threads have access to the state.

User-defined aggregate: MEAN()
Consider an example of creating an aggregate called MEAN(), which computes a
mean value of the columns that have the DECIMAL data type. In the examples
that follow for MEAN(), some error checking and code path efficiencies have
been removed to simplify the examples.

In Example 8-13, we define a structure that holds the state of the aggregate to be
used during the calculation. This structure holds the running sum and the count
of the records used, and must be passed via an mi_pointer C data type. When
this and the other support functions are registered later, we use an equivalent
SQL POINTER type in the definition of the functions, for both arguments and
return variables.

Example 8-13 INIT aggregate function for MEAN()

typedef struct Dag_state_struct {
mi_decimal sum;
mi_integer count;

} DagState_t;

DagState_t *dagStateInitMean(void)
312 Customizing the Informix Dynamic Server for Your Environment

{
DagState_t *pDagState;
mi_integer errCode;

pDagState = (DagState_t *)mi_dalloc(sizeof(DagState_t),
PER_COMMAND);

errcode = deccvint(&pDagState->sum, 0);
pDagState->count = 0;
return(pDagState);

}

(void) dagStateFree(DagState_t *pDagState)
{

if (pDagState)
mi_free(pDagState);

}

UDREXPORT mi_pointer MeanInitializedec(mi_decimal *dummyArg, MI_FPARAM
*fp)
{

mi_pointer retval;
mi_integer errCode;

retval = (mi_pointer)dagStateInitMean();
return(retval);

}

The ITER aggregate function performs the sequential aggregation or iteration for
the UDA. It merges the single aggregate argument into the partial result, which
the aggregate state contains. Example 8-14 shows how we implement the ITER
function for the MEAN() aggregate that we previously described.

Example 8-14 ITER aggregate function for MEAN()

UDREXPORT mi_pointer MeanIteratedec(mi_pointer State, mi_decimal
*RowValue, MI_FPARAM *fp)
{

mi_pointer retval;
mi_integer errCode;

Non-simple states: There are multiple types of non-simple states that an
aggregate can use, including single-valued state and opaque-type state, in
addition to the pointer-value state discussed in this example. Refer to
Chapter 15 in the IBM Informix DataBlade API Programmer’s Guide,
G229-6365, for further discussion about these other non-simple states.
 Chapter 8. Extensibility in action 313

((DagState_t *)State)->count++;
errCode = decadd(&((DagState_t *)State)->sum, RowValue,

&((DagState_t)State)->sum);
retval = State;
return(retval);

}

With the COMBINE aggregate function, the UDA can execute in a parallel query.
In IDS, when a query that contains a UDA is processed in parallel, each thread
operates on a subset of selected rows. The COMBINE aggregate function
merges the partial results from two such subsets. It ensures that the result of
aggregating over a group of rows sequentially is the same as aggregating over
the two subsets of rows in parallel and then combining the results.

It is important to note that a COMBINE function can be called even when a query
is not parallelized. Therefore, you must provide a COMBINE function for every
UDA. Example 8-15 shows a COMBINE function for our implementation of the
MEAN() aggregate.

Example 8-15 COMBINE function for MEAN()

UDREXPORT mi_pointer MeanCombinepointerdec(mi_pointer State1,
mi_pointer State2, MI_FPARAM *fp)
{

mi_pointer retval;
mi_integer errCode;

errCode = decadd(&((DagState_t *)State1)->sum, &((DagState_t
)State2->sum, &((DagState_t)State1)->sum);

((DagState_t *)State1)->count += ((DagState_t *)State2)->count;
dagStateFree((DagState_t) State2);
retval = State1;
return(retval);

}

In this example, we take two aggregate states (State1 and State2), which
represent two possible parallel threads, and merge the results. The COMBINE
function is called for each pair of threads that IDS allocates. There is no need to
write functions to handle more than two states. IDS simply uses the COMBINE
function for states repeatedly until only one state remains. Before the function
returns, it must also release any resources that were associated with one of the
partial results.
314 Customizing the Informix Dynamic Server for Your Environment

The optional FINAL aggregate function performs the post-iteration tasks for the
UDA. In this function, such tasks as type conversion and post-iteration
calculations are performed, as well as the deallocation of any memory resources
that were allocated in the INIT function, if specified. Our example MEAN()
aggregate defines an INIT function, due to its non-simple aggregate state.
Example 8-16 shows how we implement the FINAL function. Our example takes
the State pointer that was produced by the earlier COMBINE function and returns
a DECIMAL type. Note that we must allocate memory for the return type.

Example 8-16 FINAL function for MEAN()

UDREXPORT mi_decimal *MeanFinalpointerdec(mi_pointer State, MI_FPARAM
*fp)
{

mi_decimal *retval;
mi_decimal divisor;
mi_integer errCode;
retval = (mi_decimal *)mi_zalloc(sizeof(mi_decimal));
if (((DagState_t *)State)->count == 0)
{

mi_fp_setreturnisnull(fp, 0, MI_TRUE);
}
else
{

mi_fp_setreturnisnull(fp, 0, MI_FALSE);
errCode = deccvint(((DagState_t *)State)->count, &divisor);
errCode = decdiv(&((DagState_t *)State)->sum, &divisor, retval);

}
dagStateFree((DagState_t *) State);
return(retval);

}

Now that we have created all the supported UDRs for our MEAN() aggregate, we
must compile these functions into a shared-object library and register them via
the SQL CREATE FUNCTION statement. Example 8-17 shows how to register
these four functions.

Example 8-17 Registering the aggregate support functions

CREATE FUNCTION MeanInitialize(DECIMAL)
RETURNS POINTER
WITH (HANDLESNULLS, PARALLELIZABLE)
EXTERNAL NAME
“$INFORMIXDIR/extend/redbook_funcs/DecimalAggs.bld(MeanInitializedec)”
LANGUAGE C;
 Chapter 8. Extensibility in action 315

CREATE FUNCTION MeanIterate(POINTER, DECIMAL)
RETURNS POINTER
WITH (PARALLELIZABLE)
EXTERNAL NAME
“$INFORMIXDIR/extend/redbook_funcs/DecimalAggs.bld(MeanIteratedec)”
LANGUAGE C;

CREATE FUNCTION MeanCombine(POINTER, POINTER)
RETURNS POINTER
WITH (PARALLELIZABLE)
EXTERNAL NAME
“$INFORMIXDIR/extend/redbook_funcs/DecimalAggs.bld(MeanCombinepointerde
c)”
LANGUAGE C;

CREATE FUNCTION MeanFinal(POINTER)
RETURNS DECIMAL
WITH (PARALLELIZABLE)
EXTERNAL NAME
“$INFORMIXDIR/extend/redbook_funcs/DecimalAggs.bld(MeanFinalpointerdec)
”
LANGUAGE C;

Finally, we can create our MEAN() aggregate via the SQL CREATE
AGGREGATE statement, as shown in Example 8-18.

Example 8-18 User-defined aggregate definition

CREATE AGGREGATE Mean WITH (
INIT = MeanInitialize,
ITER = MeanIterate,
COMBINE = MeanCombine,
FINAL = MeanFinal

);

HANDLESNULLS: The modifier HANDLESNULLS is omitted from
registration of the INIT function because we are not considering NULL to be
valid values in the set. During the UDA execution, if a NULL value is
encountered, the ITER function is not invoked. If the HANDLENULLS modifier
is provided, then the ITER function is invoked, and there should be a method
for handling the NULL value in that function. The INIT function must always be
declared with HANDLESNULLS because it always takes a NULL dummy
argument.
316 Customizing the Informix Dynamic Server for Your Environment

Example 8-19 shows how the MEAN() aggregate is executed on a table called
calls, which contains a column called duration of type DECIMAL.

Example 8-19 Executing the MEAN() aggregate

SELECT MEAN(duration) FROM calls;

mean
98.9553000000000

1 row(s) retrieved.

By using this template, we can also define aggregates to compute the median
and mode of a set of DECIMAL values.

User-defined aggregate: MedianExact()
The median of a set of numbers is a value that is greater than or equal to half the
values in the set and less than or equal to half the values. With an odd number of
values, the median is unambiguously the middle value of the ordered data
values. But, with an even number of values, either the value nearest the center,
or a value between them, can qualify as the median.

To calculate the median exactly, you must store every value in the aggregate
state. Because the UDA cannot know in advance the number of values in the set,
the state must be a variable size, allocated dynamically as needed with the
following aggregate:

mi_dalloc(size, PER_COMMAND)

For the sample implementation (which is available as a download from the IBM
Redbooks Web site, as explained in Appendix A, “Additional material” on
page 465), the state is a structure that contains a count of values and a pointer to
the values. The values are stored in a binary tree. Each node in the tree contains
a decimal value, the count of rows containing that value, and pointers to two
nodes with a lesser and greater value, respectively.

This tree structure allows the ITER function to add values to the state in time of
order N*log(N) in the best case, where N is the number of values (order N2 in the
worst case, that is ordered incoming data). However, it is most easily navigated
by a recursive function. In order not to exceed the size of the stack that IDS has
allocated for the function, the recursive functions must use the DataBlade API
mi_call() function to call themselves.

The count field in the node allows the UDA to store repeated values in one node,
reducing memory consumption.
 Chapter 8. Extensibility in action 317

The INIT function allocates the state structure and initializes counters to zero.

The ITER function compares the incoming value to the value in the first or root
node. If the incoming value is less than that in the node, the function recursively
calls itself with the left child node. If the value is greater than in the node, the
function recursively calls itself with the right child node. It repeats this until either
of the following situations occurs:

� The values compare equal. (The count is incremented.)

� A node is not found or NULL. (A node is allocated with the mi_dalloc()
function and initialized with the incoming value and a count of 1.)

The COMBINE function selects one of the two given state structures as the
source and the other as the target. It takes each node from the source tree and
moves it to the target tree. A move adds the node to the target if it did not already
exist. Otherwise, the count in the source node is added to that of the target, and
the source node can be freed. The function navigates down both source and
target trees recursively. When finished, the source tree is empty, and the source
state can be freed.

The FINAL function takes the number of values maintained in the state and
divides it by two to get the position of the value to retrieve. It then navigates the
tree in ascending order, using the count field in each node to keep track of the
number of values visited. When it reaches the correct position, it retrieves the
current value. Before returning, it frees the state. Both the navigation and the
freeing of the state tree are recursive.

User-defined aggregate: MedianApprox()
An exact median aggregate requires memory proportionate to the number of
values. In many applications, an approximate median is good enough. There are
several algorithms that compute approximate quantiles of a data set in limited
memory.

This UDA takes a parameter to indicate the size of memory to be allocated. This
is the memory size per invocation.

The INIT function allocates memory buffers of the given size for the incoming
data. However, this aggregate can operate in parallel, and therefore, the INIT
function can be called multiple times, allocating buffers of this size each time. A

Quantile: Quantiles, or N-tiles, are the values at evenly-spaced positions in an
ordered data set. (q-1) quantiles divide the data set into q equal-sized pieces.
A median divides a data set into two pieces, quartiles are divided into four
pieces, percentiles are divided into 100, and so on.
318 Customizing the Informix Dynamic Server for Your Environment

UDA cannot easily know how many times its INIT function is called. Therefore,
the UDA would consume more memory than intended.

The ITER function adds a value to a buffer. If the buffers are full, the function
collapses the data to fit into fewer buffers, by sorting it and taking evenly-spaced
samples. This frees the remaining buffers to receive new data.

The COMBINE function combines and frees buffers, similar to the collapse in
ITER.

The FINAL function retrieves the median value, frees the buffers, and returns.

Enhancements
A more advanced UDA can take a parameter for the number of quantiles (1, 3,
100, and so on), and return those quantiles.

Some quantile algorithms enable you to compute the variance for a given
memory size or vice versa. Therefore, another more advanced UDA can take a
parameter indicating the allowed error in the result and compute the required
memory size from it.

User-defined aggregate: Mode()
The mode of a data set is the value that occurs most frequently. This UDA must
keep every value in its state until the FINAL function. In doing so, it borrows data
structures and algorithms from the MedianExact() UDA.

The INIT function allocates the state structure and initializes counters to zero,
which is similar to MedianExact(), except that Mode() does not need a total count
of values.

The ITER function adds the incoming value to the state, which is the same as in
MedianExact().

The COMBINE function combines two states, similar to MedianExact(). (Again,
Mode() has no need for a total count.)

The FINAL function navigates the state tree, saving the node with the highest
count as far as it goes. The difference from MedianExact() is that Mode() must
navigate the entire state tree, not half of it.

Summary of UDA
In this section, we have discussed how UDAs can be used to put together your
data in new ways. By doing so, you can reduce the amount of time spent
transmitting data to the client to compute these types of aggregates as well as
 Chapter 8. Extensibility in action 319

take advantage of the IDS multithreaded architecture to compute them more
quickly.

8.3 Integrating your data with SOA

At a simplistic level, a service-oriented architecture (SOA) is a collection of
services on a network where the services communicate with one another in order
to carry out business processes. The communication can either be data passing,
or it can trigger several services implementing an activity. The services are
loosely coupled, have platform independent interfaces, and are fully reusable.

As we discuss and introduce in Chapter 7, “Easing into extensibility” on
page 263, IDS 11 provides a complete set of features to extend the database
server. It includes support for new data types, routines, aggregates, and access
methods. With this technology, in addition to recognizing and storing standard
character and numeric-based information, the engine can, with the appropriate
access and manipulation routines, easily integrate itself into any simple or
complex SOA environment.

There are several ways to integrate IDS 11 into an SOA framework. You must
differentiate between service providing and service consumption in addition to
foundation technologies, such as XML support and reliable messaging
integration. With the industry leading extensible architecture and features that
are unique to Version 11, you can easily achieve an SOA integration.

8.3.1 SOA foundation technologies in IDS 11

SOAs rely on an XML-based messaging exchange. Although it is not required to
be provided by the database server for SOA integration, having XML generating
functions built into the server can dramatically help with the integration
development tasks. IDS 11 provides a sophisticated set of XML-related functions
to create and transform XML-formatted documents.

Quite often SOA frameworks need more reliable network infrastructures in
addition to the established Internet protocols, such as HTTP or HTTPS in
combination with SOAP. One example of a reliable messaging infrastructure is
the WebSphere MQ messaging layer. IDS 11 supports the integration into a
WebSphere MQ setup through the bundled WebSphere MQ DataBlade. For
more information, refer to Chapter 10, “The world is relational” on page 401.
320 Customizing the Informix Dynamic Server for Your Environment

8.3.2 Service providing with IDS 11

In most SOA scenarios, the integration work is done on the application level and
not so much on the database server level. Sometimes, it might be required to
provide SOA-compliant access on an IDS database-object level.

IDS 11 developers have several options for providing Web services. Most of them
use one of the many application development options, such as those that follow,
that are available for IDS:

� Java-based Web services (through the IDS JDBC driver)
� .NET 2.0-based Web services (through the new IDS .NET 2.0 Provider)
� IBM Enterprise Generation Language (EGL)-based Web services
� PHP, Ruby, Perl, and C/C++ Web services

In addition to the typical, application development language-based Web services
listed, IDS 11 is also supported by the IBM Web Services Object Runtime
Framework (WORF), which allows rapid Web service development against
IDS 11 based on SQL statements, such as SELECT and INSERT, and stored
procedure calls.

Finally, with the introduction of the Web Feature Service for geospatial data,
IDS 11 is capable of providing an Open GeoSpatial Consortium
(OGC)-compliant Web service (just add an HTTP server to IDS) to integrate
easily with geospatial applications that are WFS compliant. For more information
about WFS, see 8.4, “Publishing location data with a Web Feature Service” on
page 324.

8.3.3 Service consumption with IDS 11

In addition to providing Web services, it can be interesting for an application
developer to integrate existing Web services. Such Web services can be either
special business-to-business scenarios or public accessible services, such as
currency conversion, stock ticker information, news, weather forecasts, search
engines, and many more. You can have dynamic access to an official currency
conversion service on a database level if the application must deal with this
information. Or, what if an application wants to relate actual business data stored
in an IDS database against news from news agencies?

The advantages of having Web services accessible from SQL include easy
access through SQL and standardized APIs (for example, Open Database
Connectivity (ODBC) and Java Database Connectivity (JDBC)). They also
include moving the Web service results closer to the data processing in the
database server, which can speed up applications, and providing Web service
access to the non-Java or non-C++ developers.
 Chapter 8. Extensibility in action 321

Due to the extensible architecture in IDS 11, such as the DataBlade API (for
C/C++-based extensions) or the J/Foundation features (for the Java-based
extension), it is easy to develop Web service consumer routines that can be run
within the IDS context.

In Figure 8-1, a simple C UDR is accessing a public currency exchange Web
service to retrieve up-to-date currency exchange rates (in our example, from
USD to EUR) and calculate the euro value (PRICE_EURO column) dynamically.

Figure 8-1 Web Feature Services

Example 8-20 illustrates the C source code of the UDR in Figure 8-1.

Example 8-20 C source code for Web service currency exchange

#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <ifxgls.h>
#include <mi.h>

#include "CurrencyExchange.h"
322 Customizing the Informix Dynamic Server for Your Environment

#include <soapH.h>
#include "CurrencyExchangeBinding.nsmap"

UDREXPORT mi_double_precision *CurrencyExchange
(
mi_lvarchar *country1,
mi_lvarchar *country2,
MI_FPARAM *Gen_fparam
)
{

mi_double_precision *Gen_RetVal;
MI_CONNECTION *Gen_Con;
struct soap *soap;
float result = (float)0.0;

Gen_Con = NULL;

soap = (struct soap*)mi_alloc(sizeof(struct soap));
if (soap == 0)
{

DBDK_TRACE_ERROR("CurrencyExchange", ERRORMESG2, 10);
}

soap_init(soap);

Gen_RetVal =
(mi_double_precision *)mi_alloc(sizeof(mi_double_precision));

if(Gen_RetVal == 0)
{

DBDK_TRACE_ERROR("CurrencyExchange", ERRORMESG2, 10);
}

if (soap_call_ns1__getRate(soap, NULL, NULL,
mi_lvarchar_to_string(country1),
mi_lvarchar_to_string(country2),
&result) == SOAP_OK)
*Gen_RetVal = result;

else
mi_db_error_raise(Gen_Con, MI_EXCEPTION, "SOAP Fault");

return Gen_RetVal;
}

Further reading
For more details about how to integrate IDS with an SOA environment, refer to
the Redbooks publication Informix Dynamic Server V10 . . . Extended
Functionality for Modern Business, SG24-7299.
 Chapter 8. Extensibility in action 323

8.4 Publishing location data with a Web Feature Service

Since 1997, IDS has included the ability to store, manipulate, and retrieve
geographic data by using the IBM Informix Spatial and Geodetic DataBlades. A
full treatment of this topic is beyond the scope of this book, but we cover enough
background here to set the stage for a discussion of the WFS.

Briefly, the WFS is an open standard for retrieving and applying insert, update,
and delete transactions to geographic data through an HTTP- and XML-based
protocol. With IDS 11, IBM has introduced the WFS DataBlade to implement this
standard. The main purpose of this section is to describe the WFS DataBlade
and its use in detail. However, we begin with an overview of spatial data, its uses,
and the DataBlades that help us manage this type of data.

8.4.1 How organizations use spatial data

Let us focus on maps, addresses, and geographic information. Think of national
government departments such as geologic or topographic surveys, weather
services, environmental protection departments, and military and intelligence
agencies. Also consider local or regional government functions such as land
parcel ownership records, public works, and transportation. In addition, include
enterprises in industries such as power and water utilities, forestry, and oil and
minerals.

These organizations have long relied on their own ability to survey and collect
geographic information to create their maps. Collectively they have developed
specialized tools and techniques to do so, including software tools for managing
the amassed data. The general term for these software tools is geographic
information system (GIS). An entire industry has sprung up around this,
providing tools, data, and services for everything from basic map display to
advanced editing, cartographic publishing, and geographic processing and
analysis.

Alternatively, many commercial and government enterprises do not have map
making as their major purpose, but they manage geographic information
nonetheless. Their enterprise databases all contain location information of one
kind, which is addresses for customers, subscribers, members, taxpayers,
suppliers, office or franchise locations, and so on. They apply quasi-spatial
techniques to them, aggregating information by city, county, state, or region;
matching customer to service technician or salesperson by city; setting delivery
fees or insurance premiums by postal code; and so on.

Unfortunately, addresses and postal codes themselves do not support many
kinds of useful spatial analysis. They cannot tell us the sites that are closest to a
324 Customizing the Informix Dynamic Server for Your Environment

given location, the nearest cross street, the number of customers that live within
a given straight-line or drive-time distance, or the insured properties within the
projected path of an approaching storm. For this, the addresses must first be
converted to the universal currency used in a GIS, which is spatial coordinates.
Spatial coordinates are numeric values that define a point location object that
can be plotted in a coordinate reference frame and manipulated using
mathematical techniques.

Fortunately, for most countries, data and services are available that make
possible the conversion from text-based address to coordinate-based point
location, which is called geocoding. A full discussion of geocoding is beyond the
scope of this book. For our purposes, it is enough to know that we can turn
addresses into point locations.

Geographic technology and mainstream IT
When our addresses become geographic point locations, we can apply all the
same GIS techniques that are developed for the map-making industries.
Because the addresses live in enterprise databases, those same databases
must manage the geographic point objects, and the GIS tools must support those
databases. GISs have traditionally been stand-alone applications that support
specialized users and departments. Meanwhile, the map-making organizations
that use them have been moving toward integrating these capabilities with
enterprise-level functions and IT systems. Again, this requires that enterprise
databases handle geographic data, and that GIS tools take advantage of that.

Both developments have led to the evolution of GIS from a specialized niche to
an integrated aspect of mainstream IT, and to the addition of geographic, or
spatial, data management capabilities to enterprise-level database products.
Data server vendors, such as IBM have, teamed up with GIS software vendors,
such as ESRI and MapInfo (now a unit of Pitney Bowes), to make the integration
as seamless as possible.

Recently, the trend toward mainstream use of geographic technologies and map
visualization has accelerated. Mapquest, Google, Yahoo, and Microsoft mapping
and route planning sites have put the power of this approach in the hands of the
general public. Even corporate CEOs are now asking their IT departments why
they cannot see their own data this way. Mashup and Web services
developments have made advanced capabilities easier to access and integrate
than ever before. They have raised expectations that we can apply them to all our
business processes and data. IDS is meeting the challenge with new capabilities,
such as the WFS DataBlade, building on the spatial data management
foundation it has had for over a decade. Let us now look at this foundation.
 Chapter 8. Extensibility in action 325

8.4.2 Maps and globes: The Spatial and Geodetic DataBlades

Extensibility gives us the power to match the data server’s capabilities to the
application problem domain. In this case, that domain is the representation
(physical or human-defined) of objects (buildings, pipes, addresses, countries,
parcels, watersheds, weather systems, mineral deposits, mobile phones,
vehicles, and so on) in the real world as geometric shapes referenced to a
coordinate system that describes their location on the surface of the earth. Thus,
the location indicated by an address, or recorded by a GPS device, becomes a
point. A road, pipeline, or stream is represented by a linear object that consists of
connected, straight line segments. A parcel, county, or flood zone is a polygon.

Of course, an integral part of the representation of a real-world object is
information about its non-spatial characteristics. Such characteristics include the
name, size, value, color, owner, and many more items that can usually be
encoded as traditional alphanumeric values. In GIS parlance, the entire data
representation, spatial and nonspatial, of a real-world thing is a feature, and
therefore, the name of the standard, which is the Web Feature Service. A
feature’s database equivalent is a row, either from a single table or constructed
as the result of a join.

Interfaces and standards
There are many ways to design an interface for managing geographically
referenced geometric shapes. For example, you can consider which the shapes
to allow, what to call them, the methods and predicates they should support, and
how to encode them in binary and ASCII form. Fortunately, standards are
emerging for this. The reigning standard for geographic data in SQL databases is
the OpenGIS Implementation Specification for Geographic information - Simple
feature access - Part 2: SQL option, which is commonly known as the Simple
Feature Specification (SFS), from the OGC.

For more information, refer to the following Web address:

http://www.opengeospatial.org/standards/sfs

Since the background to this is the map-making tradition that underlies nearly all
GIS practices, the specification is for shapes in the two-dimensional plane only,
where straightforward Euclidian geometry (the kind taught in secondary school)
applies. The term simple here refers to the limitation that each feature has a
single geometric representation that is an instance of one of the types defined in
the standard. There is no provision for managing objects that are complex, that
is, composed of multiple geometric shapes (each potentially with its own set of
attributes), but treated as a single value for programming and data transfer
purposes.
326 Customizing the Informix Dynamic Server for Your Environment

http://www.opengeospatial.org/standards/sfs

The Spatial DataBlade is a faithful implementation of the SFS. In addition, it adds
some functionality that allows for tighter integration with the software from one
particular GIS software partner ESRI. We look at this DataBlade first. Then we
briefly discuss the Geodetic DataBlade, which views the world rather differently,
and therefore does not conform to the same standard interface (although it
incorporates elements of the standard). What follows is not a substitute for the
respective user guides of these products, but enough of a summary to help you
understand the WFS DataBlade without referring to the more extensive
documentation.

The Spatial DataBlade
As you would expect after reading Chapter 6, “An extensible architecture for
robust solutions” on page 219, the Spatial DataBlade introduces new data types
(UDTs), functions (UDRs), and various other items including aggregates (UDAs),
casts, and index support. The spatial data types are arranged in a type hierarchy,
as illustrated in Figure 8-2.

Figure 8-2 Spatial DataBlade type hierarchy

The basic types of geometry, which are point, line (here called linestring), and
polygon, should be familiar. Note the following aspects of the type hierarchy as
well:

ST_Geometry

ST_Curve ST_Surface
ST_Geom-
Collection

ST_Multi-
Surface

ST_Multi-
Curve

ST_LineString ST_Polygon

ST_Point

ST_Multi-
Polygon

ST_Multi-
LineString

ST_Multi-
Point

Abstract Types

Instantiable Types
 Chapter 8. Extensibility in action 327

� The additional types shown on the right side are collections of the ones on the
left. They are defined as separate types because SQL does not have an
efficient programming model for collections that need to be handled as atomic
values.

� All types derive from the supertype ST_Geometry, which mostly supports
function polymorphism. Any function defined on the supertype is available for
the subtype, or any combination of subtypes. Thus, the boolean function
ST_Intersects(ST_Geometry, ST_Geometry), which determines whether two
geometric shapes have any points in the plane in common, works for two
polygons, a line and a multipolygon, any other combination of subtypes.

� Some types are defined for logical consistency and future expansion but do
not play a role in table definition or queries. For example, a new subtype of
ST_Curve, such as ST_CircularArc, can be defined in the future. Currently,
however, all curves are represented by strings of concatenated (straight) line
segments, and the same goes for the boundaries of polygons.

� We can define a column of type ST_Geometry and populate it with any
combination of points, lines, and polygons (an ST_Geometry value is always
an instance of one of the subtypes). In practice, this is rarely done, and most
GIS software requires that each column contain only one type of geometry.

The SFS defines specific formats for representing values of these types in binary
and text form. With no hint of modesty, these are designated Well-Known Binary
(WKB) and Well-Known Text (WKT), respectively. For example, the WKT string in
Example 8-21 defines a line segment. The choice of separators (spaces and
commas) and delimiters (parentheses) is determined by the standard. The
format is self-explanatory. A line segment is defined by two points (vertices, the
plural form of vertex, in official usage), and each point is defined by a coordinate
pair (X, Y).

Example 8-21 WKT representation of a line segment

'LINESTRING(523875.0 3792688.0, 523921.0 3792654.0)'

An additional representation defined by the OGC is Geography Markup
Language (GML), a type of XML. GML is the basis for the WFS specification. You
will see much more on GML in the discussion of WFS in the remainder of this
chapter.

An aspect of spatial data that adds complexity is that coordinates, such as those
in Example 8-21, only mean something in terms of a real location on the earth if
the coordinate reference frame is known. That is roughly, what is the origin of the
coordinate axes and what is the unit along those axes. The Spatial DataBlade
has facilities for defining such Spatial Reference Systems (SRSs), in terms of map
328 Customizing the Informix Dynamic Server for Your Environment

projections and their several parameters as well as the assumptions that are
made about the shape of the planet.

Each SRS is designated by a numeric ID, the SRID. Every ST_Geometry object
carries with it the SRID of the SRS in which its coordinates are defined. SRIDs
only have local significance in the current database. The map projection on which
the SRS is based, however, can be referenced to an outside authority to ensure
more reliable interactions between applications. We do not describe this
mechanism further, except to say that it must be carefully managed. In the WFS,
which by definition is about communication between systems, SRIDs are not
used, but similar principles apply.

The Spatial DataBlade implements many functions to operate on its data types.
The most important of these are the spatial operators, which are the predicate
functions that go in the WHERE clause to support queries that select rows on the
basis of spatial criteria. (For more information, see Chapter 6, “An extensible
architecture for robust solutions” on page 219.) Because the WFS standard
builds on the SFS, it is not surprising to find that the set of spatial operators in the
WFS matches the set in the SFS. These operators are described in Table 8-2 on
page 339. Of course, these operators are backed up by a capable spatial index
(the R-tree index), without which none of this would be of any practical interest.

The Geodetic DataBlade
In the preceding discussion, we carefully avoid one serious problem, which we
now acknowledge is a major limitation of all GIS software. That is the assumption
that a map is a faithful representation of the earth as a flat earth. In many cases,
the assumption is not as bad as it sounds. If you are responsible for a city or
county, the curvature of the earth is unlikely to cause any problems in software
that represents coordinates as X and Y in a well-chosen map projection.

However, all projections from the round surface of the earth to the flat plane of a
map introduce distortions, and these become more severe as the area covered
by the projected reference system grows. For example, Greenland, which is
about one-quarter the land area of Brazil, looks as big as South America on
many world maps. Naturally, this causes more frequent problems now that
organizations are consolidating data from what used to be isolated, mostly local
projects into seamless enterprise databases.

Finally, and more dramatically, all maps have edges. If you travel far enough in
one direction, eventually you fall off the edge. No map can account for the fact
that you can travel around the world in any direction without ever encountering an
edge, and this is why no map can serve as a useful model for global applications.

None of this is helped by substituting the usual global coordinates, latitude and
longitude (usually in reverse order), for the X and Y of a projected map
 Chapter 8. Extensibility in action 329

coordinate reference system. This is because the latitude and longitude are
angles and do not resemble at all the rectilinear measures encoded in X and Y.
Point locations expressed in latitude and longitude are always valid and will be
plotted in the right place on any map based on them (no matter how distorted
that map looks). Meanwhile, serious problems arise when you connect those
points to draw a line or polygon boundary, or calculate a distance.

Figure 8-3 illustrates one of the problems introduced by assuming the earth is
flat, resulting in erroneous distance measurements along nonsensical
trajectories. The straight-line distance depicted in view (a), on the left, is
meaningless. Not only does it traverse most of the northern hemisphere when a
much shorter path is available, the actual path described by the straight line is
not particularly well defined and utterly dependent on the particular projection
used. In view (b), on the right, the path shown is truly the great-circle, shortest
path on the globe, which is shown in this picture (itself a projection, but only for
display purposes) as a curved line. On the round earth, there is no such thing as
a straight line.

Figure 8-3 Distance from Anchorage to Tokyo from a flat earth and round earth view

Of course, this has been known for a long time, but maps are such useful and
convenient tools and have served humanity so well for so long, that we tend to
forget their limitations. Globes, which are arguably a more spatially accurate
representation of the earth, are too difficult to carry and impossible to get at large
enough scales to show sufficient detail. When software tools came along to help
the geography and cartography communities, the standard practice of making
maps was carried over as the fundamental paradigm for GIS software. None of

(a) “Flat-earth” view:
straight line on projected map

(b) Round-earth view:
great-circle path on globe
330 Customizing the Informix Dynamic Server for Your Environment

the objections to globes applies in the virtual realm of software. Only the
geometric models and computations are considerably more complex. Therefore,
implementing an efficient round-earth geometry engine requires mathematical
skills that exceed those of most software developers.

However, it can be done. The Geodetic DataBlade incorporates a highly efficient
geometric calculation engine inherently based on a round-earth model. That is
the fundamental characteristic of the Geodetic DataBlade. The name refers to
geodesy, the science and practice of measuring the shape of the earth, and is an
impressive-sounding euphemism for round earth. For databases managing truly
global data such as satellite imagery, weather models, or airline flight paths,
there is no substitute. For less esoteric applications that still require coverage of
large areas or clusters of data scattered around the globe, it can greatly improve
the accuracy of spatial analysis and relieve the headaches associated with
managing many different map projection-based SRSs.

There are many parallels between Spatial and Geodetic DataBlades. For the
present purpose, it is sufficient to assume that they are roughly equivalent in
terms of the kinds of geometric shapes they manage and the kinds of spatial
predicates and operations they support. A few differences, however, are worth
pointing out.

Because the SFS is inherently based on a flat-earth model, it is not possible to
make a round-earth product conform to the standard without compromising the
point of its existence. The Geodetic DataBlade, which predates the publication of
the SFS, does not comply with it, although it does support the WKT
representation. Unfortunately, this noncompliance with an accepted standard
means that no mainstream GIS or mapping products directly support it.

In addition to its round-earth approach, another aspect makes the Geodetic
DataBlade unique. It incorporates the time dimension in a way that enables fast
processing of queries based on both spatial and temporal criteria, by applying a
single index to both dimensions. Thus, the spatial data types defined by the
Geodetic DataBlade are in fact truly spatiotemporal data types. In many
applications, from the changing ownership of land parcels via the satellite-based
observation of natural phenomena to the tracking of moving vehicles and mobile

Important: While the Geodetic DataBlade is based on a model for the earth
that is a spherical shape in a three-dimensional space, it does not manage
three-dimensional geometric objects (solids) or perform spatial analysis in
three dimensions. All geometric shapes represented by this product are
confined to the surface of the conceptual earth. Curved though it may be, that
surface is only a two-dimensional space, which is why two coordinates are
sufficient to locate yourself on it. The Geodetic DataBlade is not a 3-D product.
 Chapter 8. Extensibility in action 331

devices, the time dimension is at least as important as the spatial criteria. In
database terms, both predicates are equally selective. This makes it difficult to
optimize such queries, and the single-index approach solves this problem.

Example 8-22 shows such a spatiotemporal query. With a suitably defined R-tree
index, this query on both space and time is resolved by a single index scan.

Example 8-22 A round-earth spatiotemporal query

Table definition: images(..., footprint GeoPolygon, ...)

SELECT * FROM images
WHERE

Intersect
(

footprint,
‘GEOPOLYGON((((35,-123),(36,-122),(36,-124))),ANY,

(2007-06-12 00:00:00.,2007-06-13 23:59:59.))’
);

This query suggests the management of a library of satellite images. The search
is for images whose spatial footprint (meaning, the area of the earth covered by
the image) overlaps with a small area in California (latitude is the first coordinate,
longitude the second) and that were taken during in a two-day period in June,
2007. Note that, by using the GeoPolygon data type, the footprint values
themselves can stretch over a period of time (a time range), not just a single
point in time.

As indicated previously, the unique design of the Geodetic DataBlade, with its
undoubted superiority in handling certain kinds of data and scenarios, also
renders it nonstandard and difficult to access using common tools. As we shall
see, this is one reason why the WFS can be so valuable. It abstracts access
away from the specifics of the SQL interface. If a WFS request includes a filter
based on a time attribute as well as spatial criteria, the WFS implementation is
free to map that filter to an integrated, high-performance Geodetic query under
the covers.

Now that we have a basic understanding of the two DataBlades on which the
WFS operates, we are ready to look at the WFS itself.

8.4.3 Basics of WFS

As previously noted, organizations traditionally have turned to GIS tools, such as
those available from ESRI to work with spatial data managed by IDS. With the
explosion of location data in today’s applications, there is the need for more
332 Customizing the Informix Dynamic Server for Your Environment

platform independence and less reliance on heavy application interfaces to work
with geographic data.

One of the solutions for providing this platform independence is the OGC WFS
specification. It provides a generic method for accessing and creating geographic
data via a Web service. A WFS provides the following capabilities:

� Query a data set and retrieve the features.
� Find the feature definition.
� Add features to a data set.
� Delete features from a data set.
� Update features in a data set.
� Lock features to prevent modification.

While a Web Mapping Service (WMS), another OGC specification, returns a map
image to a client, the output of a WFS is an XML document that uses GML to
encode the spatial information so that it can be parsed and processed by using
traditional XML parsing techniques. Requests to a WFS can be made via either
an HTTP GET method by using key-value pairs or an HTTP POST method by
using an XML document. A WFS, backed up by a spatially enabled data server
such as IDS with the Spatial DataBlade, can answer such queries as those that
follow:

� Find all the Italian restaurants within one mile of my location and rank them by
diner rating.

� Tell me whether my container is still in the port.

� Show all the earthquakes in this area that were above 5.0 magnitude, that
occurred this century.

� Show me the areas of common bird migrations in Canada.

� Show me the areas forecasted to have severe weather in the next 24 hours.

These queries can contain purely spatial requests or be combined with traditional
relational fields to form a rich query environment to map geographic data,
provide location-based services, and perform complex spatial analysis.

Three types of WFS are discussed in the OGC Web Feature Service, with the
Transactional extension, (OGC WFS-T) version 1.1.0 specification upon which
the IBM Informix WFS DataBlade is based:

� Basic WFS

This is the minimum implementation. It provides for the creation of a read-only
WFS that responds to queries and returns results.
 Chapter 8. Extensibility in action 333

� Transaction WFS

In addition to the Basic WFS, this type of WFS allows for the creation,
modification, and deletion of features that are stored in the WFS. It optionally
can provide support to lock a feature to prevent modification.

� XLink WFS

In addition to the Basic WFS, this WFS provides for the ability to embed
XLinks (similar to hyperlinks) in the WFS. It may or may not include the ability
to do Transaction operations.

The WFS specification has some specific terminology that needs to be put in
database terms for the discussion here. A namespace refers to an IDS database,
a feature type refers to a table, a feature refers to a row, and a feature id refers to
a table primary key. All features presented by the WFS must be uniquely
identifiable, and the identifier must consist of a single column primary key.

The WFS DataBlade implements a Transaction WFS that supports the following
operations:

� GetCapabilities
� DescribeFeatureType
� GetFeature
� Transaction

The GetCapabilities operation is responsible for defining what the service can
provide. It lists the operations that it supports, the spatial types it can operate on,
query predicates, output formats, and feature types that are available in that
particular instance. Example 8-23 on page 335 shows the two methods of
requesting a GetCapabilities document as well as a possible response.

In the XML response, the following sections are shown:

� ServiceIdentification

This section provides information about the WFS service itself.

� ServiceProvider

This section provides information about the organization operating the WFS
server.

� Operation

This section provides metadata about the operations implemented by this
WFS service.

� FeatureTypeList

This section defines the list of feature types that are available. It also shows
the operations and the probable location of spatial data for each feature type.
334 Customizing the Informix Dynamic Server for Your Environment

� SupportsGMLObjectType

This section shows the list of GML objects that it supports. Currently only
simple features, such as points, lines and polygons, are supported by this
implementation. Complex GML types are not yet supported.

� FilterCapabilities

This section defines which Common Query Language (CQL) and spatial
operations are supported in this WFS instance.

This operation is typically used by geospatial mapping tools that contain WFS
clients to determine what is available from the offered service. It also provides
information to a prospective consumer about the data to see the types of data
sets that are offered and the kinds of query capabilities they can use against the
service.

Example 8-23 WFS GetCapabilities invocation and response

HTTP GET Method:
http://wfs.somegeo.net/geoevents/wfsdriver?SERVICE=WFS&VERSION=1.1.0&RE
QUEST=GetCapabilities

HTTP POST Method:
<?xml version=”1.0” ?>
<wfs:GetCapabilities

service=”WFS”
version=”1.1.0”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd>

</wfs:GetCapabilities>

Sample response from GetCapabilities request:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<wfs:WFS_Capabilities version="1.1.0" updateSequence="0"
xmlns:ows="http://www.opengis.net/ows"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs
http://schemas.opengis.net/wfs/1.1.0/wfs.xsd">
<ows:ServiceIdentification>
 <ows:ServiceType>WFS</ows:ServiceType>
 Chapter 8. Extensibility in action 335

 <ows:ServiceTypeVersion>1.1.0</ows:ServiceTypeVersion>
 <ows:Title>IBM Informix Web Feature Service</ows:Title>
 <ows:Abstract>This is a test abstract value for the IBM Informix WFS
Datablade</ows:Abstract>
 <ows:Fees>None</ows:Fees>
 <ows:AccessConstraints>None</ows:AccessConstraints>
 </ows:ServiceIdentification>
...
<wfs:FeatureTypeList>
<wfs:FeatureType xmlns:gatgr="http://wfs.somegeo.net/geoevents">
 <wfs:Name>geoevents:congress110</wfs:Name>
 <wfs:Title>congress110</wfs:Title>
 <wfs:Abstract>No abstract provided</wfs:Abstract>
 <ows:DefaultSRS>EPSG:4326</ows:DefaultSRS>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-179.147340 17.884813</ows:LowerCorner>
 <ows:UpperCorner>179.778470 71.352561</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 <wfs:OutputFormats>
 <wfs:Format>text/xml; subtype=gml/3.1.1</wfs:Format>
 <wfs:Format>text/xml; subtype=gml/2.1.2</wfs:Format>
 </wfs:OutputFormats>
 <ows:Operations>
 <Query />
 <Insert />
 <Update />
 <Delete />
 </ows:Operations>
 </wfs:FeatureType>
 </wfs:FeatureTypeList>
...
</wfs:WFS_Capabilities>

The DescribeFeatureType operation is responsible for defining the data types
found in each type of feature that is served in the WFS. Its output is an XML
based schema that can be used to correctly identify each field in the feature
returned. The DescribeFeatureType operation can be called with zero to many
type names. If no type name is provided in the request, a description of all
feature types are returned to the user.

Example 8-24 shows a sample of how to invoke DescribeFeatureType for HTTP
GET/POST methods, as well as an example response. In the XML response,
each field is mapped to the appropriate XML schema type. All IDS built-in types
are supported with the exception of CLOB, BLOB, BYTE, TEXT, LIST, SET and
336 Customizing the Informix Dynamic Server for Your Environment

unnamed ROW types. The UDTs used by the Spatial and Geodetic DataBlades
are mapped to the appropriate GML type declarations. Other UDTs are mapped
to their respective character representations.

Example 8-24 WFS DescribeFeatureType invocation and response

HTTP GET Method:
http://wfs.somegeo.net/polboundaries/wfsdriver?SERVICE=WFS&VERSION=1.1.
0&REQUEST=DescribeFeatureType&TYPENAME=congress110

HTTP POST Method:
<?xml version=”1.0” ?>
<wfs:DescribeFeatureType

service=”WFS”
version=”1.1.0”
xmlns:polboundaries=”http://wfs.somegeo.net/polboundaries”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs

../wfs/1.1.0/WFS.xsd”>
<wfs:TypeName>congress110</wfs:TypeName>

</wfs:DescribeFeatureType>

Sample response:

<?xml version=”1.0”>
<xsd:schema targetNamespace="http://wfs.somegeo.net/polboundaries"
elementFormDefault="qualified" version="0.1">
<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
<xsd:element name="congress110" type="polboundaries:congress110_Type"
substitutionGroup="gml:_Feature"/>

<xsd:complexType name="congress110_Type">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>

<xsd:element name="se_row_id" type="xsd:integer"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="state" nillable="true" minOccurs="0"
maxOccurs="1">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="2"/>
</xsd:restriction>

</xsd:simpleType>
 Chapter 8. Extensibility in action 337

</xsd:element>
<xsd:element name="cd" nillable="true" minOccurs="0"

maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="2"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="lsad" nillable="true" minOccurs="0"

maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="2"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="name" nillable="true" minOccurs="0"

maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="90"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="lsad_trans" nillable="true"

minOccurs="0" maxOccurs="1">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="boundary"

type="gml:MultiPolygonPropertyType" nillable="true"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:schema>

The GetFeature operation is the heart of the WFS server. It is responsible for
retrieval and presentation of the data requested. GetFeature requests are based
338 Customizing the Informix Dynamic Server for Your Environment

on CQL (another OGC specification). A GetFeature request can consist of one to
many queries that will be returned as a unioned set in the XML response. For
each Query element, the property names (column names), the feature type
(table name), and sort order can be requested. It is important to note that joins
between tables are not supported. The query must resolve to a single table. The
filter element in Query can contain both spatial and relational predicates, as
shown in Table 8-2.

Table 8-2 CQL predicate operators valid in WFS 1.1

CQL predicate SQL equivalent or definition

PropertyIsLessThan <

PropertyIsGreaterThan >

PropertyIsLessThanOrEqualTO <=

PropertyIsGreaterThanOrEqualTo >=

PropertyisEqualTo =

PropertyIsNotEqualTo !=

PropertyisLike LIKE

PropertyIsBetween BETWEEN

PropertyIsNull IS NULL

BBOX This is similar to an intersection operation performed on a polygon
that is defined by a spatial bounding box bordering the southwest
and northeast corners of the target area.

Equals This is a test for spatial equality.

Disjoint This is a test to see if two geometries do not intersect, overlap, or
touch each other.

Intersect This is a test to see if two geometries touch or intersect. This is
equivalent to Not Disjoint(...).

Touches This is a test to see if the interiors of the two geometries do not
intersect and the boundary of either geometry insects the other’s
interior or boundary.

Crosses This is a test to see whether the boundaries of two geometries cross
each other. This test is typically done between the spatial types of
MultiPoint/LineString, LineString/LineString, MultiPoint/Polygon,
and LineString/Polygon.
 Chapter 8. Extensibility in action 339

In addition to the CQL operators listed in Table 8-2, a GetFeature request can
take additional parameters, which are listed in Table 8-3.

Table 8-3 GetFeature parameters valid in WFS 1.1

Contains This is a test to see if the second geometry is completely contained
by the first geometry provided. The boundary and interior of the
second geometry are not allowed to intersect the exterior of the first
geometry.

Within This is a test to see if the first geometry is completely within the
second geometry. The boundary and the interior of the first
geometry are not allowed to intersect the exterior of the second
geometry.

Overlaps This is a test to see if the intersections of the geometries result in a
value of the same dimension as the geometries that is different from
both of the geometries. For example, if the intersection of two
polygons results in a polygon, then the Overlaps() operation returns
a true value, but if a point or linestring is generated from the
intersection, then the operation returns a false value.

DWithin This is a test to find objects that are within a stated distance of the
geometry provided.

Beyond This is a test to see if the objects are outside the stated distance. It
is equivalent to saying Not DWithin(...).

And This a logical operator to combine two CQL predicates to test to see
if both operations are true. It is equivalent to the SQL AND
operation.

Or This is a logical operator to test two CQL predicates to see if either
operation is true.

Not This is a logical operator that functions as a negator to any operation
listed in this table, with the exception of GmlObjectId.

GmlObjectId This operator takes a specific feature identifier as an attribute. It can
be used to retrieve a specific row from your feature table.

CQL predicate SQL equivalent or definition

GetFeature parameter Description

OUTPUTFORMAT This parameter is used to control the format of the output.

RESULTTYPE This parameter is used to determine whether the actual features are returned
(results) or if a count of qualifying features should be returned.

MAXFEATURES This parameter is used to control the maximum number of features returned.
340 Customizing the Informix Dynamic Server for Your Environment

Example 8-25 show examples of the two possible forms for a GetFeature
request. The first example encodes the transaction by using the KVP syntax that
can be sent by an HTTP GET method, while the second example shows an XML
document that can be sent via a HTTP POST method. In both examples, the
feature type quakes is being queried via a spatial bounding box for a maximum of
200 features. The output is returned in an XML document.

Example 8-25 WFS GetFeature example

HTTP GET Method:
http://wfs.somegeo.net/geoevents/wfsdriver?SERVICE=WFS&VERSION=1.1.0&RE
QUEST=GetFeature&TYPENAME=quakes&BBOX=-85.7,30.50,-80.0,35.5&MAXFEATURE
S=200

HTTP POST Method:
<?xml version=”1.0” ?>
<GetFeature

xmlns=”http://www.opengis.net/wfs”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
service=”WFS”
version=”1.1.0”

TYPENAME A list of type names to query. This is the only mandatory element to a query. If
no other parameters are specified, all feature instances are returned in the
response document.

FEATUREID This parameter can be an enumerated list of feature instances to be returned.
They are specified by their feature identifier.

FILTER This describes a set of features to retrieve. The filter is defined using the
predicates defined in Table 8-2 on page 339. There should be one filter
specification for each type name requested in the TYPENAME parameter. This
parameter is mutually exclusive with FEATUREID and BBOX.

BBOX This parameter is a comma-separated list of coordinates that represent the
southwest and northeast corners of a spatial bounding box. It is mutually
exclusive with FEATUREID and FILTER.

SORTBY This parameter is used to specify the property names (column names) by
which the feature result list should be ordered when returned in the XML
response document.

PROPERTYNAME This parameter is used to list the property names (column names) that should
be presented in the XML response document. The default is all properties.

GetFeature parameter Description
 Chapter 8. Extensibility in action 341

outputFormat=”GML3”
maxFeatures=”200”
<Query typeName=”geoevents:quakes”>

<ogc:Filter>
<ogc:BBOX>

<ogc:PropertyName>event</ogc:PropertyName>
<gml:Box srsName=”EPSG:4326”>

<gml:coordinates>
-85.628,33.9166 -84.224,35.0707

</gml:coordinates>
</gml:Box>

</ogc:BBOX>
</ogc:Filter>

</Query>
</GetFeature>

Figure 8-4 shows a sample WFS GetFeature transaction that was entered into a
browser. We have shown a sample section of the XML output, for familiarity with
the format of the output. All documents that are returned from a successful
GetFeature operation have the number of features returned, a time stamp, and a
bounding box element that shows the entire spatial extent from all feature types
requested. This spatial extent is based on all of the type names (table names)
requested and not purely on the result of the transaction. Each row that satisfies
the query is returned as a gml:featureMember with its unique identifier.
342 Customizing the Informix Dynamic Server for Your Environment

Figure 8-4 Sample WFS GetFeature output shown in Microsoft Internet Explorer®

The Transaction operation, as the name suggests, allows for the creation
(INSERT), modification (UPDATE), and deletion (DELETE) of features that are
stored in the WFS. The INSERT and UPDATE Transaction operations are
required to be formed by using an XML document, while DELETE has the ability
to be sent via GET using key-value pairs. Example 8-26 on page 344 shows
three sample operations that can be done and a sample of the XML response
that comes back from a Transaction operation.

The first example inserts a row into a table that contains restaurant ratings. In this
statement, we request that the database generate a new value for the feature
identifier. This identifier is returned as part of the TransactionResponse XML
document in InsertResults returned at the end of the transaction. All fields in the
table must be specified in the INSERT transaction. When you want to specify a
NULL field, specify an empty tag (for example <column_name/>). You can specify
one to many feature instances in each insert transaction.

Important: Tables in which new identifiers will be requested via a WFS
INSERT transaction must contain either an IDS serial or serial8 column as the
primary key for the table.
 Chapter 8. Extensibility in action 343

The second example shows an UPDATE transaction where the location of a
given feature instance has changed. The UPDATE transaction must contain at
least one Property tag that contains a Name/Value pair to indicate the column
and value that is being changed in the feature instance. The predicate uses CQL
similar to the GetFeature request. In this example, we retrieve the row based on
a feature identifier (natlrestaurants.43546). The number of rows updated by the
transaction is displayed in the XML TransactionResponse document. If no rows
qualify for the filter, it is not considered an error, and zero is returned for the
number of rows updated.

The third example shows a DELETE transaction where we remove the identified
restaurant from our feature type. The DELETE transaction only needs to contain
a predicate (Filter) that uses CQL similar to the GetFeature request. Like the
UPDATE example discussed earlier, we retrieve the row based on a feature
identifier (natlrestaurants.44223). The number of rows removed from the table is
displayed in the XML TransactionResponse document. As with UPDATE, if no
rows qualify for the filter specified, it is not considered an error. Unlike INSERT
and UPDATE, since DELETE only requires a FILTER specification, it can be
specified by using the KVP syntax.

Example 8-26 WFS Transaction operations

<?xml version=”1.0” ?>
<wfs:Transaction

service=”WFS”
version=”1.1.0”
...
<wfs:Insert idgen=”GenerateNew” handle=”Stmt 1”

<natlrestratings>
<id/>
<restaurant_id>43546</restaurant_id>
<foodquality>3</foodquality>
<servicequality>3</servicequality>
<comments>Lasagna is great</comments>
<visit_time>2007-10-07T19:35:00.00000</visit_time>

</natlrestratings>
</wfs:Insert>
<wfs:Update typeName=”natlrestaurants”>

<wfs:Property>
<wfs:Name>mobilerater:locn</wfs:Name>
<wfs:Value>

<gml:Point>
<gml:pos>-86.145633 37.325453</gml:pos>

</gml:Point>
</wfs:Value>

</wfs:Property>
344 Customizing the Informix Dynamic Server for Your Environment

<ogc:Filter>
<ogc:GmlObjectId gml:id=”natlrestaurants.43546”/>

</ogc:Filter>
</wfs:Update>
<wfs:Delete typeName=”natlrestaurants”>

<ogc:Filter>
<ogc:GmlObjectId gml:id=”natlrestaurants.44223”/>

</ogc:Filter>
</wfs:Transaction>

Sample response:

<?xml version=”1.0” ?>
<wfs:TransactionResponse

version=”1.1.0”
...
<wfs:TransactionSummary>

<wfs:totalInserted>1</wfs:totalInserted>
<wfs:totalUpdated>1</wfs:totalUpdated>
<wfs:totalDeleted>1</wfs:totalDeleted>

</wfs:TransactionSummary>
<wfs:InsertResults>

<wfs:Feature handle=”Stmt 1”>
<ogc:FeatureId fid=”natlrestratings.132457364”/>

</wfs:Feature>
</wfs:InsertResults>

</wfs:TransactionResponse>
 Chapter 8. Extensibility in action 345

To better understand how all this fits together, see Figure 8-5 for a description of
the architecture and processing flow that occurs.

Figure 8-5 WFS DataBlade implementation

A typical WFS conversation has the following flow as illustrated in Figure 8-5:

1. The Web server (IBM HTTP Server or other Common Gateway Interface
(CGI) compliant server) receives the HTTP GET/POST request from a client.
A client can be a Web browser or custom program.

2. The Web server examines its configuration file (for example, httpd.conf) and
invokes the CGI program wfsdriver (wfsdriver.exe on the Windows platform).

3. The CGI program reads the configuration file (wfs.cnf) and obtains
information about the location of IDS client libraries, database name, user
name, and the encrypted password with which to connect to the database.

4. The CGI program connects to IDS and calls the WFSExplode() UDR in the
shared object library (wfs.bld).

5. The WFSExplode() UDR processes the transaction and formats an XML
document to be returned to the wfsdriver CGI program. If any errors
occurred during processing, an XML error document is returned.

6. The XML document is returned to the client.

http://wfs.somegeo.net:8080/gatgr/wfsdriver.exe?SERVICE=WFS&
VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=galandpolys
&MAXFEATURES=300&BBOX=-83.35,33.60,-83.30,33.64

Web Feature Service Architecture

Web Server

wfs.cnf

WFSDriver CGIBrowser/
Client

POST XML/KVP
GET

XML RESPONSE

[…]
<map path=/gatgr>
database gatgr
user informix
password 28d7[…]4662
password_key tiger21
</map>
[…] Multipolygon(((……27

Multipolygon(((……26

geom…Gist_id

galandpolys

Wfsexplode
UDR

Spatial /
Geodetic
346 Customizing the Informix Dynamic Server for Your Environment

8.4.4 Installing and setting up WFS

The Web Feature Service DataBlade is installed when you perform a default
installation or custom installation that includes the built-in DataBlades in the IDS
installer.

To create a WFS service:

1. Install IDS 11 or later.

2. Install Informix Client Software Developer Kit (SDK) version 3 or later.

3. Install any companion blade that works with WFS, which is Spatial DataBlade
version 8.21.xC1 (or later) or Geodetic DataBlade version 3.12.xC1 (or later).
It is not mandatory for either of these blades to be installed for WFS to be
functional. Prior releases of the Spatial DataBlade and Geodetic DataBlade
lack the GML publishing or parsing functions to properly interoperate with
WFS.

4. Install a CGI-compliant Web server such as IBM HTTP Server.

5. Create a database with logging enabled.

6. Create a smart large object space of at least 50 MB. This is because a
temporary large object is instantiated if the return is larger than 32K. This is
also required by either the Spatial or Geodetic DataBlade prior to registration.
Example 8-27 shows an example command to create the smart large object
space.

Example 8-27 Command to create the smart-object space

onspaces -c -S sbspace -p C:\IFMXDATA\demo_tcp\sbspace.000 -o 0 -s
50000

7. Register the WFS DataBlade module and either the Spatial or Geodetic
DataBlades as shown in Example 8-28.

Example 8-28 Registering the WFS and Spatial DataBlades

demo11_tcp>list wfsdemo
There are no modules registered in database wfsdemo
demo11_tcp>show modules

ifxrltree.2.00 LLD.1.20.TC2
mqblade.2.0 binaryudt.1.0
bts.1.00 wfs.1.00.TC1
ifxbuiltins.1.1 Node.2.0 c
geodetic.3.12.TC1 spatial.8.21.TC1

A ‘c’ indicates DataBlade module has client files.
If a module is not found, check the prepare log.
demo11_tcp>register wfs.1.00.TC1 wfsdemo
 Chapter 8. Extensibility in action 347

Register module wfs.1.00.TC1 into database wfsdemo? [Y/n]Y
Registering DataBlade module... (may take a while).
DataBlade wfs.1.00.TC1 was successfully registered in database
wfsdemo.
demo11_tcp>register ifxrltree.2.00 wfsdemo
Register module ifxrltree.2.00 into database wfsdemo? [Y/n]Y
Registering DataBlade module... (this may take a while).
DataBlade ifxrltree.2.00 was successfully registered in database
wfsdemo.
demo11_tcp>register spatial.8.21.TC1 wfsdemo
Register module spatial.8.21.TC1 into database wfsdemo? [Y/n]Y
Registering DataBlade module... (may take a while).
DataBlade ifxrltree.2.00 was successfully registered in database
wfsdemo.
demo11_tcp>bye

8. Create a directory that has the same name as your database to be used by
the CGI program in which the Web server is installed. This directory contains
a copy of the wfsdriver configuration file (wfs.cnf) and the wfsdriver CGI
program.

9. Run wfssetup, which is located in the
$INFORMIXDIR/extend/wfs.1.00.xC1/wfsdriver directory in your installation.
This is a UNIX script. Therefore, users on Microsoft Windows must create the
wfs.cnf manually, like the one shown in Example 8-29. This file must be
placed with a copy of wfsdriver/wfsdriver.exe in the CGI directory created in
step 8.

Example 8-29 Sample wfs.cnf file

<global>
debug_file C:\temp\wfsdriver.log
debug_level 2
</global>
<setvar>
INFORMIXDIR C:\PROGRA~1\IBM\IBMINF~1\11.10
INFORMIXSERVER demo11_tcp
</setvar>
<map path=/wfsdemo>
database wfsdemo
user informix
password 3b7d082236d445796cdfc33377400d699
password_key demokey
</map>
348 Customizing the Informix Dynamic Server for Your Environment

The password_key value shown in Example 8-29 can be generated by using
the wfspwcrypt utility found in the same wfsdriver directory mentioned earlier
in this step. Example 8-30 shows the usage for this utility.

Example 8-30 Usage and example for the wfspwcrypt utility

Usage for wfspwcrypt:

wfspwcrypt <database> <user> <key>

Example:

$ cd $INFORMIXDIR/extend/wfs.1.00.UC1/wfsdriver
$ wfspwcrypt wfsdemo informix demokey

Enter password for user 'informix': *******
Enter password again: *******

password 5b29c069a79c2c9efc9f366a4d08c15e
password_key demokey

10.Configure the Web server for the address:port that you want your service to
be broadcast on and include the ScriptAlias line similar to the one shown in
Example 8-31.

Example 8-31 ScriptAlias entry in httpd.conf

ScriptAlias /wfsdemo “C:\Program Files\IBMHttpServer/wfsdemo”

11.If you have existing data that you want to present, skip to the next step. In
Appendix A, “Additional material” on page 465, we provide links to sample
data for you to download. This data is compatible with the Spatial DataBlade.
To load it, you use the loadshp utility.

Important: If you are using Microsoft Windows as the Web server, you
must ensure that the INFORMIXDIR and INFORMIXSERVER values
declared in the wfs.cnf match the values as set by using the setnet32
utility. This utility is included in both the Informix-Connect and Informix
Client SDK.

Attention: The shapefile utilities loadshp, infoshp, and unloadshp require
the environment variable LD_LIBRARY_PATH in the UNIX environment.
These utilities are installed with the Spatial DataBlade and placed in the
$INFORMIXDIR/bin directory.
 Chapter 8. Extensibility in action 349

Example 8-32 shows a loadshp session. For further information about the
shapefile utilities, see Appendix A of the IBM Informix Spatial DataBlade
Module User’s Guide, G229-6405.

Example 8-32 The loadshp utility to load sample data

Usage for loadshp:

loadshp -o { create | init } -l <tabname,colname> -f <filename>
 -D <database> [-s <server>] [-u <username> -p <password>
]
 [-b <begin_row>]
 [-e <end_row>]
 [-c <commit_interval>]
 [-in <dbspace>]
 [-put <sbspace_list>]
 [-ext <initial_extent_size>]
 [-next <next_extent_size>]
 [-ic]
 [-noidx]
 [-srid <srid>]
 [-log [<directory>]]

loadshp -o create -l landplaces,geom -f places -D wfsdemo -in
datadbs -srid 4

Beginning transaction.

Committing after row 1000 of 23435.
Committing after row 2000 of 23435.
Committing after row 3000 of 23435.
Committing after row 4000 of 23435.
Committing after row 5000 of 23435.
...
Committing after row 20000 of 23435.
Committing after row 21000 of 23435.
Committing after row 22000 of 23435.
Committing after row 23000 of 23435.
Committing work.

Inserted 23435 row(s).
Rejected 0 row(s).
Building B-tree index on column landplaces.se_row_id.
350 Customizing the Informix Dynamic Server for Your Environment

Defining primary key constraint on column landplaces.se_row_id.
Building R-tree index on column landplaces.geom.
Updating statistics for table landplaces.
Elapsed time 0:01:02.7

12.If your table has a spatial column type, declare the table in
sde.geometry_columns via an INSERT statement. This table is created when
either the Spatial or Geodetic DataBlade is registered to the database. This
allows WFS to understand the spatial reference system that is being used in
that particular table. The loadshp utility, which is included with the Spatial
DataBlade, automatically creates a row in this table when tables are created
or initialized. The table contains the following columns:

– f_table_catalog

This column typically contains the name of the catalog (database) when
used with software such as ESRI ArcGIS. For a table to be enabled with
WFS, this value needs to be set to WFS.

– f_table_schema

This column contains the schema owner name for the table.

– f_table_name

This column contains the table name.

– f_geometry_column

This column stores the point, linestring or polygon. If there are multiple
such columns in the table, there must be one row in this table per column.

– storage_type

This column can be set to NULL.

– geometry_type

This column must be set to the type of geometry stored in the column. The
following, more common values are valid for this column. For a more
complete listing, refer to Appendix F of the IBM Informix Spatial DataBlade
Module User’s Guide, G229-6405.

1 ST_Point
3 ST_LineString
5 ST_Polygon
11 ST_MultiPolygon

– coord_dimension

This column can be set to NULL.
 Chapter 8. Extensibility in action 351

– srid

This column contains the spatial reference system in which the geometry
is created. In the Spatial DataBlade, this value must be contained in the
sde.spatial_references table. In the Geodetic DataBlade, this value must
be contained in the geospatialref table. These tables are created when
either the Spatial or Geodetic DataBlades are registered to the database.
In Example 8-33, we use srid=4, which corresponds to the unprojected
WGS-84 latitude/longitude coordinate reference system.

Example 8-33 Inserting a row into the geometry_columns table for WFS

INSERT INTO ‘sde’.geometry_columns
VALUES(‘WFS’,’informix’,’landplaces’, ‘geom’, NULL, 1, NULL, 4);

1 row(s) inserted.

In Example 8-32, we used the loadshp utility to load a data set. It
automatically created an entry in sde.spatial_references that we can modify
with a simple UPDATE statement to change the f_table_catalog column to be
the value WFS.

13.Register the table (feature type) via the WFSRegister() UDR (Example 8-34
on page 353). This UDR examines the structure of the table requested. It
ensures that the table contains a single column primary key and does not
contain any columns that cannot be mapped to the XML schema response,
such as those discussed in the DescribeFeatureType transaction in
Example 8-24 on page 337. If a spatial data type column is displayed in the
table, it must be described in the sde.geometry_columns table, which we
described earlier. It is also important that an RTree index be created for this
column, so that the spatial bounding box for the table can be known.

If all these conditions are met, WFSRegister() places a row in the table
wfstables. This row also contains the following three columns of metadata that
can be updated via an SQL UPDATE statement. This metadata is in the XML
response for a GetCapabilities transaction.

– tab_title

This is the title of the table that is presented in a geospatial mapping tool.

– tab_abstract

This is an abstract that can contain a more elaborate description of the
table.

– tab_keywords

These are keywords to aid in searching the catalog.
352 Customizing the Informix Dynamic Server for Your Environment

Example 8-34 WFSRegister and updating table metadata

EXECUTE FUNCTION WFSRegister(‘landplaces’);

(expression)
OK

UPDATE wfstables SET tab_title=’US Landmarks from 2000 Census’,
tab_abstract = ‘This dataset contains all US Landmarks from the 2000
Census.’, tab_keywords = SET{‘Landmarks’,’US’,’2000’,’Points’}
WHERE regtabname = ‘landplaces’;

1 row(s) updated.

Similar metadata fields are found in the wfsmetaserviceid table. These fields
are displayed in the ServiceIdentification section in the XML response for a
GetCapabilities transaction.

14.Verify connectivity by using a GetCapabilities request from your Web browser.
The request has the following format:

http://yourhostname:[http_port]/map
name/wfsdriver[.exe]?SERVICE=WFS&VERSION=1.1.0&REQUEST
=GetCapabilities

8.4.5 Using WFS

There are several ways that you can use the WFS type of service. A common
application is geospatial mapping, where features that are stored in the database
can be sent to a tool such as The Carbon Project’s Gaia 3, which you can
download from the following Web address:

http://www.thecarbonproject.com/gaia.php

While Gaia cannot connect to databases, it knows about OGC Web Services,
such as WFS, WMS, and Web Coverage Service (WCS), and mapping services,
such as Yahoo! Maps and Microsoft Virtual Earth™. It also knows about
processing common geospatial file formats, such as GML, ESRI Shapefiles
(shp), GoogleEarth (kml), AutoDesk (dxf), and MapInfo (mif). Any combination of
these types can be used in layers to create a rich display for analysis and
annotation.
 Chapter 8. Extensibility in action 353

http://www.thecarbonproject.com/gaia.php

Figure 8-6 shows a Gaia 3 window with multiple layers defined by using WFS.
The base map is provided by Yahoo! Maps. The WFS layers shown are US
Airports (denoted by the blue airplane symbols), Landmarks, Water Polygons
and Landmark Polygons from the US Census TIGER data, as well as earthquake
data from USGS. The earthquake points are stored by using the Geodetic
DataBlade and scaled by their relative magnitude.

Figure 8-6 Gaia 3 window courtesy of The Carbon Project
354 Customizing the Informix Dynamic Server for Your Environment

We add these layers by selecting Tools Add Layer. In Figure 8-7, we start
with the base layer of the Yahoo! Maps, which we select from the Add Layer
window. The figure shows an example of how to add the IDS WFS service to
Gaia. We click the pink plus sign (+) button shown in the Add Layer to Map
window. Then the Add an OGC Service to the List window opens in which we
entered the following values:

� For Name, we type IDS DEMO WFS.
� For URL, we type http://192.168.0.2:8080/wfsdemo/wfsdriver.
� For Service Type, we select the WFS radio button.
� For Version, we select 1.1.0 from the drop-down list.

Figure 8-7 Adding the IDS WFS service to Gaia (courtesy of the Carbon Project)
 Chapter 8. Extensibility in action 355

We click the OK button at the bottom of the Add an OGC Service to the List
window. Then Gaia retrieves the GetCapabilities transaction document and
presents the list of layers to be selected as shown in Figure 8-8. We highlight one
of the layers shown in the middle left, making sure to select GML3 for the GML
Version shown at the right. GML2 is more verbose, especially when dealing with
complex polygons and can increase the amount of time needed to process the
XML response. In the figure, we also limit the number of features to 100 and
select Use Bounding-Box Filter. This limits the area in which features are
displayed based on the current map view.

Figure 8-8 Layer presentation window from Gaia (courtesy of the Carbon Project)

While the specific details of adding services to geospatial mapping tools might
vary, the basic information, such as URL, Service Type, and Version, are fairly
typical across a number of geospatial mapping tools that contain a WFS client.
Other tools and possibly future versions of this tool shown might enable other
spatial operations and more complex queries to be specified to allow richer
presentation and the ability to conduct analysis.
356 Customizing the Informix Dynamic Server for Your Environment

Location-based services using WFS
In addition to the geospatial mapping applications previously discussed, the WFS
DataBlade can also be used in location-based services (LBS) applications. LBS
services are based on a desired location. You can construct these applications
by using the GetFeature operation and the DWithin (Distance Within) predicate.

Consider a GPS-enabled mobile phone-based application that can show you the
restaurants within a given radius of your current location. These restaurants can
be selected by type and ranked by user rating. Example 8-35 shows a sample
DWithin query along with the SQL that is generated by the WFSExplode() UDR
that such an application might use.

Example 8-35 Location-based services with DWithin

<?xml version=”1.0” ?>
<GetFeature

service=”WFS”
version=”1.1.0”
maxFeatures=”5”
...
<Query typeName=”natlrestaurants”>

<ogc:PropertyName>mobilerater:name</ogc:PropertyName>
<ogc:PropertyName>mobilerater:address</ogc:PropertyName>
<ogc:PropertyName>mobilerater:rating</ogc:PropertyName>
<ogc:Filter>

<And>
<PropertyIsEqualTo>

<PropertyName>mobilerater:resttype</PropertyName>
<Literal>Italian</Literal>

</PropertyIsEqualTo>
<DWithin>

<PropertyName>mobilerater:locn</PropertyName>
<gml:Point>

<gml:pos>-84.35 31.764</gml:pos>
</gml:Point>
<Distance units=’mi’>1</Distance>

<DWithin>
</And>

</ogc:Filter>
<ogc:SortBy>

<ogc:SortProperty>
<ogc:PropertyName>mobilerater:rating</ogc:PropertyName>
<ogc:SortOrder>DESC</ogc:SortOrder>

</ogc:SortProperty>
</ogc:SortBy>
 Chapter 8. Extensibility in action 357

</Query>
</GetFeature>

Equivalent SQL:

SELECT FIRST 5 name, address, rating FROM natlrestaurants
WHERE ST_Intersects(locn, ST_Buffer(ST_GeomFromGML(‘<gml:Point
xmlns:gml=”http://www.opengis.net/gml”><gml:pos>-84.35
31.764</gml:pos></gml:Point>’,4),1609.344))
AND resttype = ‘Italian’
ORDER BY rating DESC;

After or during the meal, the user can upload comments, ratings, or both of the
establishment by using an INSERT operation such as the one shown in
Example 8-26 on page 344.

8.4.6 WFS and spatiotemporal queries

The Geodetic DataBlade is capable of not only indexing based on space, but
altitude and time as well. These values are stored as ranges, with the altitude
range being two double-precision values and the temporal range stored as two
IDS datetime values. The values used in the ranges can be equal, but it must be
a valid range (start value <= end value). The literal value ANY can be used for
either range and represents an open non-null value. Consider the SQL
representation of the Geodetic type GeoPoint in Example 8-36. This example
shows how an earthquake might be represented, including the location,
magnitude (stored in the altitude range), and time of the event.

Example 8-36 Sample GeoPoint output

SELECT FIRST 3 id, event FROM recent_quakes;

id 1
event GeoPoint((52.388,177.872),(3.5,3.5),(2007-11-16
18:44:18.00000,2007-11-16 18:44:18.00000))

Note: In version 11, the WFS DataBlade only supports translation of the mile
(mi), nautical mile (nm), meter (m), kilometer (km), and foot (ft) distance-type
arguments with the DWithin and Beyond CQL predicates. In the Spatial
DataBlade, the unit of measure depends on the spatial reference system
specified. If the spatial reference system does not specify a linear unit of
measure, it does the calculation based on degrees of latitude, which gives a
less precise result.
358 Customizing the Informix Dynamic Server for Your Environment

id 2
event GeoPoint((-22.074,-69.628),(4.7,4.7),(2007-11-16
17:05:22.00000,2007-11-16 17:05:22.00000))

id 3
event GeoPoint((-9.820,108.670),(4.9,4.9),(2007-11-16
15:00:04.00000,2007-11-16 15:00:04.00000))

3 row(s) retrieved.

In addition to the spatial extent represented by the latitude and longitude
coordinates, the WFS DataBlade supports access to the additional extents
(altitude and time). It represents each part of the data type as a separate XML
field in the featureMember response as shown in Example 8-37.

Example 8-37 WFS GetFeature response showing GeoPoint mapping

<wfs:FeatureCollection ...>
<gml:boundedBy>

<gml:Envelope srsName=”EPSG:4326”>
<gml:lowerCorner>-134.9548 -35.20453</gml:lowerCorner>
<gml:upperCorner>45.08138 84.613659</gml:upperCorner>

</gml:Envelope>
<gml:boundedBy>
<gml:featureMember>

<recent_quakes gml:id=”recent_quakes.1”>
<geoevents:event>

<gml:Point srsName=”EPSG:4326” srsDimension=”2”>
<gml:pos>52.388 177.872</gml:pos>

</gml:Point>
</geoevents:event>
<geoevents:event_valt_any>false</geoevents:event_valt_any>
<geoevents:event_valt_bottom>3.5</geoevents:event_valt_bottom>
<geoevents:event_valt_top>3.5</geoevents:event_valt_top>
<geoevents:event_vtime_any>false</geoevents:event_vtime_any>
<geoevents:event_vtime_begin>

2007-11-16T18:44:18.00000
</geoevents:event_vtime_begin>
<geoevents:event_vtime_end>
 Chapter 8. Extensibility in action 359

2007-11-16T18:44:18.00000
</geoevents:event_vtime_end>

</recent_quakes>
</gml:featureMember>

...
</wfs:FeatureCollection>

Table 8-4 explains how each field is mapped from the GeoObject type, with
columnname (such as event in Example 8-35) representing the name of the
column that is a GeoObject data type.

Table 8-4 GeoObject field mapping in WFS

These fields can be used in combination to produce complex spatiotemporal
queries. When testing a range of values and using the CQL predicate
PropertyIsBetween, it is only necessary to test either member of the range. The
columnname_valt_any and columnname_vtime_any columns are, by default, set
to ANY time range or altitude range when a spatial extent is queried.

WFS featureMember field name Description

columnname Contains the spatial extent encoded in GML.

columnname_valt_any True if the altitude range is set to the ANY value.
Otherwise, it is False.

columnname_valt_bottom Contains the bottom value of the altitude range
as extracted by the Bottom() function in the
Geodetic DataBlade.

columnname_valt_top Contains the top value of the altitude range as
extracted by the Top() function in the Geodetic
DataBlade.

columnname_vtime_any True if the temporal range is set to the ANY
value. Otherwise, the value is False.

columnname_vtime_begin Contains the beginning of the temporal range as
extracted by the Begin() function in the Geodetic
DataBlade.

columnname_vtime_end Contains the end of the temporal range as
extracted by the End() function in the Geodetic
DataBlade.
360 Customizing the Informix Dynamic Server for Your Environment

Example 8-38 shows a GetFeature request that queries the three elements of the
spatiotemporal type GeoPoint described in Example 8-37. In the example, we are
searching for all earthquakes that were greater than a magnitude of 3.0, occurred
between 1 January 1960 and 15 June 2001, and occurred in a specific area of
the country, that is denoted by a spatial bounding box. The SQL produced by the
WFSExplode() UDR combined with the Geodetic DataBlade is also shown to
demonstrate how a complex spatiotemporal query is formed. When this query is
executed, the R-Tree index on the event column is used in the space and time
dimensions.

Example 8-38 GetFeature request with spatiotemporal type

<?xml version=”1.0” ?>
<GetFeature

service=”WFS”
version=”1.1.0”
maxFeatures=”5”
...
<Query typeName=”geoevents:quakes”>

<Filter>
<And>

<PropertyIsBetween>
<PropertyName>

geoevents:event_vtime_begin
</PropertyName>
<LowerBoundary>

1960-01-01T00:00:00.00000
</LowerBoundary>
<UpperBoundary>

2001-06-15T23:00:00.00000
</UpperBoundary>

<And>
<BBOX>

<PropertyName>geoevents:event</PropertyName>
<gml:Box srsName=”EPSG:4326”>

<gml:coordinates>-83.619512081281,32.55895192298
-83.2100178067909,32.8956934075937</gml:coordinates>

</gml:Box>
</BBOX>
<PropertyIsGreaterThan>

<PropertyName>
geoevents:event_valt_bottom<

</PropertyName>
<Literal>3.0</Literal>

</PropertyIsGreaterThan>
 Chapter 8. Extensibility in action 361

</And>
</Filter>

</Query>
</GetFeature>

SQL:

SELECT FIRST 5 event_id, GeoAsGML(event), IsAny(AltRange(event)),
Bottom(AltRange(event)), Top(AltRange(event)), IsAny(TimeRange(event)),
Begin(TimeRange(event)), End(TimeRange(event))
FROM quakes
WHERE Intersect(event, GeoEnvelopeFromGML(‘<gml:Box
srsName=”EPSG:4326”><gml:coordinates>-83.619512081281,32.55895192298
-83.2100178067909,32.8956934075937</gml:coordinates></gml:Box>’,0))
AND Intersect(TimeRange(event), ‘(1960-01-01 00:00:00.00000,2001-06-15
23:00:00.00000’)::GeoTimeRange)
AND Bottom(AltRange(event)) > 3.0;

Summary
In this section, we have discussed enabling the publication of location-based
data by using the WFS DataBlade in combination with the Spatial and Geodetic
DataBlades. This opens a new capability for your business environment to use
geospatial mapping tools to present colorful maps for analysis and presentation.
It also gives you the ability to provide location-based services over the World
Wide Web without having to learn complex spatial SQL functions and predicates
or designing complex protocols for exchanging data.

8.5 Searching your database differently with Soundex

Many applications often require the need to search on character strings based on
their sound. This functionality, called Soundex, has been built into search
windows to help search for proper names and street addresses because spelling
is often subjective, and mistakes in annotation are quite common. Unfortunately
for application designers, it is usually necessary to compromise the relational
integrity of the data by introducing redundant columns to tables that hold a form
of Soundex code. This is further complicated by the fact that any change in the
column holding the actual value requires an update to the associated sound, and
every application must specify a reference to the sound column in order to
search against it.

Because applications should be able to use this function as transparently as
possible, automatic updating of the Soundex signature is traditionally achieved
362 Customizing the Informix Dynamic Server for Your Environment

by using triggers and stored procedures. In short, the work, which can be
complex depending on the database design, is left to the database administrator.

Several algorithms have been developed for searching based on the Soundex
code, such as the following examples:

� Russell Soundex
� NYSIIS
� Celko Improved Soundex
� Metaphone/Double-Metaphone
� Daitch-Mokotoff Soundex

For our example Soundex DataBlade, we use a simple consonant sound
algorithm to illustrate what is possible. You can investigate these other alternative
algorithms and modify the sample code accordingly to achieve the desired
results in precision.

In the examples in this section, we use English surnames in an employee table to
help illustrate the power of using this type of extensibility.

In Example 8-39, a standard SQL query on our example Soundex data type has
asked for employees where the name equals “Smith”. Note that “Smythe,”
“Smyth,” “Smithie,” and “Smithy” are all returned in addition to “Smith”. This is due
to the fact that comparison takes place on the sound attributes rather than the
actual text contents of the name column.

Example 8-39 SQL query for a name

SELECT empid, name
FROM employee
WHERE name = ‘Smith’

empid name
13 Smith
15 Smythe
17 Smithie
19 Smyth
20 Smithy

5 row(s) retrieved.

In the sections that follow, we demonstrate how to create this new data type
along with the functions that allow it to be indexed, how to create indexes on this
type, and extending the functionality even further to explore regular expression
matching on the new data type.
 Chapter 8. Extensibility in action 363

The actual blade takes a relatively small amount of code. The majority of the
code is in the sound generation function and regular expression functions. To
make the example easier to follow, error checking and code path efficiencies are
excluded.

8.5.1 Creating the TSndx data type

Before we can define a table that stores the character data in this fashion, we
must create an opaque type to represent it. In this example, we create a new
opaque type called TSndx. For simplicity, we define it as a fixed-length opaque
type that can be indexed on an IDS standard 2K page size. Example 8-40 shows
how we define the data structure in C.

Example 8-40 C code for TSndx

/* C code required to define the TSndx structure */

typedef struct {
mi_char data[256];
mi_char sound[30];

} TSndx;

We must also define this type to IDS, which we do by using the CREATE
OPAQUE TYPE command, as shown in Example 8-41.

Example 8-41 TSndx type creation within IDS

CREATE OPAQUE TYPE TSndx (
internallength = 286, /* 256 chars + 30 sound chars */
alignment = 4 /* Byte alignment within the server */

);

All data types require a way to convert from the externally given format to an
internal representation, and back again. For example, an integer stored as an
SQL SMALLINT with the value 32767 does not require 5 bytes to store the value.
Instead it uses 2 bytes for the value internally and converts it back to five
characters when it is returned from the database.

Similarly, a spatial point, such as (40.7487, -73.986) is parsed on input and is
stored as two floating point values internally. When it is retrieved from the
database, the point is represented as two numbers separated by a comma
surrounded by parentheses. The TSndx type requires similar functionality. To
achieve this, we create an input function for computing the sound value and
register it to the database as shown in Example 8-42.
364 Customizing the Informix Dynamic Server for Your Environment

Example 8-42 Source code for input function and creating of function in IDS

UDREXPORT TSndx *TSndxInput (mi_lvarchar *InValue)
{

TSndx *result;
mi_char *textval;
mi_char *textsnd;
mi_char *thesound;
mi_char *Sndx(char *);

textval = mi_lvarchar_to_string(InValue);

result = (TSndx *)mi_alloc(sizeof(TSndx));
strncpy(result->data, textval, strlen(textval));
thesound = Sndx(textval);
strncpy(result->sound, thesound, strlen(thesound));

mi_free(thesound);
mi_free(textval);

return(result);
}

CREATE FUNCTION TSndxIn(lvarchar)
RETURNS TSndx
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxInput)’
LANGUAGE C;

Similarly, we create an output function so that the database knows which part of
the opaque type to return when it is retrieved as demonstrated in Example 8-43.

Example 8-43 Source code for the output function and function creation in IDS

UDREXPORT mi_lvarchar *TSndxOutput(TSndx *value)
{

return (mi_string_to_lvarchar(value->data));
}

CREATE FUNCTION TSndxOut(TSndx)
RETURNS lvarchar
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxOutput)’
LANGUAGE C;

One important issue remains. If we are going to use TSndx as a character
column, then we almost certainly expect to use it in situations for which we use a
 Chapter 8. Extensibility in action 365

character type. This presents a problem because TSndx is a completely different
type. And logically, the only way for us to use characters in place of TSndx is to
convert every character string to a TSndx before storing it in the database.

Instead of having to convert (or cast) from TSndx to char and back again when
necessary, IDS allows us to provide what are referred to as implicit casts. That
means that in the right context, IDS does not return an incorrect data type error.
Instead we give it permission to make certain assumptions and do the casting (or
converting) for us. See Example 8-44.

Example 8-44 Implicit cast definition for automatic type conversion

CREATE IMPLICIT CAST (lvarchar AS TSndx with TsndxIn);

CREATE IMPLICIT CAST (TSndx AS lvarchar with TSndxOut);

Now that we have defined how the data will be stored and displayed, we can
create a table and insert data into it. Example 8-45 shows how to create the table
with a TSndx column and the INSERT statements. We use character strings in
the INSERT, even though the name column is of type TSndx. With the casting
functions defined in Example 8-44, IDS can convert this data automatically, and
the user is unaware that the name column is much more than a character type.

Example 8-45 Creating the employee table and INSERT statements

CREATE TABLE employee (
id INTEGER,
name TSndx,
salary MONEY,
dob DATE

);
INSERT INTO employee VALUES(1, ‘Davis’, 10000, ‘12/01/1981’);
INSERT INTO employee VALUES(2, ‘Dilbert’, 20000, ‘12/02/1982’);
INSERT INTO employee VALUES(3, ‘Dogbert’, 30000, ‘12/03/1983’);
INSERT INTO employee VALUES(4, ‘Duffies’, 40000, ‘12/04/1984’);
INSERT INTO employee VALUES(5, ‘Genes’, 50000, ‘12/05/1985’);
INSERT INTO employee VALUES(6, ‘Jonbert’, 60000, ‘12/06/1986’);
INSERT INTO employee VALUES(7, ‘Laurence’, 70000, ‘12/07/1987’);
INSERT INTO employee VALUES(8, ‘Jones’, 80000, ‘12/08/1988’);
INSERT INTO employee VALUES(9, ‘MacLoud’, 90000, ‘12/09/1989’);
INSERT INTO employee VALUES(10, ‘Lawrence’, 100000, ‘12/10/1990’);
INSERT INTO employee VALUES(11, ‘McLewid’, 110000, ‘12/11/1991’);
INSERT INTO employee VALUES(12, "Ratbert", 120000, '12/12/1992');
INSERT INTO employee VALUES(13, "Smith", 130000, '12/01/1993');
INSERT INTO employee VALUES(14, "Toffies", 140000, '12/02/1994');
INSERT INTO employee VALUES(15, "Smythe", 150000, '12/03/1995');
366 Customizing the Informix Dynamic Server for Your Environment

INSERT INTO employee VALUES(16, "Doofus", 160000, '12/04/1996');
INSERT INTO employee VALUES(17, "Smithie", 170000, '12/05/1997');
INSERT INTO employee VALUES(18, "Jonmach", 180000, '12/06/1998');

If we now select from the employee table, shown in Example 8-46, we see the
output equivalent as though name were a simple character type.

Example 8-46 Listing of the employee table

SELECT * FROM employee;

empid name salary dob
1 Davis $10000.00 12/01/1981
2 Dilbert $20000.00 12/02/1982
3 Dogbert $30000.00 12/03/1983
4 Duffies $40000.00 12/04/1984
5 Genes $50000.00 12/05/1985
6 Jonbert $60000.00 12/06/1986
7 Laurence $70000.00 12/07/1987
8 Jones $80000.00 12/08/1988
9 MacLoud $90000.00 12/09/1989
10 Lawrence $100000.00 12/10/1990
11 McLewid $110000.00 12/11/1991
12 Ratbert $120000.00 12/12/1992
13 Smith $130000.00 12/01/1993
14 Toffies $140000.00 12/02/1994
15 Smythe $150000.00 12/03/1995
16 Doofus $160000.00 12/04/1996
17 Smithie $170000.00 12/05/1997
18 Jonmach $180000.00 12/06/1998

18 row(s) retrieved.

8.5.2 Indexing the TSndx data type

Now that we have defined how to store and display this data, we need a way to
search for it. With IDS, you can overload the comparison operators that are used
by the Btree index in order to build indexes on UDTs, which is simple to do. We
start by supplying a comparison function and an overload for the Equal()
operator, shown in Example 8-47 on page 368.
 Chapter 8. Extensibility in action 367

Example 8-47 Code for the compare and equals

/* Provide a compare function that all routines can use */
UDREXPORT mi_integer TSndxCompare(TSndx *value1, TSndx *value2)
{

mi_integer val;
if (val = strcmp(value1->sound, value2->sound))

return((val > 0) ? 1 : -1);
return(val);

}

UDREXPORT mi_boolean TSndxEqual(TSndx *value1, TSndx *value2)
{

return((mi_boolean)(0 == TSndxCompare(value1, value2)));
}

CREATE FUNCTION Compare(TSndx, TSndx)
RETURNS integer
WITH (NOT VARIANT)
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxCompare)
LANGUAGE C;

CREATE FUNCTION Equal(TSndx, TSndx)
RETURNS boolean
WITH (NOT VARIANT)
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxEqual)

What is probably not evident from this example is that the normal equal (=)
operator used in SQL is now available to compare sound values. The full listing of
all SQL and C code in Appendix A, “Additional material” on page 465, shows the
complete implementation with the addition of the overloads for >, <, >=, <=, and
!= operators. While it is debatable whether a string sounds better or worse than
any other, if you can order the sounds in the database, then you can index them
and gain performance benefits.

Creating functional indexes
As previously mentioned, IDS provides a number of indexing methods. Any
ordinal value can be indexed with a standard B-Tree, as long as the compare()
functions exist. You previously have seen how simple that is. Other types, such
as spatial data, might use an R-Tree index, which is also provided by IDS. In this
example, we do not index in more than one dimension.

Assuming that we have different criteria from the normal compare() functionality,
how can we index on this value? We can do this by using the functional indexes
feature. With functional indexes, you can create an index on the result of a
368 Customizing the Informix Dynamic Server for Your Environment

function, and our function returns an integer value representing the sound of the
text. We can also index on the length of the name, number of consonants, and
text language, but the internals are less important than the fact that you can do it.
In Example 8-48, by indexing on the sound itself, we can ensure that names,
such as Duffies and Toffies, are stored close to each other internally in IDS.

Example 8-48 Source for TSndxValue UDR

UDREXPORT mi_integer TSndxValue(TSndx *value)
{

if (value->sound[0] == ‘0’)
{

value->sound[0] = ‘-’;
}
return(atoi(value->sound));

}
CREATE FUNCTION TSndxValue(TSndx)
RETURNS integer
WITH (NOT VARIANT)
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxValue)
LANGUAGE C;

To display the sound value for each row in the table, use the SELECT statement
as shown in Example 8-49.

Example 8-49 Employee names with their sound values

SELECT name, TSndxValue(name) AS namesound FROM employee;

name namesound
Davis 180
Dilbert 15941
Dogbert 17941
Duffies 180
Genes 620
Jonbert 62941
Laurence 5420
Jones 620
MacLoud 3751
Lawrence 5420
McLewid 3751
Ratbert 41941
Smith -31
Toffies 180
 Chapter 8. Extensibility in action 369

Smythe -31
Doofus 180
Smithy -31

18 row(s) retrieved.

Now we can create a functional index on the table, as shown in Example 8-50.

Example 8-50 Creating a functional index

CREATE INDEX employee_fidx1 ON employee (TSndxValue(name))
USING BTREE;

Now compare how data might be stored using an index on the employee name
as opposed to the an index on its associated sound. Figure 8-9 shows that the
similar-sounding employees are grouped together, from a sound perspective,
using the functional index and alphabetically using a regular index. Note that
Duffies and Davis are stored near Toffies and Doofus. In the example, the spread
of the data is greatly exaggerated at three rows per page to emphasize how
having to search for n similar-sounding objects can mean having to read n pages.
In this case, no intelligence can be built around the data type, which might mean
a worst-case scenario of having to perform a full table sequential scan.

Figure 8-9 How data might be physically stored using two different indexes

Dogbert

Ratbert

Jonbert

17941

41941

62941

6

Smithie

Smythe

Toffies

6

Laurence

Jonmach

Dilbert

5420

6236

15941

5

McLewid

Ratbert

Smith

5

MacLoud

McLewid

Lawrence

3751

3751

5420

4

Laurence

Lawrence

MacLoud

4

Davis

Genes

Jones

180

620

620

3

Jonbert

Jones

Jonmach

3

Duffies

Toffies

Doofus

180

180

180

2

Doofus

Duffies

Genes

2

Smithie

Smith

Smythe

-31

-31

-31

1

Davis

Dilbert

Dogbert

1

Sound
Ordered Data

Sound

of Name

Page #Alphabetically

Ordered data

Page #
370 Customizing the Informix Dynamic Server for Your Environment

8.5.3 Extending the base functionality

We now have what is considered an acceptable solution to the sound-search
function. However, we are not finished. Code is available in the public domain that
we can use to extend the functionality of the new Soundex data type. For example,
we can use regular expression syntax to extend the range of search possibilities on
the data. Example 8-51 shows how to use a simple regular expression parser and
overload the SQL LIKE operator to enable the user to use wild cards and optional
sounds to make this new data type a powerful search facility.

Example 8-51 Overloading the SQL LIKE operator

UDREXPORT mi_boolean TSndxRE(TSndx *p_string, mi_lvarchar *p_pattern)
{

mi_boolean flag, strmatch(char *, char *);
mi_char *pattern, *patternsound;
register char c;

pattern = mi_lvarchar_to_string(p_pattern);
patternsound = Sndx(pattern);
flag = strmatch(patternsound, p_string->sound);
mi_free(pattern);
mi_free(patternsound);
return(flag);

}

CREATE FUNCTION Like(TSndx, lvarchar)
RETURNS boolean
WITH (NOT VARIANT)
EXTERNAL NAME ‘$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxRE)
LANGUAGE C;

Now that IDS knows what is meant by LIKE when referring to a TSndx data type,
we can use the SQL LIKE operator in queries. Example 8-52 shows the query:
“Find all names beginning with the “J” sound and ending with an “S” sound.”

Example 8-52 Usage of LIKE with sound values

SELECT * FROM employee WHERE name LIKE ‘j*s’

empid name salary dob
5 Genes $50000.00 12/05/1985
8 Jones $80000.00 12/08/1988

2 row(s) retrieved.
 Chapter 8. Extensibility in action 371

Example 8-53 shows the query: “Find all names beginning with either a “J” sound
or “D” sound, and containing either “F”, “L”, or “B” sounds in the middle, and
ending with any sound.”

Example 8-53 A more complex LIKE query with sound values

SELECT * FROM employee
WHERE name LIKE ‘[JD]*[FLB]*’;

empid name salary dob
1 Davis $10000.00 12/01/1981
2 Dilbert $20000.00 12/02/1982
3 Dogbert $30000.00 12/03/1983
4 Duffies $40000.00 12/04/1984
6 Jonbert $60000.00 12/06/1986
14 Toffies $140000.00 12/02/1994
16 Doofus $160000.00 12/04/1996

7 row(s) retrieved.

The addition of a regular expression comparison as an alternative comparison
operator was arbitrary. You can easily extend the comparison functions to include
fuzzy matching or partial equality, for example, “Find me all the records that have
an 85% match (whatever you might want that to mean).” You might also add an
attribute to the data type indicating nationality, such as a Belgian application that
can store the name as Flemish, German, French, or English, in which the
Soundex routine is customized to work optimally based on sound rules for the
language of interest. Considerations can be made for dialects as well, allowing
for dropped consonants and extended vowels.

8.6 Summary

In this chapter, we have shown how you can use the power of IDS extensibility to
look at your data in new ways and create data sets by using iterators. We have
also shown you have can use iterator and aggregate functions to increase
performance. In addition, we have shown how you can customize your
environment to consume and provide Web services using IDS. In this changing
IT landscape, extensibility can play a key role in reducing the time needed to
produce applications yet provide rich presentation capabilities for your business
needs.
372 Customizing the Informix Dynamic Server for Your Environment

Chapter 9. Taking advantage of
database events

In this chapter, we discuss the ability to add processing based on events that
occur in the database. With this capability, you can better integrate the database
in the architecture of a business solution. The result can be faster performance,
simpler design and implementation, faster time to production, and response to
business needs.

9

© Copyright IBM Corp. 2008. All rights reserved. 373

9.1 Database servers and application architectures

Database servers are not used in a vacuum, rather they are typically part of an
application architecture. This architecture then places demands and
requirements on the use of the database server. In a simple environment, an
application might only access the database server and perhaps get or set some
values. But, there are other architectures that are much more complex.

We see this in many environments. For example, application servers might run
Java beans and Enterprise JavaBeans™ (EJBs) that communicate with each
other based on the demands of the application. These components can be
distributed over a large network and communicate with each other by using
mechanisms, such as messages, or lower level communications, such as
opening a network socket or sending a signal.

We also hear a lot about new types of applications, such as those called
mashups. These applications take advantage of public interfaces that provide
specific functionality to manipulate the information being processed to show it
differently. Or they use such interfaces to add other information sources to
complement the data and generate new information and new business insights.

The typical database server used in a software architecture can be considered
an end node. That is, a software component sends a request to the database,
and then the database accesses the appropriate tables and returns the result. In
this example, the database server is a data repository and can be considered a
persistence storage mechanism. In this type of environment, the database server
capabilities become less and less important, with the result being that the
database servers become commodities.

The Informix Dynamic Server (IDS) provides significant other capabilities that
can benefit the implementation of a software architecture, as we have
demonstrated in several chapters of this book. We can take it one step further
and integrate the database into the flow of the architecture. Here, it is not only
used as an end node, but as an intermediate node that can obtain information
from multiple sources and provide a complete set of results or final result. This
way, we can reduce the overall complexity of the application code since it does
not have to access multiple sources and join the information together to get to the
final result. In addition to reducing complexity, it can optimize the use of multiple
resources, such as the network bandwidth, and increase the system’s scalability.
Figure 9-1 on page 375 illustrates this integrated design.
374 Customizing the Informix Dynamic Server for Your Environment

Figure 9-1 Integrated design

Figure 9-1 represents is the ability of IDS to access outside sources to complete
the information provided by the database. The following types of information, as
examples, can be provided:

� Validation of an address during an INSERT through a Web service
� Collection of geocoding information during a SELECT
� Discovery of any outstanding traffic violation
� Understanding credit ratings, history, or both
� Learning about creditor actions

With this information, you can create what is called a data-centric mashup.

The approach can also enable optimization by joining the outside data with the
database tables, by taking advantage of the optimized code of the server. It can
also save operations since the server can keep track of what was retrieved and
not retrieve the same information multiple times.

It is common in the travel industry, for example, to have an application that needs
to access another system, often a mainframe, to complete a reservation. By
using this new approach, the problem can be solved as illustrated in Figure 9-2
on page 376.

Application

IDS
1

3

2

Other Sources
 Chapter 9. Taking advantage of database events 375

Figure 9-2 Travel service architecture

Without the events, the application does not have to access the database to
validate the travel request based on the business rules established. If the request
is outside the guidelines, it can either be rejected or flagged with a warning.

The application then needs to access the booking service to request the
appropriate booking. This can result in an error due to no availability or a return
of the itinerary. The application then must store the resulting itinerary in the
database and return the information to the user.

Putting the processing in the database simplifies the application, since it
eliminates multiple calls to the database. It also makes the workflow available to
other applications that require it, thus reducing duplication of effort. Another
benefit is that, if some of the workflow changes, such as using a different booking
service or adding another step in the process, it can be changed in the database
without touching the customer facing applications.

We can take this approach one step further and communicate with the outside
world based on the modifications made to the database tables. In this case, we
must be concerned about the completion of these modifications, which is where
database events come in to play. The following types of operations can be
performed:

� Placing an order to a supplier based on an inventory change
� Using outside resellers, such as amazon.com, overstock.com, and others, to

sell overstock merchandise

Travel
Services

Application

1

3

2

Booking
Service

Insert the
requirements

Validate requirements
based on business rules

IDS

Call the booking service
with valid requirements

Return information
or error
376 Customizing the Informix Dynamic Server for Your Environment

� Sending alerts to business managers or monitoring systems based on the
database activities

Figure 9-3 illustrates the communication with resellers.

Figure 9-3 Integrating resellers in the inventory process

One advantage of this approach is that if the resellers change, are removed, or
are added, the inventory application itself does not need to be changed or even
aware of these changes.

In these type of situations, we must know the status of a transaction before
executing the action. It is easy to see that if we send an order based on database
activities, the database operation must have completed successfully. In some
other cases, such as system monitoring, we might want to report on failed
transactions. This is discussed further in 9.3, “Why use events” on page 378.

9.2 Database events

IDS has the unique capability of registering functions that will be executed when
specific events occur. The IDS documentation refers to these functions as
callbacks.

The concept of callback functions is found in many software graphical user
interfaces (GUIs), XML parsers, programming, and so on. The key is that it is a
clean way to handle asynchronous events that occur in the database system.

Inventory
Application

1

3

2

Insert into
overstock table

IDS

Return from the
Database server

Reseller-1

Reseller-2
 Chapter 9. Taking advantage of database events 377

Table 9-1 lists the event types that are handled by the IDS DataBlade API.

Table 9-1 DataBlade API event types

The IDS implementation provides the flexibility to distinguish between events, so
that callback functions can be used in a variety of contexts. In the case of
communicating with the outside world, the events of interest are likely to be
MI_EVENT_COMMIT_ABORT and MI_EVENT_END_XACT.

9.3 Why use events

Why should we use events instead of simply doing what we need to
communicate with the outside world? The short answer is called transaction
boundaries.

Any communication with the outside world must be initiated only when the state
of the work performed in the database is known. That is, the transaction status.
This does not necessarily mean we do not want to communicate with the outside
world when the transaction aborts.

Event type Occurrence

MI_Exception Raised when the database server generates an
exception (warning or error).

MI_EVENT_SAVEPOINT Raised after the cursor flushes within an explicit
transaction.

MI_EVENT_COMMIT_ABORT Raised when the database server reaches the end of
a transaction in which work was done.

MI_EVENT_END_XACT Raised when the database server reaches the end of
a transaction. Alternatively, if a hold cursor is
involved, raised only after the hold cursor is closed.
(Use MI_EVENT_COMMIT_ABORT instead.)

MI_EVENT_END_STMT Raised when the database server completes the
execution of a current SQL statement, or for
statements associated with a cursor, when the cursor
is closed.

MI_EVENT_POST_XACT Raised just after the database commits or rolls back
a transaction if work was done in the transaction or if
an MI_EVENT_END_XACT event was raised.

MI_EVENT_END_SESSION Raised when the database server reaches the end of
the current session.
378 Customizing the Informix Dynamic Server for Your Environment

Imagine that someone starts a transaction and accesses confidential information
in a table. If only committed transactions are handled, we do not generate an
alert if a rollback were issued on the current transaction.

The use of database server events provides another benefit in that the
application does not need to be concerned with these tasks. This means that if
the business needs change, such as adding additional resellers, there is no need
to change the application itself because only the database processing changes.
This benefit is compounded when multiple applications are subject to common
rules, because the change then occurs at one place rather than in multiple
applications.

9.4 How to use events

An IDS event lives in the context of a database connection. This means that the
events and callback functions are specific to a user session. A session must then
register callbacks before the events are generated. IDS 11 includes new stored
procedures that are executed when a database is opened or closed. But, these
procedures must be named sysdbopen() and sysdbclose(). It is possible to have
multiple copies of these procedures, one per user. You can also create a
procedure for the PUBLIC user, which applies to any user.

By using this approach, you can register an event when the connection is
established, in addition to setting any connection attributes, such as the isolation
level. The processing must be limited to the general information that can be
gathered from the environment when the event occurs. However, this general
approach is likely too restrictive to be useful.

Another way to register events is to relate them to specific tables. This means
that the registration of an event is done through a trigger on a specific table.
Example 9-1 shows the CREATE TRIGGER syntax.

Example 9-1 CREATE TRIGGER example

CREATE TRIGGER eventTab1
INSERT ON tab1
BEFORE (EXECUTE PROCEDURE registerMyCallback())
FOR EACH ROW (EXECUTE PROCEDURE processRow())

In Example 9-1, we execute an action for each row that is processed in the
statement execution. Since we want to process events, we must register a
callback, which is done in the BEFORE action. Note that this action is executed
even if the triggering statement does not process any rows. This is acceptable
since the processing is performed in the FOR EACH ROW action. If nothing is
 Chapter 9. Taking advantage of database events 379

processed at that level, the callback finds that no action needs to be performed
and completes its execution.

IDS provides an extensive sets of trigger capabilities. We review some of these
capabilities in the next section.

9.4.1 IDS trigger capabilities

IDS provides the ability to create triggers based on the following SQL operations:

� DELETE
� INSERT
� SELECT
� UPDATE

The SELECT trigger capability is unique to IDS. It was added in the IDS 9.21
time frame, sometime during the year 2000. Then later IDS 10.0 introduced the
ability to create triggers on views (INSTEAD OF triggers).

9.4.2 Trigger introspection

In the IDS 10.0 time frame, the DataBlade API was enhanced to support a new
feature referred to as trigger introspection. This feature provides the ability, from
within a C function, to determine if the function is executing within a trigger, the
type of trigger it is executing in, and the before (old) and after (new) image of the
row being processed.

The new row is available in the case of INSERT and UPDATE operations. The old
row is available for the DELETE and UPDATE operations.

That is what can be done with triggers. Now we return to the callback functions.
There are two questions that need to be answered. They are, how can a callback
function be created and how can it be registered? Let us take a look.

9.4.3 Creating a callback function

A callback function is a function that follows a specific calling convention.
Example 9-2 shows the function signature.

Example 9-2 Callback function signature

MI_CALLBACK_STATUS MI_PROC_CALLBACK
<function_name>(MI_EVENT_TYPE eventType, MI_CONNECTION *conn, void
*eventData, void *userData)
380 Customizing the Informix Dynamic Server for Your Environment

A callback function returns a status indicator for how to continue handling the
event when the callback completes. Table 9-2 lists the possible return values.

Table 9-2 Callback status return values

The callback function accepts the following arguments:

� The event type that triggered the callback
� The connection on which the event occurred
� A pointer to an event type structure
� A pointer to any user data (This data pointer is defined when the callback is

registered.)

The last argument is particularly useful since memory can be allocated that is
passed to the callback function to provide any type of information that is desired.
We return to it in 9.4.5, “Memory duration” on page 383.

The body of the callback is just like any C user-defined function (UDF). It
contains calls to DataBlade API functions, standard C functions, and possibly
system calls. Example 9-3 shows a simple callback that allows for testing to
make sure the callback is called as expected.

Example 9-3 Simplest callback function

MI_CALLBACK_STATUS MI_PROC_CALLBACK
 cbfunc0(MI_EVENT_TYPE event_type, MI_CONNECTION *conn,

 void *event_data, void *user_data)
{
 mi_integer change_type;
 mi_string *str;

 change_type = mi_transition_type(event_data);
 DPRINTF("logger", 80, ("Entering cbfunc0()"));
 switch(change_type) {

 case MI_BEGIN: str = "BEGIN";

Value Description

MI_CB_EXC_HANDLED Return status indicates that the callback has successfully
handled the event, and there is no need to continue with
event handling.

MI_CB_CONTINUE This is the only status other than an exception that callback
can return. IDS continues looking for other callbacks to
execute for the given event. If an exception callback returns
this status, and no other register callback exists, the
DataBlade API aborts the user-defined record and any
current transaction.
 Chapter 9. Taking advantage of database events 381

 break;
 case MI_NORMAL_END: str = "COMMIT";

 break;
 case MI_ABORT_END: str = "ROLLBACK";

 break;
 case MI_ERROR: str = "ERROR";

 break;
 default: str="UNKNOWN!";

 }
 DPRINTF("logger", 80, ("\ttransition: %s", str));
 DPRINTF("logger", 80, ("Exiting cbfunc0()"));
 return(MI_CB_CONTINUE);
}

In this callback, we write to a trace file that the callback was called and indicate
the type of event that occurred. We obtain the latter information by calling the
DataBlade API function mi_transition_type() by using the argument event_data
as input to it.

Much more can be added to the callback to send information to the outside
world. The possibilities are discussed in 9.6, “Communicating with the outside
world” on page 392. The information is usually obtained through the user_data
parameter that is passed when registering the callback.

9.4.4 Registering a callback function

The DataBlade API provides a set of functions to register, unregister, enable,
disable, and retrieve callbacks. Previously we described how to register a
callback by calling a user-defined procedure in the BEFORE action of a trigger.
The routine can also be called explicitly as part of a transaction. Example 9-4
shows a simple callback registration code.

Example 9-4 Callback registration

mi_integer registerCallback0()
{
 MI_CALLBACK_HANDLE *cbhandle;

 cbhandle = mi_register_callback(NULL, MI_EVENT_END_XACT, cbfunc0,
 NULL, NULL);

 if (cbhandle == NULL)
382 Customizing the Informix Dynamic Server for Your Environment

mi_db_error_raise(NULL, MI_EXCEPTION,
"Callback registration failed", NULL);

 return(0);
}

Example 9-5 shows the creation of the user-defined procedure.

Example 9-5 Procedure creation

CREATE PROCEDURE registerCallback0()
EXTERNAL NAME
"$INFORMIXDIR/extend/callbacks/callbacks.bld(registerCallback0)"
LANGUAGE C;

The mi_register_callback() function in Example 9-4 takes five arguments. You
can find the details of these arguments in the IBM Informix DataBlade API
Function Reference, G229-6364. The second argument defined is the event that
the callback processes, the third argument is the address of the callback
function, and the fourth argument is a pointer to a user-defined block of memory.

The block of memory can be of any format as long as both the registration
function and the callback agree on its content. Our example passes a NULL
pointer, but other information can be included, such as the context of the
registration (trigger on the table and the type of trigger (DELETE, INSERT,
SELECT, UPDATE)).

IDS has the concept of memory duration for blocks of memory allocated by a
user-defined routine (UDR). This concept must be well understood so that we do
not end up with either invalid pointers or memory that stays allocated longer than
needed. This is the subject of the next section.

9.4.5 Memory duration

When a UDR allocates memory, it uses a default memory duration if none is
mentioned explicitly. By default, the memory allocation is valid for the duration of
a routine execution. When the routine executes a return, the memory can be
reclaimed by the database server. This is not always required.
 Chapter 9. Taking advantage of database events 383

Table 9-3 lists the memory durations that are available.

Table 9-3 Memory durations

The DataBlade API provides a set of functions for memory allocation. For
example, the mi_alloc() function allocates memory based on the current default
memory duration. This default can be changed with the command
mi_switch_mem_duration(). Another way to control the memory duration is to
use the mi_dalloc() functions that take an additional memory duration argument.

Regardless of which memory duration you are using, it is a good practice to free
the memory explicitly, using mi_free(), if possible.

When writing callback routines and passing information through memory, the
most likely duration used is PER_SESSION since we need to use the information
generated during the transaction after the transaction completes.

You might know that your callback needs to generate information that is reused
between transactions, such as some initialization values of a total count of
activities, or even between sessions. In this case, you might have to use a
PER_SYSTEM memory duration, which you most likely use with another
memory allocation scheme, named memory, which is discussed in the next
section.

9.4.6 Named memory

IDS has another memory allocation mechanism that has been around since the
early years of IDS 9.x, specifically called named memory. Named memory is a
way to allocate a global memory block. This means that the memory allocated
through this mechanism can be retrieved by any session. The DataBlade API
provides four functions to manipulate named memory, and all four function
names are prefixed with mi_named.

Duration Explanation

PER_ROUTINE For the duration of the UDR execution

PER_COMMAND For the duration of the execution of the current subquery

PER_STMT_EXEC For the duration of the execution of the current SQL statement

PER_STMT_PREP For the duration of the current prepared SQL statement

PER_TRANSACTION For the duration of one transaction

PER_SESSION For the duration of the current client session

PER_SYSTEM For the duration of the database server execution
384 Customizing the Informix Dynamic Server for Your Environment

If the memory is used only at the session level, it is convenient to use the session
identifier as part of the name used for the memory block. The code in
Example 9-6 shows how named memory can be allocated.

Example 9-6 Named memory allocation

MI_CONNECTION *sessionConnection;
mi_integer sessionId;
NamedMemory_t *pmem;
mi_string buffer[32];
. . .

sessionConnection = mi_get_session_connection();
/* Retrieve the session ID */
sessionId = mi_get_id(sessionConnection, MI_SESSION_ID);
/* Retrieve or create session memory */
sprintf(buffer, "session%d", sessionId);
if (MI_OK != mi_named_get(buffer, PER_SESSION, &pmem)) {
 /* wasn't there, allocate it */
 if (MI_OK != mi_named_zalloc(sizeof(NamedMemory_t), buffer,

PER_SESSION, &pmem)) {
mi_db_error_raise(NULL, MI_EXCEPTION,

"Logger memory allocation error", NULL);
 }
 /* initialize the memory structure */

. . .
}

After defining local variables, we retrieve the database connection for the current
session. This allows us to execute the mi_get_id() function and retrieve the
session identifier. We then use this session identifier to create a unique name for
the entire server.

At this point, we are ready to start manipulating the named memory block. The
first if statement test is to see if named memory with the name found in the
variable buffer has already been allocated. If it has been allocated, the memory
block is retrieved in the variable pmem.

If the named memory is not allocated, we use the mi_named_zalloc() function to
allocate the named memory block. This function also initializes the content of the
memory block to zero.

The named memory block can contain pointers to other memory blocks. These
additional memory blocks do not need to be allocated as named memory since
we already have a means to retrieve where they are. However, the callback
 Chapter 9. Taking advantage of database events 385

function might have to clean up that memory before exiting, by using the
mi_free() function.

If there is a need to free up the named memory block, it can be done easily as
shown in Example 9-7.

Example 9-7 Freeing named memory

sessionConnection = mi_get_session_connection();
/* Retrieve the session ID */
sessionId = mi_get_id(sessionConnection, MI_SESSION_ID);
/* Retrieve or create session memory */
sprintf(buffer, "session%d", sessionId);
if (MI_OK == mi_named_get(buffer, PER_SESSION, &pmem)) {
 /* was there, free it it */
 mi_named_free(buffer, PER_SESSION);
}

This code is similar to the allocation code found in Example 9-6. The interesting
part is that the mi_named_free() function requires the additional argument that
indicates the memory duration of the named memory block. This implies that
multiple named memory blocks with the same name can exist as long as they
have different duration.

The most common use of callbacks is to use information about the row
processed, manipulate it, and send it to a destination. This means that we use a
trigger that processed each row and a callback at the end of the transaction. Both
the row processing routines and the callback must have access to the same
memory. When we register the callback, we can give it a user memory buffer. To
ensure that it is the same as the one used by the row processing routines, we
use named memory with an agreed upon name. This way, each piece of code
has a common memory pointer.

9.4.7 Callback processing

According to the IDS documentation, the registration of a callback survives until
one of the following conditions is met:

� The connection on which the callback is registered closes. Either the UDR
exits, or the mi_close() function executes.

� The DataBlade API calls the callback, which happens for state-transition
callbacks when one of the following events occurs:

– MI_EVENT_SAVEPOINT
– MI_EVENT_COMMIT_ABORT
386 Customizing the Informix Dynamic Server for Your Environment

– MI_EVENT_POST_XACT
– MI_EVENT_END_STMT
– MI_EVENT_END_XACT
– MI_EVENT_END_SESSION

� You explicitly unregister the callback with the mi_unregister_callback()
function.

Because this might seem a bit confusing, we provide a few examples. We look at
a few possibilities by using the event type MI_EVENT_END_XACT.

The first test involves using the callback code shown in Example 9-3 on page 381
and registering for the MI_EVENT_END_XACT event in the BEFORE action of a
trigger. Example 9-8 shows the INSERT operations.

Example 9-8 Testing multiple events

CREATE TRIGGER mytrig
INSERT ON mytab
BEFORE (EXECUTE PROCEDURE registerCallback0());

INSERT INTO mytab VALUES(0, "one row");
BEGIN;
INSERT INTO mytab VALUES(0, "row two");
INSERT INTO mytab VALUES(0, "row three");
COMMIT;

The first INSERT is in an automatic transaction. The trigger executes and
registers the trigger. The transaction completes, and we find one call to the
callback function in the tracing file.

In the second part, there are two INSERT statements that are part of the same
transaction. The trigger is executed twice in the transaction. Therefore, the
callback function is registered twice. The result is that one transaction calls two
callbacks resulting in two new entries in the tracing file.

We need to do one more test, which is to remove the trigger and register the
callback in each case, as shown in Example 9-9.

Example 9-9 Explicit callback registration test

EXECUTE PROCEDURE registerCallback0();
INSERT INTO mytab VALUES(0, "one row");
BEGIN;
EXECUTE PROCEDURE registerCallback0();
INSERT INTO mytab VALUES(0, "row two");
 Chapter 9. Taking advantage of database events 387

INSERT INTO mytab VALUES(0, "row three");
COMMIT;
INSERT INTO mytab VALUES(0, "row four");

The first statement registers the callback function, and its execution ends with the
following error message:

7514: MI_EVENT_END_XACT callback can only be registered inside a
transaction.

The first statement executes properly without executing the callback. The
statements that are included between BEGIN and COMMIT execute properly
resulting in one call to the callback function. The last INSERT also executes
properly but without a call to the callback function.

These tests tell us the following information:

� Multiple callbacks can be registered for the same event, even if it is the same
callback function.

� A registered callback is called once and then is automatically removed.

Since we are likely to want our use of callbacks to be transparent to application
code, we always use the trigger method of using callbacks. This means that, if
you expect transactions to include multiple operations or multiple tables that
register callbacks, you might have to add indicators to ensure that a specific
callback is called only once. You can do this easily by using indicators in the
named memory block indicating if the callback has already executed. Another
method is to have an indicator that keeps track of which callback is already
registered and avoid duplicated registration. Example 9-10 shows the second
method.

Example 9-10 Single callback registration

typedef struct NamedMemory {
 mi_integer registered;
 . . .
} NamedMemory_t;

mi_integer registerCallback1()
{
 MI_CALLBACK_HANDLE *cbhandle;
 MI_CONNECTION *sessionConnection;
 mi_integer sessionId;
 NamedMemory_t *pmem;
 mi_string buffer[32];
388 Customizing the Informix Dynamic Server for Your Environment

 sessionConnection = mi_get_session_connection();
 /* Retrieve the session ID */
 sessionId = mi_get_id(sessionConnection, MI_SESSION_ID);
 /* Retrieve or create session memory */
 sprintf(buffer, "session%d", sessionId);
 if (MI_OK != mi_named_get(buffer, PER_SESSION, &pmem)) {
 /* wasn't there, allocate it */
 if (MI_OK != mi_named_zalloc(sizeof(NamedMemory_t), buffer,

PER_SESSION, &pmem)) {
 mi_db_error_raise(NULL, MI_EXCEPTION,

"Logger memory allocation error", NULL);
 }
 /* initialize the memory structure */
 }
 if (pmem->registered == 0) {
 cbhandle = mi_register_callback(NULL, MI_EVENT_COMMIT_ABORT,

cbfunc0, pmem, NULL);
 if (cbhandle == NULL)

mi_db_error_raise(NULL, MI_EXCEPTION,
"Callback registration failed", NULL);

 pmem->registered = 1;
 }
 return(0);
}

Start by defining the structure to be used for the named memory. The key
component is to have a flag that indicates if the callback has been registered.
The size of the structure depends on how the memory will be used.

The code continues with the creation or retrieval of the named memory as shown
in Example 9-6 on page 385. Since the memory is initialized to zero, the
registered indicator is automatically set, indicating that the callback has not been
registered.

After the named memory is retrieved, we test the registered indicator to see if we
must register the callback. If we need to register the callback, we do so by
passing the named memory pointer as the user data argument. Then we change
the indicator after verifying that the registration was successful.

This method implies that the callback itself will either reset the registered
indicator to zero or free the named memory. Otherwise, the callback is registered
only once for the life of the named memory block.

Now that we know how to create and register callbacks, let us look at how to
architect a solution that makes the database server a more active participant in
 Chapter 9. Taking advantage of database events 389

the architecture of a solution. Two implementation options are described in the
following sections.

9.5 Implementation options

There are multiple options when implementing event processing. Two of the more
typical options are described in the following sections. We refer to them as
Option A and Option B.

9.5.1 Option A

Figure 9-4 illustrates event processing using Option A.

Figure 9-4 Event processing, Option A

We described the first part of this option earlier in this chapter. It is represented
by the following steps:

1. The statement executes and accesses a table.
2. The BEFORE trigger is called.
3. The callback function is registered for the desired event.

At this point each row is processed. This implementation involves writing the
result of the processing to an event table. That table can simply keep a
character representation of the result or can be more complex, including
multiple columns of varied types. The processing steps continue as follows:

4. Process each row from the statement.
5. IDS generates a COMMIT or ROLLBACK event.
6. Execute the callback.

Statement

Table

Trigger

Callback

Register

EventTable

Commit/Rollback

MonitorProgram

8
3

2

1

6
5

4

7

390 Customizing the Informix Dynamic Server for Your Environment

Since all rows have been processed, the callback can be minimal and simply
perform the following steps:

7. Send a message or a signal to an outside monitoring program.
8. The outside program is started and reads the event table.

This model only works when processing COMMIT events. If you want to process
ROLLBACK events by using this architecture, you will find the event table empty.
The event table (eventTable) is empty because all the write operations to it are in
the context of the current transaction. If the transaction is aborted, the operations
are rolled back, which includes removing all the data from the event table. This
means that you need a different approach when you want to generate some
events, even when transactions are rolled back.

9.5.2 Option B

This implementation option does not depend on a database table. It is necessary
when the objective is generate events with information when a rollback occurs.
One way to do this is to write to an external file. The DataBlade API provides a
set of functions to manipulate files. By using this technique, the file can be read
back after a ROLLBACK and still provide the information to an outside program.
When performing this option, a specific file name can be agreed on, or a
message that provides the path to the result file can be used. However, a more
efficient method is to take advantage of named memory.

Figure 9-5 illustrates event processing using Option B.

Figure 9-5 Event processing, Option B

Statement

Table

Trigger

Callback

Register

NamedMemory

Commit/Rollback

MonitorProgram
8

3

2

1

6

5

4

7

 Chapter 9. Taking advantage of database events 391

The processing for Option B is similar to Option A:

1. The statement executes and accesses a table.
2. The BEFORE trigger is called.
3. The callback function is registered for the desired event.

At this point, each row must be processed. This is where the processing
differs from Option A. Here, the result of processing each row is written to
named memory. A flexible implementation requires the dynamic allocation of
memory and the chaining of these memory blocks. Since this new memory
allocation must last longer than the execution of the procedure, the
mi_dalloc() function must be used to require a memory duration different from
the default.

The processing steps continue:

4. Process each row from the statement.
5. IDS generates a COMMIT or ROLLBACK event.
6. Execute the callback.

The callback needs to retrieve the processed information:

7. Read the named memory, free the memory blocks, and so on.
8. Send the results to the outside entity.

9.6 Communicating with the outside world

To complete the discussion on using events, let us look at the following
communication options with the outside world:

� Sending the information to a file
� Calling a user-defined function (UDF)
� Sending a signal
� Using a socket connection
� Using message queues

9.6.1 Sending information to a file

Sending information to a file is the easiest way to send information to the outside
world because the DataBlade API provides functions that emulate the operating
system file access system calls. The problem with this approach is that an
outside entity must monitor the file to understand the changes. This is the
approach used in the IBM developerWorks article “Event-drive fined-grained
auditing with Informix Dynamic Server”, which you can find at the following Web
address:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0410roy/
392 Customizing the Informix Dynamic Server for Your Environment

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0410roy/

The following DataBlade API functions are for file manipulation:

� mi_file_allocate()
� mi_file_close()
� mi_file_errno()
� mi_file_open()
� mi_file_read()
� mi_file_seek()
� mi_file_sync()
� mi_file_tell()
� mi_file_to_file()
� mi_file_unlink()
� mi_file_write()

It might be difficult to manage the information provided by the events. How can
the events be removed from the file once its processing is completed?

It makes sense that, instead of writing to a specific file, the callback writes to a
specific directory. Each event then generates a new file, and unique file names
can easily be generated by using a timestamp value. This way, events can be
archived or removed after they have been processed.

By itself, this approach is less useful in an event-driven architecture. However,
used in conjunction with signals or other methods, it provides the functionality
that is needed with the additional benefit of preserving the events in permanent
storage.

9.6.2 Misbehaved functions

Before investigating the other options, we review how the functions execute
within the Informix database server.

IDS is based on a multithreaded architecture that uses processes to execute the
multiple execution threads. This has two major implications:

� When a function executes, it keeps control of a virtual processor until it
returns or until it executes a DataBlade API function. This means that, if a
function executes an I/O operation through the standard operating system
calls, the virtual processor that runs this function blocks until the system call
completes.

� If a function is re-scheduled, it might run in a different process that invalidates
global variables and other objects. This means that, if a function has a socket
open and gets rescheduled, the file descriptor that represents the socket is
invalid if the function is not rescheduled on the same virtual processor where
the socket was opened.
 Chapter 9. Taking advantage of database events 393

Avoid these misbehaved types of functions if possible. However, the DataBlade
API provides mechanisms to handle these types of functions. When creating a
UDF, there is an option to identify the type of virtual processors it must run on,
called a user-defined virtual processor. In addition to identifying the virtual
processor in the CREATE FUNCTION statement, an entry must be added in the
onconfig file to define the target virtual processor. IDS already takes advantage
of this capability for XML processing and in the basic text search DataBlade.
Example 9-11 shows the definitions used for the virtual processors.

Example 9-11 User-defined virtual processor definition

VPCLASS idsxmlvp,num=1
VPCLASS bts,noyield,num=1

As you can see in the VPCLASS definition, it is possible to start more than one of
the virtual processors. This brings us back to the second problem discussed in
the beginning of this section. To solve that problem, the DataBlade API provides
the functions mi_module_lock() and mi_udr_lock() to request that a function be
rescheduled on the same virtual processor on which it initially ran.

Here a user-defined virtual processor is created by using a similar VPCLASS
declaration. Assuming the newly created VPCLASS is called mycallback, a
function can be forced to run on that processor by using a declaration like the
one shown in Example 9-12.

Example 9-12 Using the CPU modifier

CREATE FUNCTION myFunc()
RETURNING . . .
WITH (CPU=mycallback)
. . .

Any function that is misbehaved should use these mechanisms. But what about
the callback function? It is not a registered UDF. From a callback function, it is
possible to call a UDF that restricts where it executes, which is the subject of the
next section.

9.6.3 Calling a user-defined function

Considering what we have discussed in the previous, it seems appropriate to call
a UDF from the callback, which is possible with a set of functions that the
DataBlade API provides. The functionality is called the fastpath interface.

A UDF can be called with no consideration for its implementation. This means
that the callback can call a UDF written in C, Java, and SPL.
394 Customizing the Informix Dynamic Server for Your Environment

Since a declared UDF is being called, this function can be declared as running
on a specific type of virtual processor as explained in 9.6.2, “Misbehaved
functions” on page 393. This enables control on how the code is run.

A Java UDF can also be called. Since the Java runtime environment™ (JRE™)
included in IDS is a complete implementation, the full power of the language can
be used to do anything the language allows. This includes opening sockets,
sending signals, and so on. Java does not have all the functionality available in C.
However, this should not be a problem since the callback is written in C and can
do any processing unavailable in Java before calling the Java UDF.

The DataBlade API provides the following set of functions under the fastpath
interface:

� mi_cast_get()
� mi_func_desc_by_typeid()
� mi_routine_end()
� mi_routine_exec()
� mi_routine_get()
� mi_routine_get_by_typeid()
� mi_td_cast_get()

The fastpath interface provides a more convenient (and faster) way to call a
function than to use an EXECUTE FUNCTION SQL statement. As when using
SQL statements, the fastpath interface allows functions to be called without
having to compile them in the shared library. The function can come from any
DataBlade module that is registered in the current database.

When using the fastpath interface, the calls follow this general sequence:

1. Retrieve a reference to the desired function.
2. Execute the function.
3. Release the resources associated with the function descriptor.

The code shown in Example 9-13 demonstrates this sequence of operations.

Example 9-13 Operations using the fastpath interface

MI_FUNC_DESC *fn;
MI_CONNECTION *conn;
. . .
conn = mi_get_session_connection();
fn = mi_routine_get(conn, 0, "writeFile(lvarchar, lvarchar)");
(void) mi_routine_exec(conn, fn, &ret, buffer, pcur->xml);
mi_routine_end(conn, fn);
 Chapter 9. Taking advantage of database events 395

To retrieve a function, a database connection is required. The one from the
session in which we are running can be used. Having the connection, the
function descriptor that corresponds to the function name and signature provided
as an argument can be retrieved. In this example, we are looking for the following
function:

writeFile(lvarchar, lvarchar)

If the function is not found, the mi_routine_get() functions return a NULL pointer.
With the function descriptor, the function can be called and passed the proper
arguments. The mi_routine_exec() function returns a pointer to the value that is
returned by the execution of the target function.

When finished, the memory associated with the function descriptor can be
released.

9.6.4 Sending a signal

On UNIX systems, it is possible to send a signal to another process (monitoring
process) running on the same machine. This is done by using the kill() system
call. The following signals can be used for this purpose:

� SIGUSR1: User-defined signal 1
� SIGUSR2: User-defined signal 2

The kill() system call takes only two arguments: the process number where to
send the signal and the signal being sent. Because of this, some issues must be
addressed when using this capability.

First, know which process identifier you want to target. Depending on the
operating system, it is possible to find information about the running processes
by using several methods. A simple, platform independent way is to agree on a
specific file where the process ID is written when the program is started. The
callback function can then use the DataBlade API functions to read the file to
retrieve the process number and send the signal.

Since there are two user-defined signals, information can be conveyed based on
which signal is sent. For example, one signal can be used for committed
transactions and the other signal can be used for rollbacks.

Sending a signal from a callback function should not make it a misbehaved
function. However, we recommend that you treat it as though it were misbehaved.

After the monitoring process receives the signal, it knows to return to the
database server to retrieve the details of the event. If you are only concerned
with committed transactions, the easiest way is to have a communication table
396 Customizing the Informix Dynamic Server for Your Environment

that the monitoring process reads to handle the events. After an event is handled,
the row is removed from the table.

When you also want to handle transaction rollbacks, the solution is slightly more
complicated since it is not possible to write the event to a communication table. If
you do so, the inserted row or rows disappear due to the rollback.

One solution is to write the event to an external file. This is done by defining a
directory for event files. After receiving a signal, the monitoring program can start
processing the event files from the given directory. When an event is processed,
the event file can be removed from the directory or moved to another location.

Another solution is to keep the information in named memory. After receiving the
signal, the monitoring process gets the information from named memory and
processes the events. Of course, the monitoring program cannot access named
memory directly. Therefore, this implementation must include additional UDRs to
provide this access.

Earlier in this chapter, we discussed allocating named memory on a session
basis. This does not work for this solution since the monitoring program does not
know which session issued the signal. The named memory must be allocated at
a higher duration (PER_SYSTEM) and shared by all the sessions that generate
events. The management and access to the named memory become more
complex since we must be concerned about concurrency control using the
DataBlade API functions mi_lock_memory(), mi_try_lock_memory(), and
mi_unlock_memory().

9.6.5 Opening a network connection

Another way to communicate with a monitoring process is to open a network
connection to it. In this case getting a machine name or address and a port
number is required. There are several ways to provide this information. For
example, it can be provided through a file or even as an argument to the callback
registration function.

The DataBlade API does not provide functions to establish a network connection.
An easy way to work around this issue is to use the fastpath interface to call a
UDF written in Java.

A C UDF can still be used to access the network. This function is definitely a
misbehaved function. Therefore, a user-defined virtual processor is required.

A UDF runs as a thread in a virtual processor. Over time, a thread can be
rescheduled to run on a different virtual processor. This means that any open file
descriptor, including network connections, become invalid when you change the
 Chapter 9. Taking advantage of database events 397

virtual processor. If you define multiple instances of the user-defined virtual
processor to run the UDF that includes the network connection, the function can
fail at times due to scheduling. To work around this issue, use the DataBlade API
function mi_udr_lock() to ensure that the function does not migrate to another
virtual processor during its execution.

9.6.6 Integrating message queues

IDS includes the MQSeries DataBlade module, which is described in 7.5.1,
“DataBlades included with IDS” on page 289. The MQSeries DataBlade can be a
simple way to integrate IDS into an SOA environment.

Message queues are much simpler to integrate into an event-processing scheme
since the communication with the message queue is part of the transaction. This
means that, if there is a transaction rollback, the message is not sent to the
outside world.

The use of message queues does not require a callback function. The trigger can
simply either call the appropriate function or INSERT into a message queue table
if it is set up accordingly.

9.6.7 Other possibilities

Other options are possible, such as using an HTTP connection to communicate
with the World Wide Web. Another approach is to access Web services. A Web
service can easily be accessed through IDS by using Java UDFs which is
explained in 8.3.2, “Service providing with IDS 11” on page 321.

The use of Java UDFs should not be underestimated. Most communication
toolkits made available by Web-based companies include a Java interface that
can be used within IDS.

9.7 Conclusion

Integrating IDS in the architecture of a solution can simplify the design and
improve performance. It can also provide an additional separation from business
processes and a specific business application.

The logic of which external business partner is contacted following a specific
event can be kept outside the application that generated the event. This way, if
new business partners are added or some are removed, the application does not
change. Since the logic is in the database, multiple applications can take
398 Customizing the Informix Dynamic Server for Your Environment

advantage of the database logic. This simplifies the applications and provides an
additional way to reuse code.

In this chapter, we described how you can take advantage of the power of IDS
extensibility to gain a business advantage. The more you learn about the
capabilities of IDS, the more you can improve your efficiency. However,
integrating IDS into a solution architecture from the start is the best approach.
 Chapter 9. Taking advantage of database events 399

400 Customizing the Informix Dynamic Server for Your Environment

Chapter 10. The world is relational

In this chapter, we discuss of the Virtual Table Interface (VTI) and Virtual Index
Interface (VII) features that are provided by the Informix Dynamic Server (IDS). In
business today, a significant volume of application data is still not stored in
relational tables, while there is a requirement to integrate this data with the data
that is stored in relational databases to satisfy business operations. IDS provides
a rich framework for application developers to integrate non-relational data
sources into the relational model, thereby enabling SQL query capabilities on
data in these non-relational data sources.

We also show a few examples that illustrate the power of this framework and
provide possible starting points for how to customize IDS to build complex data
integration applications.

10
© Copyright IBM Corp. 2008. All rights reserved. 401

10.1 Virtual Table and Virtual Index Interfaces

Traditionally relational databases (RDBs) have provided query capabilities for
data that is stored and organized in relational tables. Databases understand
relational schemas and have sophisticated indexing mechanisms to efficiently
access the underlying data. They provide SQL capabilities to query, dissect, and
examine the data. IDS has extended this model to enable integration of
non-relational data into the relational model and thus extend the power and value
of business applications. The VTI is a framework defined to implement gateways
to non-relational data into IDS. Popular implementations of VTI include ffvti
(external file access) and message queue (MQ) VTI tables.

In addition to providing a VTI framework, IDS provides a framework for
application developers to extend or implement new indexing schemes. If the
more typical B-Tree or RTREE implementations do not satisfy the needs of an
application, then there is a requirement for a new indexing mechanism. The VII is
a framework to extend or define new indexing schemes. Popular implementations
of VII include the Excalibur Text (ETX) and Basic Text Search (BTS) DataBlades.

IDS refers to VTI and VII as user-defined access methods (UDAMs). An access
method consists of software routines that open files, retrieve data into memory,
and write data to permanent storage, such as a disk. IDS natively supports
built-in access methods that work with relational data stored in IDS tables.
However, UDAMs are plug-ins that allow IDS to understand non-relational data or
data stored outside of IDS relational tables.

VTI is also called a user-defined primary access method. A primary access
method provides a relational table interface for direct read and write access. A
primary access method reads directly from and writes directly to source data. It
provides a means of combining data from multiple sources in a common
relational format that the database server, users, and application software can
use. IDS relational tables use native built-in primary access methods.

VII is also referred to as a user-defined secondary access method. A secondary
access method provides a means of indexing data for alternate or accelerated
access. An index consists of entries, each of which contains one or more key
values, and a pointer to the row in a table that contains the corresponding value
or values. The secondary access method maintains the index to coincide with
inserts, deletes, and updates to the primary data. Indexes created on IDS
relational tables use BTREE as secondary access method by default. The
BTREE access method is native to IDS and falls under the built-in secondary
access methods.
402 Customizing the Informix Dynamic Server for Your Environment

10.1.1 The UDAM framework

The UDAM framework consists of a set of the following components:

� Purpose functions, flags, and values
� System catalogs
� Descriptors
� DataBlade APIs that work with the descriptors

IDS communicates with the UDAM through the invocation of an appropriate
purpose function. Information about SQL statement specification and state is
passed to the access method using various descriptors. The information held in
the descriptors can be accessed and manipulated by using DataBlade APIs that
operate on the descriptors.

Purpose functions are user-defined routines (UDRs) with predefined signatures
that are implemented in the C language. The sequence of purpose function
invocations depends on the type of SQL statement. We discuss this topic in more
detail in the remaining sections of this chapter.

Purpose functions are implemented by the access method developers. They fill in
for the built-in purpose functions that are otherwise called for normal relational
tables. Since IDS does not understand the data handled by the access method, it
relies on purpose functions to transform data into the relational format.

SQL syntax to define UDAM
Now we look at the SQL extensions with which we can define new access
methods and create tables by using those access methods.

Example 10-1 shows the syntax for creating a UDAM in IDS.

Example 10-1 UDAM create syntax

CREATE <PRIMARY | SECONDARY> ACCESS_METHOD <method name>
(
<purpose function> = <external_routine> |
<purpose value> = < string value | numeric value > |
<purpose flag>
);

UDAM: Unless otherwise stated, we use the acronym UDAM for both the VTI
and VII frameworks.
 Chapter 10. The world is relational 403

The CREATE ACCESS_METHOD statement registers the UDAM with IDS and
provides a list of capabilities and purpose functions implemented by the UDAM.
Purpose function names must be provided at UDAM create time, and the
underlying UDRs must be registered beforehand.

Table 10-1 lists commonly used purpose functions, values, and flags.

Table 10-1 Purpose functions, values, and flags

Purpose word Description Category

am_sptype A character that specifies from what type of storage
space a primary or secondary-access method can
access data.

Value

am_keyscan A flag that, if set, indicates that am_getnext returns
rows of index keys for a secondary-access method. If
a query selects only the columns in the index key, the
database server uses the row of index keys that the
secondary-access method puts in shared memory,
without reading the table.

Flag

am_unique A flag to set if a secondary-access method checks for
unique keys.

Flag

am_readwrite A flag to set if a primary-access method supports data
changes. The default setting, not set, indicates that the
virtual data is read-only.

Flag

am_parallel A flag that the database server sets to indicate which
purpose functions or methods can execute in parallel
in a primary or secondary-access method.

Flag

am_costfactor A value by which the database server multiplies the
cost that the am_scancost purpose function or method
returns for a primary or secondary-access method.

Value

am_create Name of a user-defined function (UDF) or method
(UDR) name that creates a virtual table or virtual
index.

Function

am_drop Name of UDF or method (UDR) name that drops a
virtual table or virtual index.

Function

am_open Name of UDF or method (UDR) name that makes the
virtual table or virtual index available for access in
queries.

Function

am_close Name of a UDF or method (UDR) name that reverses
the actions of the am_open function.

Function

am_insert Name of a UDR that inserts a row or an index entry. Function
404 Customizing the Informix Dynamic Server for Your Environment

For a more complete list of purpose functions, values, and flags, refer to the IDS
11 information center at the following Web address:

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp

The ALTER ACCESS_METHOD syntax, shown in Example 10-2, provides a way
to change the capabilities of a UDAM. The ADD, DROP, and MODIFY keywords
can be used to achieve the desired change in UDAM capabilities.

Example 10-2 ALTER UDAM syntax

ALTER ACCESS_METHOD <method name>
ADD|DROP|MODIFY <purpose function | purpose value>
= <routine name | quoted string>

am_delete Name of a UDR that deletes a row or an index entry. Function

am_update Name of a UDR that updates a row or an index entry. Function

am_stats Name of a UDR that builds statistics based on the
distribution of values in the access method.

Function

am_scancost Name of a UDR that calculates the cost of qualifying
and retrieving data.

Function

am_check Name of a UDR that tests the physical structure of a
table or performs an integrity check on an index.

Function

am_beginscan Name of a UDR that sets up a scan. Function

am_endscan Name of a UDR that reverses the setup that
am_beginscan initializes.

Function

am_rescan Name of a UDR that scans for the next item from a
previous scan to complete a join or subquery.

Function

am_getnext Name of the required UDR that scans for the next item
that satisfies a query.

Function

am_getbyid Name of a UDR that fetches data from a specific
physical address. am_getbyid is available only for
primary access methods.

Function

am_truncate Name of a UDR that deletes all rows of a virtual table
(primary-access method) or that deletes all
corresponding keys in a virtual index
(secondary-access method).

Function

Purpose word Description Category
 Chapter 10. The world is relational 405

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp

The DROP ACCESS_METHOD syntax, shown in Example 10-3, provides a way
to drop a UDAM as long as it is not used by any virtual table or index.

Example 10-3 DROP ACCESS_METHOD

DROP ACCESS_METHOD <method name> RESTRICT

Having looked at the SQL extensions to register or manipulate UDAMs, we now
look at how to create tables or indices by using the UDAM, which is shown in
Example 10-4.

Example 10-4 CREATE TABLE/INDEX using UDAM

CREATE TABLE ...
USING <access method name>
(

<identifier>=<value>,
<identifier>=<value>,
...

)

CREATE INDEX ... <index key specification> <operator class name>
USING <access method name>
(

<identifier>=<value>,
<identifier>=<value>,
...

)

The USING clause associates an access method with the virtual table or virtual
index. The <identifier>=<value> block is optional and can be used to pass
configuration or customization parameters to the access method. This
information is accessed by the UDAM by using the descriptors that are passed to
the purpose functions. This mechanism provides access method developers
extra flexibility in designing a UDAM, so that a single UDAM can be used for
multiple virtual tables or indices.

System catalogs
IDS uses a set of system catalog tables to store the metadata information about
a UDAM and associated virtual tables and indices. The catalogs have the
following names:

� informix.sysams
� informix.sysprocedures
� informix.systables
� informix.sysindices
406 Customizing the Informix Dynamic Server for Your Environment

informix.sysams is the primary catalog that holds the metadata information about
UDAM obtained from the CREATE ACCESS_METHOD statement.

Example 10-5 shows the entry in sysams for a HASH access method.

Example 10-5 informix.sysams schema

> select * from informix.sysams where am_name = 'hash';

am_name hash
am_owner informix
am_id 3
am_type P
am_sptype D
am_defopclass 0
am_keyscan 0
am_unique 0
am_cluster 0
am_rowids 1
am_readwrite 1
am_parallel 0
am_costfactor 1.000000000000
am_create 116
am_drop 0
am_open 117
am_close 118
am_insert 119
am_delete 121
am_update 120
am_stats 0
am_scancost 122
am_check 0
am_beginscan 123
am_endscan 0
am_rescan 124
am_getnext 125
am_getbyid 126
am_build 0
am_init 0
am_truncate 0

It is clear that there is a one-to-one correspondence between the purpose
function, value, and flags provided at UDAM create time and what is populated in
sysams. Purpose functions are represented by the UDR identifier, instead of the
actual UDR name. For example, am_create for the HASH access method is
 Chapter 10. The world is relational 407

identified by UDR identifier 116. UDR identifiers uniquely identify the UDR in the
informix.sysprocedures catalog where UDR metadata is stored.

The informix.sysprocedures catalog stores metadata information about UDRs.
UDAM purpose functions are implemented using C UDRs, and therefore, they
have a unique entry in the informix.sysprocedures catalog. Example 10-6 shows
the entry in informix.sysprocedures for the HASH am_create purpose function.
Entries in the informix.sysprocedures catalog are populated by using the
CREATE PROCEDURE or CREATE FUNCTION SQL statement.

Example 10-6 informix.sysprocedures entry for HASH am_create

> select * from sysprocedures where procid=116;

procname sha_create
owner informix
procid 116
mode d
retsize 102
symsize 260
datasize 0
codesize 0
numargs 1
isproc f
specificname
externalname (sha_create)
paramstyle I
langid 1
paramtypes pointer
variant t
client f
handlesnulls f
iterator f
percallcost 0
commutator
negator
selfunc
internal f
class
stack
parallelizable f
costfunc
selconst 0.00
collation en_US.819
408 Customizing the Informix Dynamic Server for Your Environment

The informix.systables and informix.sysindices hold the metadata information
about tables and indices created in a database. For virtual tables and indices, it
also holds the UDAM identifier or am_id. Example 10-7 shows the entry in
informix.systables for a virtual table created with the HASH access method. In
this example, the am_id column value is 3, which uniquely identifies the HASH
access method entry in informix.sysams.

Example 10-7 informix.systables entry for virtual table using HASH access method

> CREATE TABLE hash_table (col1 INTEGER)
USING hash (mode="static", hashkey="(col1)", number_of_rows="100");

> SELECT * FROM informix.systables WHERE tabname="hash_table";

tabname hash_table
owner vshenoi
partnum 1048840
tabid 105
rowsize 4
ncols 1
nindexes 0
nrows 0.00
created 11/07/2007
version 6881281
tabtype T
locklevel P
npused 0.00
fextsize 16
nextsize 16
flags 0
site
dbname
type_xid 0
am_id 3
pagesize 2048
ustlowts
secpolicyid 0
protgranularity

Descriptors
The UDAM framework defines a set of descriptors to hold information that is
passed to the C functions that provide the implementation of purpose functions.
While many descriptors provide support when writing purpose functions, we only
discuss a few of the more important ones.
 Chapter 10. The world is relational 409

When the server calls one of the purpose functions, it passes a descriptor of the
appropriate type, containing all the information that is required by the function to
perform its work. Two of the descriptors, the scan descriptor and the table
descriptor, also contain userdata fields that can be used to store information
specific to the particular implementation. The userdata field is maintained or
cached by the server for the duration of a UDAM operation, such as SCAN,
INSERT, and DELETE. It, thereby, provides a placeholder for the UDAM to store
state information or cache data between purpose function calls.

Table 10-2 shows the descriptors that are defined by the UDAM framework. The
accessor function prefix column provides the DataBlade API extension function
name prefixes that operate on the respective descriptors.

Table 10-2 UDAM descriptors

UDAM DataBlade API extensions
UDAM developers are provided with numerous utility functions that work with
descriptors passed into purpose function implementations. The access method
developer is responsible for accessing the external data by using information
from the descriptor. The developer is also responsible for applying the knowledge
of the underlying external data store and performing the action that is appropriate
for the purpose function task.

Descriptor Description Accessor
function prefix

Key descriptor
(MI_AM_KEY_DESC)

Holds index keys, strategy functions,
and support functions (VII only)

mi_key_

Qualification descriptor
(MI_AM_QUAL_DESC)

Holds WHERE clause criteria mi_qual_

Row descriptor (MI_ROW) Holds order and data types of
projected columns

mi_row_

Row-id descriptor
(MI_AM_ROWID_DESC)

Holds indexed table row location (VII
only)

mi_id_

Scan descriptor
(MI_AM_SCAN_DESC)

Holds SELECT clause projection mi_scan_

Statistics descriptor
(MI_AM_ISTATS_DESC)

Holds data distribution of values mi_istats_

Table descriptor
(MI_AM_TABLE_DESC)

Holds table (VTI) or index (VII)
location and attributes

mi_tab_
410 Customizing the Informix Dynamic Server for Your Environment

Now we look at one specific example with a focus on the am_open purpose
function. Suppose an access method is created with the statement shown in
Example 10-8.

Example 10-8 Creating an access method

CREATE PRIMARY ACCESS METHOD mymethod
(
AM_BEGINSCAN = my_begin_scan,
AM_GETNEXT = my_get_next,
AM_OPEN = my_open,
...
)

This implies that several SQL functions, including one called my_open, have
been registered with the database server by using the CREATE
PROCEDURE/FUNCTION statement (Example 10-9).

Example 10-9 CREATE statement

CREATE FUNCTION my_open (ptr POINTER)
RETURNING integer
EXTERNAL NAME "$INFORMIXDIR/extend/mymethod/mymethod.bld(my_open)"
LANGUAGE C
END FUNCTION;

In this example, my_open() is defined to take an argument of type POINTER.
The database server passes a reference to an MI_AM_TABLE_DESC to the
function, but no SQL data type corresponds to this structure. The POINTER data
type is provided to allow opaque types to be passed to SQL functions under
these circumstances.

We look at some tasks that my_open must perform, which depends on the
requirements of the external data store:

� Verifying that the user has authority to open the table or file

� Initializing a user data structure with information that subsequent calls will
require.

Tip: Memory for user data structures should be allocated with the
mi_dalloc() DataBlade API memory allocator call, with PER_COMMAND
duration, so that it persists across function calls. For a discussion of
memory durations provided by the DataBlade API, refer to the IBM Informix
DataBlade API Function Reference, Version 11.1, G229-6364.
 Chapter 10. The world is relational 411

� Opening an external file and save a file descriptor, or performing the
equivalent of an mi_open() for an external relational database

� Obtaining a row descriptor for the table, which allows subsequent function
calls to process data from individual columns

This work is done with a combination of the DataBlade API accessor function
calls, DataBlade API calls, and standard C. For example, to retrieve the name of
the table to which an MI_AM_TABLE_DESC refers, we make a call to
mi_tab_name(). We then get the name of the table owner with a call to
mi_tab_owner(). The accessor function prefix column from Table 10-2 on
page 410 lists the prefix of the function calls that operate on respective
descriptors. For a complete list of DataBlade API accessor functions, refer to the
IDS 11 information center at the following Web address:

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp

How everything fits together
Assuming that we are trying to create a virtual table or index by using syntax
from Example 10-4 on page 406, the following steps are performed by the
database server to create the external data store:

1. Extracts the access method name from the USING clause.

2. Retrieves the row from informix.sysams that corresponds to the given access
method name.

3. Retrieves the UDR identifier for the am_create purpose function from the
informix.sysams row.

4. Retrieves the informix.sysprocedures row for the UDR identifier obtained in
previous step.

5. Creates MI_AM_TABLE_DESC and populates all relevant fields of the
structure.

6. Executes the am_create function based on information from
informix.sysprocedures and passes the populated MI_AM_TABLE_DESC
structure. This step should create the external data store.

7. Creates an entry in informix.systables or informix.sysindices for the new
virtual table or index if the am_create function execution is successful.
Records the am_id from informix.sysams row into the new
informix.systables/sysindices entry.
412 Customizing the Informix Dynamic Server for Your Environment

http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp

10.1.2 Qualifiers

The IDS SQL optimizer evaluates all the filters as part of a WHERE clause of an
SQL query and decides on the list of filters that can be pushed down to the
purpose functions of UDAM for evaluation. The UDAM framework reformats
those filters and stores the results in a qualification descriptor (an
MI_AM_QUAL_DESC structure). The qualification descriptor, in turn, is
encapsulated in a scan descriptor (an MI_AM_SCAN_DESC structure), which is
passed to the access method scan purpose functions, such as am_beginscan
and am_getnext.

In a typical implementation, the am_beginscan purpose function calls
mi_scan_quals() to extract the qualification descriptor from the scan descriptor.
The am_getnext routine uses that information to qualify each row that it returns to
the server.

A qualification might be a simple predicate, as shown in Example 10-10.

Example 10-10 Qualifier predicate

SELECT * from hash_table where col1 = 1;

Alternatively, a qualification can be a Boolean expression that contains an array
of MI_AM_QUAL_DESC structures. Each structure contains either a simple
predicate or another array of Boolean expressions. This setup is called a
complex qualifier. Example 10-11 shows an example of a complex qualifier with
three simple qualifiers (col1 =1, col1 =10, col1 > 15) joined by an OR operator.

Example 10-11 Complex qualifier

SELECT * from hash_table where col1 = 1 or col1 = 10 or col1 > 15;

The accessor function mi_qual_issimple() tests whether an
MI_AM_QUAL_DESC structure points to a simple qualifier.

The accessor functions mi_qual_nquals() and mi_qual_qual() return the total
number of qualifiers and a particular qualifier descriptor based on a given index
into the array of qualifier descriptors respectively when handling complex
qualifiers.

Handling qualifiers
The task of the purpose functions is to break the qualification down into a series
of simple predicates. It is also to assign a value of MI_VALUE_TRUE,
MI_VALUE_FALSE, or MI_VALUE_NOT_EVALUATED to each qualifier by using
the accessor function mi_qual_setvalue().
 Chapter 10. The world is relational 413

Example 10-12 shows an excerpt of code that handles simple and complex
qualifiers.

Example 10-12 Code for complex qualifiers

if (mi_qual_issimple(qd))
 {
 /* Execute simple, function. (Not shown.) */
 /* Test the result that the function returns. */
 if (result == MI_TRUE)
 {
 /* Set result in qualification descriptor.*/
 mi_qual_setvalue(qd,MI_VALUE_TRUE);
 return; ;
 }
 else
 {
 mi_qual_setvalue(qd,MI_VALUE_FALSE);
 return;;
 }
 } /* END: if (mi_qual_issimple(qd)) */
 else
 { /* Complex qualification (has AND or OR)..Loop until all functions
execute.*/
 for (i = 0; i < mi_qual_nquals(qd); i++)
 get_result(mi_qual_qual(qd, i), my_data)
 } /* END: Complex qualification (has AND or OR) */
 return;;

When the purpose function has processed each of the simple predicates in a
qualification, it can make a call to mi_eval_am_qual() to finish evaluating the
qualification. This causes the database server to evaluate any predicates that
were set to MI_VALUE_NOT_EVALUATED and to assign a value of
MI_VALUE_TRUE or MI_VALUE_FALSE to the statement as a whole. If the set
of qualifiers as a whole has a value of MI_VALUE_TRUE, then the row satisfies
the qualification, and the purpose function can return it to the server. Otherwise,
the purpose function can skip to the next row.

10.1.3 Flow of DML and DDL with virtual tables and indices

Now that you understand the UDAM framework and the surrounding data
structures, we turn our focus to the flow of the purpose function calls for various
Data Manipulation Language (DML) and Data Definition Language (DDL)
operations.
414 Customizing the Informix Dynamic Server for Your Environment

UDAM CREATE TABLE and CREATE INDEX flow
When an application issues a CREATE TABLE or CREATE INDEX statement by
using a UDAM, the database server invokes the sequence of purpose functions
as illustrated in Figure 10-1.

Figure 10-1 VTI create flow

Figure 10-2 shows a VII flow that differs from the VTI flow in that, for every row in
the table (on which the index is created), the database server performs
am_insert to insert the index key value into the virtual index.

Figure 10-2 VII create flow

am_create

am_open

am_close

am_insert (key)

am_close

More
rows ?

yes

no

am_create

am_open
 Chapter 10. The world is relational 415

UDAM DROP TABLE or DROP INDEX flow
When an application issues a DROP TABLE or DROP INDEX statement to drop
a virtual table or an index, the database server invokes the sequence of purpose
functions as illustrated in Figure 10-3.

Figure 10-3 UDAM drop flow

UDAM INSERT, DELETE, UPDATE flow
The INSERT, DELETE, UPDATE of a UDAM table has the following scenarios,
with different flows for each:

� INSERT, DELETE, UPDATE with row address or row ID (see Figure 10-4)

Figure 10-4 UDAM IDU with row address (row ID) flow

am_open

am_drop

am_open (fragment)

am_insert row
am_delete row

or am_update row

am_close
416 Customizing the Informix Dynamic Server for Your Environment

� INSERT, DELETE, UPDATE with UDAM table in subquery (see Figure 10-5)

Figure 10-5 UDAM IDU in a subquery flow

� INSERT, DELETE, UPDATE with multiple rows returned by am_getnext (see
Figure 10-6)

Figure 10-6 UDAM IDU with multiple rows flow

am_scancost purpose function: The am_scancost purpose function is
called before am_open/am_begins to estimate the cost of scanning the table
or index, given the qualifiers to be applied.

am_beginscan

am_close

MI_ROWS

MI_NO_MORE_RESULTS

am_getnext am_insert
am_delete

or am_update

am_scancost

am_open

am_open

am_beginscan

am_close

MI_ROWS

MI_NO_MORE_RESULTS

am_getnext
am_insert
am_delete

or am_update

nextrow =
norows?

noyes

am_scancost
 Chapter 10. The world is relational 417

UDAM SELECT flow
The UDAM SELECT flow, shown in Figure 10-7, is self-explanatory. The
am_getnext purpose function applies the qualifiers and returns either MI_ROWS
(row qualifies) or MI_NO_MORE_ROWS (no rows qualify).

Figure 10-7 UDAM SELECT flow

UDAM oncheck flow
IDS supports oncheck capabilities for table and index checks on virtual tables and
indices. The oncheck command determines if the table or index to check uses a
UDAM. If it does, then oncheck calls the am_check purpose function to perform
the necessary checks.

am_check: am_check is a purpose function that is implemented by UDAM
developers. This means that IDS relies on UDAM developers to provide the
checking facilities for virtual tables and indices.

am_beginscan

am_close

MI_ROWS

MI_NO_MORE_RESULTS

am_getnext
(evaluate qualifiers)

am_open

am_scancost
418 Customizing the Informix Dynamic Server for Your Environment

UDAM truncate flow
IDS supports truncation of virtual tables via the TRUNCATE TABLE SQL
statement. UDAMs that support a truncate table are required to implement the
am_truncate purpose function and must have the am_readwrite flag set on the
UDAM. Figure 10-8 shows the flow of truncate table execution for UDAM.

Figure 10-8 UDAM truncate flow

10.1.4 UDAM tips and tricks

In this section, we discuss the following topics to help UDAM developers handle
various database server services and monitor UDAM usage:

� “Transactions”
� “Caching data” on page 420
� “Logging and recovery” on page 420
� “Locking” on page 421
� “Parallelization” on page 421
� “Onstat options for UDAM” on page 421

Transactions
Currently, the UDAM framework does not support the two-phase commit
protocol. Therefore, transaction management for external data is problematic. A
caveat to this restriction is that, starting with IDS v10.00xC1, XA-compliant data
sources can be registered with the database server, so that they can participate
in the two-phase commit protocol.

Changes in transaction state can be monitored by registering a callback to check
for a "type" value of MI_EVENT_END_STMT, MI_EVENT_END_XACT, or
MI_EVENT_END_SESSION. This makes it relatively easy to manage simple
transactions by caching any updates and instantiating them only when the
transaction ends (or not instantiating them if the transaction rolls back). Refer to
Chapter 9, “Taking advantage of database events” on page 373.

The difficulty comes when an error occurs during a commit. If the transaction
affects data from both the external data source and internal Informix tables, then

am_drop

am_truncate

am_open
 Chapter 10. The world is relational 419

it is possible for an update to occur on one side but not the other. For now, there
is no perfect way to handle this condition.

Caching data
The UDAM developer has access to the following hooks for caching information
across API calls:

� Caching at scan level

The UDAM can cache information during a scan (am_beginscan
am_endscan), by using the mi_scan_setuserdata and mi_scan_userdata
accessor functions on MI_AM_SCAN_DESC descriptor. The database server
does not free this memory when the scan descriptor is destroyed. The access
method can either free it at am_endscan time or let the server free it when the
memory duration expires. A memory duration of PER_COMMAND is
sufficient for the time a scan is open.

� Caching at open table level

The UDAM can cache information during a table or index open, (am_open
am_close), by using the mi_tab_setuserdata and mi_tab_userdata routines
on an MI_AM_TABLE_DESC descriptor. The server does not free this
memory when the table descriptor is destroyed. The UDAM can either free it
at am_close time or let the server free it when the memory duration expires. A
memory duration of PER_STATEMENT is sufficient for the time a table or
index is open.

� Caching using named memory

The UDAM can allocate memory of any duration and associate a name with it
by calling the DataBlade API routines mi_named_alloc or mi_named_zalloc.
Later, UDAM can retrieve the address of that memory by calling
mi_named_get with the same name. Eventually, the access method can free
the memory by calling mi_named_free.

Logging and recovery
If the data associated with a virtual table or index is completely external to the
database, that is if it is in an IDS external space, then it is not possible for the
database server to provide logging and recovery services for it. If this capability is
required for the UDAM, then it is up to the UDAM developer to implement a
custom solution for achieving logging and recovery.

However, if the data is maintained in an IDS SmartBLOB space, then logging and
recovery services of the SmartBLOB component can be leveraged by the UDAM.
Be aware that the data must be stored in a SmartBLOB that was created with the
MI_LO_ATTR_LOG flag turned on. Refer to the mi_lo_create, mi_lo_spec_init,
and mi_lo_specset_flags routines in the IBM Informix DataBlade API
Programmer's Guide, Version 11.1, G229-6365, for details.
420 Customizing the Informix Dynamic Server for Your Environment

Locking
As with logging and recovery, locking is beyond the control of the server if the
data is stored in a location that is external to the server.

If the data is stored in a SmartBLOB space, however, the server provides a
locking service. It is important to realize that the granularity of the locking is at the
SmartBLOB level. That is if any data in a SmartBLOB is accessed, then the
entire SmartBLOB is locked for the duration of the transaction. Therefore, if the
external data is stored as one table per SmartBLOB, then by default, the UDAM
has table-level locking.

Parallelization
To enable parallelization for a UDAM implementation, the following purpose
functions (UDRs) must be parallelizable:

� am_open
� am_close
� am_beginscan
� am_endscan
� am_getnext
� am_rescan
� am_getbyid

For a SELECT query involving UDAM in parallel, these UDRs must be
parallelizable. For a DELETE query involving UDAM in parallel, along with the
purpose functions, the am_delete function must be parallelizable. Similarly for an
UPDATE statement, the am_update function must be parallelizable. And, for
INSERT statement, the am_insert function must be parallelizable.

One way to use INSERT query parallelism is to run either "INSERT INTO...
SELECT" or "SELECT .. INTO TEMP .." statements in parallel.

Onstat options for UDAM
The cac option of the onstat utility can be used to display cached data
associated with an access method. Example 10-13 shows the onstat command
that displays the cached data for the specified access method (<access method
name>). If the "am" keyword is included, but the access method name is omitted,
then the cached data associated with all access methods is displayed.

Example 10-13 The onstat command to display cached data

onstat -g cac am <access method name>
 Chapter 10. The world is relational 421

The onstat command in Example 10-14 shows both the cached data for a virtual
table and the configuration parameters that were specified when the table was
created.

Example 10-14 The onstat command to display cached data and config parameters

onstat -g dic <table name>

10.2 Relational mashups

With the advent of Web services, service-oriented architecture (SOA) and Web
2.0, it is evident that centralized sources of data are a thing of the past. More and
more we see disparate data sources being joined in order to extract interesting
information from the huge volumes of data. This is evident in the current trend of
Web 2.0 applications called mashups. In this section, we discuss the concept of
relational mashups. The idea is to integrate multiple Web services (or for that
matter, any non-relational data source) into IDS and to query the data by using
simple SQL statements.

Web services rely on simple open standards, such as XML and SOAP, and are
accessed through any kind of client application. Typically those applications are
written in Java, C++, or C#. For those organizations who already have an existing
application that is based on an SQL database and that already use business
logic in the database server through UDRs, developers might want to integrate
access to Web services on the SQL level.

Having Web services accessible from SQL offers the following advantages:

� Easy access through SQL and standardized APIs (as examples, ODBC and
JDBC)

� Movement of the Web service results closer to the data processing in the
database server which can speed up applications

� Web service access to non-Java or C++ developers

In this section, we look at how you can use the UDAM framework to access the
Amazon E-Commerce Web service as a relational table. Code examples are
provided as a quick start for application developers who are interested in
integrating Web services with IDS.
422 Customizing the Informix Dynamic Server for Your Environment

All examples in this section have been implemented by using the following
configuration:

� Red Hat Enterprise Linux ES, release 4, 32 bit
� IDS 11.10.xC1 Cheetah GA release
� gSOAP 2.7.9l for Linux
� Amazon E-Commerce WSDL

10.2.1 Web services

A Web service is a set of related application functions that can be
programmatically invoked over the Internet. Businesses can dynamically mix and
match Web services to perform complex transactions with minimal programming.
Web services allow buyers and sellers all over the world to discover each other,
connect dynamically, and execute transactions in real time with minimal human
interaction.

Web services are self-contained, self-describing modular applications that can
be published, located, and invoked across the Web:

� Self-contained

On the client side, a programming language with XML and HTTP client
support is enough to get started. On the server side, a Web server and servlet
engine are required. The client and server can be implemented in different
environments. It is possible to Web service enable an existing application
without writing a single line of code.

� Self-describing

The client and server must recognize only the format and content of request
and response messages. The definition of the message format travels with
the message. Therefore, no external metadata repositories or code
generation tools are required.

� Modular

Simple Web services can be aggregated to form more complex Web services
either by using workflow techniques or by calling lower layer Web services
from a Web service implementation.

Web services can be most anything. Examples are theater review articles,
weather reports, credit checks, stock quotations, travel advisories, and airline
travel reservation processes. Each of these self-contained business services is
an application that can easily integrate with other services from the same or
different companies, to create a complete business process. This interoperability
allows businesses to dynamically publish, discover, and bind a range of Web
services through the Internet.
 Chapter 10. The world is relational 423

Web services consumer requirements
To call a Web service from within IDS:

1. Construct a SOAP message based on a given Web service description.

2. Send the SOAP message to the Web services provider via the required
protocol (typically HTTP).

3. Receive the Web service response, parse it, and handle the results on an
SQL level.

All of these tasks must be executed from the IDS SQL layer to achieve the
required portability.

The gSOAP C/C++ toolkit
The gSOAP toolkit provides an easy way to generate SOAP to C/C++ language
bindings combined with the advantage of a simple, but powerful API to reduce
the learning curve for users who wants to get started on Web services
development.

A Web service client and Web service server code can both be generated by
gSOAP. In addition, gSOAP is self-contained, so that no additional libraries or
products are required. This enables an easier deployment of gSOAP-based IDS
extensions (DataBlades).

The gSOAP stub and skeleton compiler for C and C++ was developed by Robert
van Engelen of Florida State University. See the following Web sites for more
information:

� Sourceforge.net gSOAP Toolkit

http://sourceforge.net/projects/gsoap2

� gSOAP: C/C++ Web Services and Clients

http://www.cs.fsu.edu/~engelen/soap.html

gSOAP installation and configuration
To use gSOAP, first download a recent version of gSOAP for your desired
development platform (UNIX, Linux, or Windows) from the following Web
address:

http://sourceforge.net/project/showfiles.php?group_id=52781

Throughout the development of this book, we have used version 2.7.9l of gSOAP
for Linux x86 32 bit.
424 Customizing the Informix Dynamic Server for Your Environment

http://sourceforge.net/projects/gsoap2
http://www.cs.fsu.edu/~engelen/soap.html
http://sourceforge.net/project/showfiles.php?group_id=52781
http://www.cs.fsu.edu/~engelen/soap.html

After you download the gSOAP toolkit, extract the compressed file into a folder,
for example /work/gsoap-linux-2.7. In the following sections, we refer to this
gSOAP installation location as the ${GSOAP_DIR}.

Since we must compile C source code files, have a C-compiler installed on your
development platform. For the examples in this section, we have been using gcc
version 3.4.6 20060404 (Red Hat 3.4.6-3).

10.2.2 Amazon Web service

Amazon E-Commerce Service (ECS) exposes the Amazon product catalogs
through an easy-to-use Web service interface. ECS offers a variety of operations
or Web services that provide a range of services that deal with querying,
browsing, shopping, and ordering of items from Amazon. Each operation takes in
a predefined format of request and can be customized to return the level of
information that we require for a response reply. We do not discuss the various
operations and responses in details. If you are interested in the finer details of
ECS, we encourage you to browse the documentation that is available from the
following Web address:

http://aws.amazon.com/

ECS is free, but requires registration for an Amazon Web Services (AWS)
account in order to obtain the access key and secret access key. All ECS
requests require the access key to be part of the request to access Amazon data.

For the examples provided in this section, we use the ItemLookup and
ItemSearch operations. The queries are restricted to Amazon only for “books.”
You can download the Web Service Description Language (WSDL) for ECS from
the following Web address:

http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl?

ECS ItemLookup operation
Given an item identifier, or for books the ISBN, the ItemLookup operation returns
some or all of the item attributes based on the level of information requested via
the response group. The ItemLookup operation expects the ItemLookupRequest
message format as input and returns the ItemLookupResponse message format
as a result of the lookup.

Tip: WSDL is an XML file that describes the Web service operation message
format and the structure of request and response messages. It also describes
the Web service endpoints that corresponding to each operation.
 Chapter 10. The world is relational 425

http://aws.amazon.com/
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?
http://aws.amazon.com/

Table 10-3 lists tome of the important parameters passed through the
ItemLookupRequest message.

Table 10-3 ItemLookupRequest attributes

In the ItemLookupResponse message, we looked at the ItemAttributes tag to
retrieve the ISBN number, author name, title, and current list price for the item.

ECS ItemSearch operation
The ItemSearch operation returns a list of items that satisfy the search criteria.
The search criteria can have multiple indices on which to filter. Typical searches
include a search on keywords, a search for all books by a particular author, and a
search by title. We used two types of search:

� Keyword, where the keyword is “All”. This translates into the most elaborate of
searches where all books available on Amazon returned.

� Title, where all books matching a particular title are returned.

Table 10-4 lists some of the important parameters passed in through the
ItemSearchRequest message.

Table 10-4 ItemSearchRequest attributes

Parameter Description

AWSAccessKeyId ECS access key.

Idtype Type of item identifier used to look up an item. We used the ISBN
lookup.

ItemId The item identifier of interest.

SearchIndex The category in which to search. We used the category “books”
for all searches.

ResponseGroup Specifies the types of information of interest. We used
ItemAttributes, BrowseNodes, and Offers to retrieve item
attributes (such as Title and Author), to get a paginated response
and to get the current list price and offers on the item.

Parameter Description

AWSAccessKeyId ECS access key.

Author Name of author to search for.

Title Title of book to search for.

SearchIndex The category in which to search. We used category “books” for all
our searches.
426 Customizing the Informix Dynamic Server for Your Environment

In the ItemLookupResponse message, we looked at the ItemAttributes tag to
retrieve ISBN number, author name, title and current list price for the item.

10.2.3 Test driving Amazon VTI

To better understand the design of the IDSAmazonAccess UDAM, try the code to
see how to use the UDAM to create a VTI table and to run queries.

Generating gSOAP code for ECS access
To generate gSOAP code for ECS access:

1. Create a working directory for the Amazon VTI files. We refer to this directory
as ${WSVTI} for the Web service VTI.

2. Create a subdirectory under ${WSVTI} for the gSOAP generated files. We
refer to this directory as ${AWS} for the Amazon Web service.

3. Download the ECS WSDL file from the following Web address:

http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl?

Then copy the file into a local folder.

4. From a command prompt in a shell, run the following gSOAP command on
the recently downloaded WSDL file:

${GSOAP_DIR}/bin/wsdl2h -c -t ${GSOAP_DIR}/typemap.dat
AWSECommerceService.wsdl

ResponseGroup Specifies the types of information of interest. We used
ItemAttributes, BrowseNodes, and Offers to retrieve item
attributes (such as Title and Author), to get a paginated response
and to get the current list price and offers on the item.

Keywords Words or phrases associated with the item of interest on which to
search.

Parameter Description

Note: A wsvti exampleis provided with this book for you to download and try.
This example demonstrates the Amazon VTI capabilities. We start with
gSOAP code generation and then run the actual examples. See Appendix A,
“Additional material” on page 465, for details about how to download the
example code from the IBM Redbooks Web site and then to use it.
 Chapter 10. The world is relational 427

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl?

This step generates a file called AWSECommerceService.h in the current
working directory. The -c option is important to generate the required C
language template instead of the default C++ template.

5. From the same command prompt, generate the necessary C stubs and
skeletons (.c and .h files), which integrate into an Amazon VTI
implementation, by executing the following gSOAP command:

${GSOAP_DIR}/bin/soapcpp2 -c -C -I${GSOAP_DIR}/import
AWSECommerceService.h

The -C option instructs the soapcpp2 tool to generate the Web service client
code only, and the -c option forces the generation of C language code
instead of C++ code.

From the generated files, the more important ones are:

– AWSECommerceService.h contains the function prototype and C structure
definitions for response and request messages.

– soapClient.c contains the implementation of client library functions to
invoke Amazon Web services through SOAP.

6. To test the installation, write a simple stand-alone C program to retrieve data
from ECS. Copy the C source code from Example 10-15 into ${WSVTI}/test.c.
Then replace <<Replace with Access Key>> with your Amazon access key.

Example 10-15 C source code

#include "soapH.h"
#include "AWSECommerceServiceBinding.nsmap"

int main()
{
 struct soap soap;
 int i = 0;
 struct _ns1__ItemLookupResponse r;
 struct _ns1__ItemLookup in;
 struct ns1__ItemLookupRequest req;
 enum _ns1__ItemLookupRequest_IdType idt =
_ns1__ItemLookupRequest_IdType__ISBN;
 char *isbn = "0091883768";
 char *repGrp[5] =
{"ItemAttributes","Images","EditorialReview","Offers","BrowseNodes"}
;

 in.Request = &req;
 in.__sizeRequest = 1;
 in.AWSAccessKeyId = <<Replace with Access Key>>;
428 Customizing the Informix Dynamic Server for Your Environment

 req.ResponseGroup = repGrp;
 req.__sizeResponseGroup = 5;
 req.IdType = &idt;
 req.__sizeItemId = 1;
 req.ItemId = &isbn;
 req.SearchIndex = "Books";
 soap_init(&soap);
 if (soap_call___ns1__ItemLookup(&soap, NULL, NULL, &in, &r))
 soap_print_fault(&soap, stderr);
 else
 {
 if (r.ns1__OperationRequest &&

r.ns1__OperationRequest->ns1__Errors)
 {
 printf("%d\n",
r.ns1__OperationRequest->ns1__Errors->__sizeError);
 printf("%s\n",
r.ns1__OperationRequest->ns1__Errors->Error->Code);
 }
 for (i = 0 ; i < r.ns1__Items->__sizeItem ; i++)
 {
 printf("ISBN: %s\n",isbn);
 printf("Book Title: %s\n",
r.ns1__Items->ns1__Item[i].ns1__ItemAttributes->Title);
 printf("Book Price: %s\n",
r.ns1__Items->ns1__Item[i].ns1__ItemAttributes->ListPrice->Formatted
Price);
 }
 }
 soap_end(&soap);
 soap_done(&soap);
 return 0;
}

Compile test.c by using the commands shown in Example 10-16.

Example 10-16 Compile commands

gcc -Wall -g -m32 -I. -I${GSOAP_DIR) -o soapC.o -c soapC.c
gcc -Wall -g -m32 -I. -I${GSOAP_DIR} -o soapClient.o -c
soapClient.c
gcc -Wall -g -m32 -I. -I${GSOAP_DIR} -o stdsoap2.o -c
${GSOAP_DIR}/stdsoap2.c
gcc -Wall -g -m32 -I. -I${GSOAP_DIR} -o test test.c soapC.o
soapClient.o stdsoap2.o
 Chapter 10. The world is relational 429

Running the compiled test binary should yield results similar to output shown in
Example 10-17.

Example 10-17 Sample output

> ./test
ISBN: 0091883768
Book Title: Who Moved My Cheese?
Book Price: $20.65

Running the Amazon VTI example
Having downloaded gSOAP and generated code for ECS access by using
gSOAP, you can test the Amazon VTI source example provided with this book:

1. Download the wsvti example tar ball and extract the contents of the tar file
under ${WSVTI}. The directory contents after extraction should be similar to
output shown in Example 10-18.

– The aws directory is the ${AWS}, which contains the code generated by
gSOAP for ECS access.

– The test directory holds sample SQL scripts to test Amazon VTI.

– wsutil.c holds utility functions for IDSAmazonAccess UDAM.

– wsvti.c and wsvti.h contain the IDSAmazonAccess UDAM purpose
function definitions and implementation.

– wsvti.sql is the script used to register IDSAmazonAccess UDAM with the
IDS database.

– mallocfix.c is memory allocation wrapper code that is linked with the
gSOAP generated code to deflect all gSOAP memory allocation calls,
such as malloc and free, to IDS DataBlade API memory allocators. The
IDS DataBlade API manages all memory allocations needed by a UDR,
provides memory durations to efficiently control memory consumption,
and performs automatic garbage collection of memory when memory
duration expires. In addition, memory allocated through the DataBlade API
is accessible across threads running in a multiple virtual processor
environment. Hence UDRs are required to use DataBlade API memory
allocators for their memory needs.

Example 10-18 Sample directory contents

bash-3.00$ ls -l
total 48
drwxr-xr-x 2 vshenoi rand 4096 Nov 11 15:02 aws
-rw-r--r-- 1 vshenoi rand 2760 Nov 11 15:03 Makefile
-r--r--r-- 1 vshenoi rand 3081 Oct 19 16:03 mallocfix.c
430 Customizing the Informix Dynamic Server for Your Environment

-rw-r--r-- 1 vshenoi rand 2756 Oct 19 10:59 README.txt
drwxrwxrwx 2 vshenoi rand 256 Nov 11 14:23 test
-rw-r--r-- 1 vshenoi rand 7416 Oct 22 13:31 wsutil.c
-rw-r--r-- 1 vshenoi rand 12908 Oct 23 13:27 wsvti.c
-rw-r--r-- 1 vshenoi rand 1456 Oct 22 21:21 wsvti.h
-rw-r--r-- 1 vshenoi rand 1871 Oct 23 10:38 wsvti.sql

2. Edit wsvti.h and change the macro AWSACCESSKEYID to use your Amazon
access key.

3. Run the MAKE command in the ${WSVTI} directory to generate the
IDSAmazonAccess UDAM shared object. The shared object name is
wsvti.bld and can be found in ${WSVTI}/linux-intel/.

4. Running as user informix, create the $INFORMIXDIR/extend/wsvti directory.

5. Running as user informix, copy ${WSVTI}/linux-intel/wsvti.bld to
$INFORMIXDIR/extend/wsvti. This step ensures that the IDSAmazonAccess
UDAM is copied into a common place where all IDS extensions reside.

6. Configure IDS to run the IDSAmazonAccess UDAM code in a separate virtual
processor, called wsvp. By adding a dedicated virtual processor class to the
IDS configuration, we can separate the execution of the blocking network calls
of the Web service consumer UDAM from the overall IDS query processing.
To enable at least one dedicated virtual processor class for that purpose, add
the following line to the ONCONFIG file of your IDS instance:

VPCLASS wsvp,num=1

7. Start, or restart, the IDS instance.

8. Execute the onstat -g glo command.

You should now see the additional virtual processor listed, as illustrated in
Example 10-19.

Example 10-19 The results for onstat

bash-3.00$ onstat -g glo

IBM Informix Dynamic Server Version 11.10.UC1 -- On-Line -- Up 00:12:31 --
36240 Kbytes

MT global info:
sessions threads vps lngspins
0 18 12 0

 sched calls thread switches yield 0 yield n yield forever
total: 6376132 1198269 5762089 17341 1039
per sec: 0 0 0 0 0
 Chapter 10. The world is relational 431

Virtual processor summary:
 class vps usercpu syscpu total
 cpu 1 2.35 0.76 3.11
 aio 6 0.00 0.00 0.00
 lio 1 0.00 0.00 0.00
 pio 1 0.00 0.00 0.00
 adm 1 0.00 0.00 0.00
 msc 1 0.00 0.00 0.00
 wsvp 1 0.02 0.00 0.02
 total 12 2.37 0.76 3.13

Individual virtual processors:
 vp pid class usercpu syscpu total
 1 2065 cpu 2.35 0.76 3.11
 2 2066 adm 0.00 0.00 0.00
 3 2067 lio 0.00 0.00 0.00
 4 2068 pio 0.00 0.00 0.00
 5 2070 aio 0.00 0.00 0.00
 6 2071 msc 0.00 0.00 0.00
 7 2072 aio 0.00 0.00 0.00
 8 2073 aio 0.00 0.00 0.00
 9 2074 aio 0.00 0.00 0.00
 10 2075 aio 0.00 0.00 0.00
 11 2076 aio 0.00 0.00 0.00
 12 2088 wsvp 0.02 0.00 0.02
 tot 2.37 0.76 3.13

9. Create a new database to work with as shown in Example 10-20.

Example 10-20 New database for use with example

bash-3.00$ dbaccess - -
> create database tryamazon with log;

Database created.

10.Register the UDAM in the tryamazon database by using the wsvti.sql script as
shown in Example 10-21.

Example 10-21 Sample script for testing

bash-3.00$ dbaccess tryamazon wsvti.sql

Database selected.

Routine created.
Routine created.
Routine created.
432 Customizing the Informix Dynamic Server for Your Environment

Routine created.
Routine created.
Routine created.
Routine created.
Routine created.
Routine created.

1 row(s) inserted.

Access_method created.

Database closed.

11.Run the test script provided in the ${WSVTI}/test directory. The test script
creates two relational tables, customer and orders, and then populates data
into those tables. Finally it creates the Amazon VTI table, called AmazonTable
(shown in Example 10-22), and performs a join between all three tables.

Example 10-22 Example table create

CREATE TABLE AmazonTable
(
 ISBN char(10),
 TITLE lvarchar,
 PRICE decimal
) USING IDSAmazonAccess ;

12.The join returns the latest price of a book from Amazon based on an ISBN
order from a particular customer. The query is shown in Example 10-23.
Refer to “Design considerations” on page 440 for details about the need for
the USE_NL optimizer directive when performing joins involving
AmazonTable.

Example 10-23 Example query for Amazon access

SELECT --+USE_NL(AmazonTable)
order_num, AmazonTable.*, fname, lname, order_date
FROM AmazonTable, orders, customer
WHERE AmazonTable.isbn = orders.isbn
AND orders.customer_num = customer.customer_num;
 Chapter 10. The world is relational 433

Example 10-24 shows the results of executing the test script.

Example 10-24 Script results

bash-3.00$ dbaccess -e tryamazon tryit.sql

Database selected.

create table customer
 (
 customer_num serial(101),
 fname char(15),
 lname char(15),
 company char(20),
 address1 char(20),
 address2 char(20),
 city char(15),
 state char(2),
 zipcode char(5),
 phone char(18),
 primary key (customer_num)
);
Table created.

 create table orders
 (
 order_num serial(1001),
 order_date date,
 customer_num integer not null,
 ship_instruct char(40),
 backlog char(1),
 ISBN char(10),
 ship_date date,
 primary key (order_num),
 foreign key (customer_num) references customer (customer_num)
);
Table created.

load from 'customer.unl' insert into customer;
28 row(s) loaded.

load from 'orders.unl' insert into orders;
4 row(s) loaded.

CREATE TABLE AmazonTable
434 Customizing the Informix Dynamic Server for Your Environment

(
 ISBN char(10),
 TITLE lvarchar,
 PRICE decimal
) USING IDSAmazonAccess ;
Table created.

SELECT FIRST 5 * from AmazonTable;

isbn 1401908810
title Spiritual Connections: How to Find Spirituality Throughout All
the Relat
 ionships in Your Life
price 24.9500000000000

isbn 0743292855
title Paula Deen: It Ain't All About the Cookin'
price 25.0000000000000

isbn 1591391105
title The First 90 Days: Critical Success Strategies for New Leaders
at All Le
 vels
price 27.9500000000000

isbn 0072257121
title CISSP All-in-One Exam Guide, Third Edition (All-in-One)
price 79.9900000000000

isbn 0071410155
title The Six Sigma Handbook: The Complete Guide for Greenbelts,
Blackbelts, a
 nd Managers at All Levels, Revised and Expanded Edition
price 89.9500000000000

5 row(s) retrieved.

select --+USE_NL(AmazonTable)
order_num,
AmazonTable.*, fname, lname, order_date from AmazonTable, orders,
customer where (AmazonTable.isbn = orders.isbn) and orders.customer_num
= customer.customer_num;

order_num 1001
isbn 0091883768
 Chapter 10. The world is relational 435

title Who Moved My Cheese?
price 20.6500000000000
fname Anthony
lname Higgins
order_date 05/20/1998

order_num 1002
isbn 0091883768
title Who Moved My Cheese?
price 20.6500000000000
fname Ludwig
lname Pauli
order_date 05/21/1998

order_num 1003
isbn 0954681320
title Six Sigma and Minitab: A complete toolbox guide for all Six
Sigma p
 ractitioners (2nd edition)
price 49.9900000000000
fname Anthony
lname Higgins
order_date 05/22/1998

order_num 1004
isbn 0764525557
title Gardening All-in-One for Dummies
price 29.9900000000000
fname George
lname Watson
order_date 05/22/1998

4 row(s) retrieved.

DROP TABLE AmazonTable;
Table dropped.
DROP TABLE customer;
Table dropped.
DROP TABLE orders;
Table dropped.

Database closed.
436 Customizing the Informix Dynamic Server for Your Environment

You can see the power of the UDAM framework in the Example 10-24 on
page 434. IDSAmazonAccess UDAM can provide a relational cloak to the
Amazon VTI table. SELECTing from Amazon VTI table performs an ECS
operation that is translated into relational rows by the UDAM and is available for
further relational operations. The join example shows how Amazon VTI table can
participate in complex SQL statements and work in tandem with relation tables.
The Amazon VTI table can be used in all SQL constructs where VTI tables can
appear.

10.2.4 Amazon VTI architecture

The basic architecture is to expose the ItemLookup and ItemSearch ECS
operations as VTI tables. You must be able to translate a query on the Amazon
VTI table into Web service operations involving a search for items on ISBN or title
keywords. A query on the Amazon VTI should, at a minimum, return the following
information:

� ISBN number
� Title of the book
� Current list price

Figure 10-9 shows the architectural diagram of the Amazon VTI implementation.

Figure 10-9 Amazon VTI implementation

The IDS SQL query optimizer and query execution engine communicate with the
Amazon VTI implementation through the IDSAmazonAccess UDAM. In order to

Relational
Storage

Amazon ECSgSOAP
ECS code

Query
optimizer

Query
Execution

engine

Soap/
HTTP

UDAM
Framework

IDS
Amazon
Access

Amazon
VTI Table

IDS Engine
 Chapter 10. The world is relational 437

feed data to the IDS SQL engine, the IDSAmazonAccess UDAM uses
gSOAP-generated ECS access code to connect to the Amazon ECS Web
service. The UDAM framework and IDSAmazonAccess UDAM provide the
relational conversion functions on top of the Amazon ECS Web service.

Example 10-25 shows the Amazon VTI table schema. AmazonTable has an
ISBN column that allows ECS ISBN lookup type of operations. AmazonTable also
has the TITLE column that allows ECS Title Lookup type of operations. The
PRICE column is an information only column (no filters allowed) that carries the
ECS ListPrice of a queried item. This is a basic schema and can be expanded to
include any other information available through ECS.

Example 10-25 Amazon VTI table schema

CREATE TABLE AmazonTable
(
 ISBN char(10),
 TITLE lvarchar,
 PRICE decimal
) USING IDSAmazonAccess ;

Example 10-26 shows an excerpt from ${WSVTI}/wsvti.sql, which creates the
IDSAmazonAccess UDAM. IDSAmazonAccess is defined as a primary access
method with multiple purpose functions.

Example 10-26 Example access method

CREATE PRIMARY ACCESS_METHOD IDSAmazonAccess(
am_open = wsvti_open,
am_rescan = wsvti_rescan,
am_close = wsvti_close,
am_drop = wsvti_drop,
am_beginscan = wsvti_beginscan,
am_endscan = wsvti_endscan,
am_getnext = wsvti_getnext,
am_scancost=wsvti_scancost,
am_sptype = "A");
438 Customizing the Informix Dynamic Server for Your Environment

You have now seen how an SQL query generates a flow of purpose function calls
in 10.1.3, “Flow of DML and DDL with virtual tables and indices” on page 414.
With that in mind, Table 10-5 lists the purpose functions and the tasks that they
perform.

Table 10-5 Purpose functions

Purpose function Task description

wsvti_open � Allocates gSOAP request and response structures.
� Caches these structures in user data to be used by

wsvti_beginscan, wsvti_getnext, and wsvti_endscan.

wsvti_close � Frees cached gSOAP structures.

wsvti_drop � Empty function, since we do not need to do anything when
the VTI table is dropped.

wsvti_scancost � If qualifiers are present, returns a lower cost than if they are
not present. This helps in cases where joins are performed
with the VTI table being the inner table. Refer to “Design
considerations” on page 440 for more details.

wsvti_beginscan � Decides which ECS request to use based on the qualifier
columns. Refer to “Design considerations” on page 440 for
more details.

� Does not generate any SOAP messages or communication,
but initializes the SOAP engine.

wsvti_getnext � Converts qualifier constants into appropriate char strings
holding ECS request parameters.

� Uses gSOAP calls to perform the actual ECS operation.
� Retrieves results and formats the result into relational rows

using mi_row_create().
� Returns the rows to the SQL engine.
� Returns a maximum of 200 rows for unbounded queries.

wsvti_endscan � Unintializes SOAP engine.

wsvti_rescan � Performs a quick wsvti_endscan and wsvti_beginscan.
 Chapter 10. The world is relational 439

Design considerations
The Amazon VTI architecture has the following design considerations:

� Since we are interested only in querying data, the IDSAmazonAccess UDAM
is a read-only UDAM.

� Amazon data is vast, and querying the entire data without any filtering seems
unreasonable and unpractical. This means that when you run the following
statement, you must limit the results returned by the ECS operation in order to
have realistic query completion times:

SELECT * FROM AmazonTable;

The IDSAmazonAccess UDAM retrieves a maximum of 200 rows when there
are no filters or qualifiers supplied in the query. Unbounded queries are
translated into ItemSearch ECS operations with Keywords=All in the request.

� In order to filter data from ECS, you need qualifiers to be passed into
IDSAmazonAccess UDAM. In turn, this means that the VTI table must have
columns, so that filters on the column translate into UDAM qualifiers. Hence,
AmazonTable schema provides ISBN and TITLE as the two columns on which
filters can be defined.

� If there are no qualifiers, then wsvti_beginscan() uses ItemLookup with
Keywords=All request. If the qualifier column is ISBN, then it uses the
ItemLookup request. If the qualifier column is TITLE, then it uses the
ItemSearch request with the Title pattern passed in. Complex qualifiers are
not supported in this implementation, although it is easy to extend the current
implementation to perform complex filtering.

� Join queries involving AmazonTable must result in the AmazonTable being the
inner query of the join. Assuming the query from Example 10-23 on
page 433, if AmazonTable is the outer table, then during query execution, the
IDS SQL engine must fetch all rows from AmazonTable to join with the inner
tables (customer, orders). Any join filters passed
(AmazonTable.ISBN=orders.ISBN) are not passed into the UDAM as
qualifiers, but are evaluated as a join filter. This results in an unbounded
query on AmazonTable, which is impractical. Hence, AmazonTable should
always be the inner table in a join. Therefore, Example 10-23 uses the --+
USE_NL(AmazonTable) optimizer directive to force the desired join order.
440 Customizing the Informix Dynamic Server for Your Environment

10.3 WebSphere MQ virtual tables

WebSphere Message Queue (MQ) software suite provides reliable messaging
for distributed, heterogeneous applications to exchange information, delegate
jobs, coordinate events, and create an enterprise service bus (ESB). When
Informix applications use WebSphere MQ, you write custom code, manage
multiple connections, and route data through your application.

IDS version10.00.UC3, introduced built-in support for Informix applications to
interact with WebSphere MQ via SQL callable functions with two-phase commit
support. This eliminates development overhead and encapsulates integration
complexity.

10.3.1 WebSphere MQ

In its simplest form, WebSphere MQ is a method to exchange messages
between two end points. It acts as an intermediary between two systems and
provides value added functionalities such as reliability and transactional
semantics.

Whether you buy a book on amazon.com or enroll in e-business with ibm.com,
the order event triggers a workflow of the information through multiple modules.
These modules include user account management, billing, packaging and
shipping, procurement, customer service, and partner services. The execution in
triggered modules generates a subsequent workflow. To meet reliability and
scaling requirements, it is typical to have application modules on multiple
machines.

If you are using the same software on all systems, for instance an SAP® stack,
the software itself usually comes with workflow management features. If the
modules are running in a homogeneous environment, such as LINUX machines
running WebSphere and Informix, it is easier to change information via
distributed queries or enterprise replication. Alternatively, the application might
be running on heterogeneous systems, such as a combination of WebSphere,
DB2, Oracle and Informix. In this case, programming and setup of distributed
queries or replication becomes complex, and in many cases, does not meet the
application requirements.
 Chapter 10. The world is relational 441

Figure 10-10 illustrates the application integration.

Figure 10-10 WebSphere MQ for enterprise business application integration

WebSphere MQ is designed to address integration issues such as those shown
in Figure 10-10. It prefers no platform and enforces no paradigms. WebSphere
MQ supports more than 80 platforms and APIs in C, C++, Java, Java Message
Service (JMS), and Visual Basic®. WebSphere MQ is also the mainstay for
designing an ESB for SOA.

WebSphere MQ provides a reliable store-and-forward mechanism, so that each
module can send and receive messages to and from it. WebSphere MQ achieves
this by persistent queues and APIs for programming. In addition, WebSphere MQ
Message Broker, another software product in the WebSphere MQ product suite,
provides message routing and translation services. Simplicity of infrastructure
means the applications must establish message formats, queue attributes, and
so on. WebSphere MQ also supports publish and subscribe semantics for
queues, making it easy to send a single message to multiple receivers and
subscribing messages from queue by need, similar to a mailing list.

The applications predetermine queue names, messages, and message formats,
just as the two network applications agree on socket numbers. The
application-to-application message exchange is asynchronous. That is, one
application does not wait for another application to receive the message.
WebSphere MQ ensures that the message is stored reliably and will have the

Application
Integration 80+ Platforms

Internet

Custom
Applications

Enterprise
Resource Planning

Supply Chain
Management

WebSphere
Application Server

Databases
(Informix, DB2, Oracle, etc)

Customers

Suppliers

WebSphere MQ
442 Customizing the Informix Dynamic Server for Your Environment

message available for target application. The target application is responsible for
receiving the message from WebSphere MQ.

10.3.2 How Informix and other database applications use
WebSphere MQ

Applications have many input sources, such as user entry, business-to-business
transactions, workflow messages, and data in the database. A sample order
entry application must store data in the Informix database and send and receive
messages to WebSphere MQ. The application establishes connections with
Informix and WebSphere MQ. In addition, the application uses a transaction
manager to ensure reliability of the data exchange. For instance, the order saved
in the database must be sent to a queue and marked as processed in the
database. The order can be marked as processed only after WebSphere MQ
receives the message successfully. Therefore, the interaction must have
transactional protection. Figure 10-11 illustrates this type of environment.

Figure 10-11 Applications using WebSphere MQ

The order entry application writes custom code to exchange messages from and
to WebSphere MQ. Developing custom code every time an application wants to
interact with WebSphere MQ is costly. It requires you to train the programmers
for it or hire consultants to develop, debug, and maintain this code, and to modify
the code for new queues and applications. The data exchanged between the
database and WebSphere MQ flows is through the application, which is not
efficient for high data volumes and necessitates a transaction manager.

S
h

ip
pi

n
g

 A
p

p
lic

a
tio

n

Transaction Manager

Order Entry Application

WebSphere MQ

Queue 1

Queue 2

Informix
Dynamic
Server
 Chapter 10. The world is relational 443

10.3.3 IDS support for WebSphere MQ

IDS provides SQL callable functions to read, receive, send, subscribe,
unsubscribe and publish, which are illustrated in Figure 10-12. These SQL
callable functions expose WebSphere MQ features to the IDS application and
integrate the WebSphere MQ operations into IDS transactions. That is, the fate of
the WebSphere MQ operation is tied to the fate of the transaction. If the
transaction is rolled back, the operations made on WebSphere MQ, messages
sent or received, are rolled back. This is done by coordinating transactions at the
IDS and WebSphere MQ, not by a compensating transaction. This is reliability
with high performance.

Figure 10-12 WebSphere MQ - Sending and receiving messages

Example 10-27 how you can easily use IDS WebSphere MQ functionality to send
and receive a message to and from a WebSphere MQ queue.

Example 10-27 WebSphere MQ - Sending and receiving a message

select MQSend("CreditService", customerid || ":" || address || ":" ||
product ":" || orderid)
from order_tab
where customerid = 1234;

insert into shipping_tab(shipping_msg) values(MQReceive());

create function get_my_order() returns int;

define cust_msg lvarchar(2048);
define customerid char(12);

S
h

ip
pi

n
g

 A
p

p
lic

a
tio

n

Order Entry Application

WebSphere MQ
Informix
Dynamic
Server

IDS Managed
Transactions

WebSphere MQ
Functions

MQI
Connection

Queue 1

Queue 2

Queue 3
444 Customizing the Informix Dynamic Server for Your Environment

define address char(64);
define product char(12);
define corderid char(12);
define snd_status int;

-- Get the order from Order entry application.
execute function MQReceive("OrderQueue") into cust_msg;
let customerid = substr(cust_msg, 1, 12);
let address = substr(cust_msg, 14, 77);
let product = substr(cust_msg, 79, 90);
let corderid = substr(cust_msg, 92, 103);

insert into shipping_table(custid, addr, productid, orderid)
Values(customerid, address, product, corderid);

-- send the status to CRM application
execute function MQSend("CRMQueue", corderid || ":IN-SHIPPING") into
snd_status;
return 1;
end function;

When you roll back the transaction, as shown in Example 10-28, the message
received is restored in the queue book order, and the row is also removed from
shipping_tab.

Example 10-28 Rollback of the transaction

begin work;
INSERT into shipping_tab(shipping_msg)

values (MQReceive(“bookorderservice”));

rollback work; -- Undo previous statement including WMQ operation

10.3.4 Programming for WebSphere MQ

IDS provides functions that exposing each interface provided by WebSphere MQ,
such as read, receive, send, publish, subscribe, and unsubscribe, and functions
to send and receive large messages. The WebSphere MQ functions can be
invoked anywhere a function can be used, such as in value clauses, projection
lists, query filters, stored procedures, and triggers. In addition, with IDS, you can
map a WebSphere MQ queue into an IDS table. An insert on this table translates
to a send operation to the WebSphere MQ, and a select translates to either a
read or a receive.
 Chapter 10. The world is relational 445

While WebSphere MQ provides simple abstractions of queues and its
operations, each operation comes with many options, such as msg expiry time
and retry count. IDS has abstracted these options into service, policy, and
optionally correlation ID:

� Service

Service maps a queue, queue manager, and code set of the messages into
the service. The table “informix”.mqiservice stores the mappings.
IDS.DEFAULT.SERVICE is mapped to system default queue manager, queue
named IDS.DEFAULT.QUEUE, and default code set.

� Policy

Policy defines the attributes, such as priority and expiry date, for each
operation. The table “informix”.mqipolicy stores 37 attributes for each policy.
IDS.DEFAULT.POLICY is the default policy. Depending on your application
environment, create one or more policies.

� Correlation ID

When multiple applications share the same queue, you can control the
interaction by using a correlation ID of up to 48 bytes. When the applications
agree on the correlation ID for their messages, they can get messages that
match their correlation ID. They work similar to filters or predicates in SQL
queries. Correlation ID is not mandatory and has no default value.

Basic programming functions
Table 10-6 lists the MQ programming functions in IDS.

Table 10-6 MQ functions in IDS

Function name Description

MQSend() Sends a string message to a queue

MQSendClob() Sends CLOB data to a queue

MQRead() Reads a string message in the queue into IDS without
removing it from the queue

MQReadClob() Reads a CLOB in the queue into IDS without removing it
from the queue

MQReceive() Receives a string message in the queue into IDS and
remove it from the queue

MQReceiveClob() Receives a CLOB in the queue into IDS and remove it from
the queue

MQSubscribe() Subscribes to a topic
446 Customizing the Informix Dynamic Server for Your Environment

Functions for sending messages from IDS to WebSphere MQ
The following functions are for sending messages to IDS and WebSphere MQ:

� MQSend(Service, Service_Policy, Message, CorrelationID)
� MQSendClob(Service, Service_Policy, ClobMessage, CorrelationID)

You can send a message of up to 32,739 bytes to a WebSphere MQ queue.
MQSendClob() behaves the same as MQSend(), except that it takes CLOB as its
message parameter instead of character type. Message and ClobMessage are
the mandatory parameters. IDS sends the message to the queue managed by
the queue manager by using the policy in the service record entry saved in the
“informix”.mqiservice table.

Parameter interpretation
The following function describes how the calls are interpreted for MQSend(). The
other functions follow the same pattern. When the four parameters are given,
translation is straightforward and is executed as given:

MQSend(serviceparam, policyparam, messageparam, correlationparam)

The following translation applies when one or more parameters are missing:

� MQsend(messageparam) is translated as follows:

MQSend("IDS.DEFAULT.SERVICE", "IDS.DEFAULT_POLICY",
messageparam, "");

� MQsend(serviceparam, messageparam) is translated as follows:

MQSend(serviceparam, "IDS.DEFAULT_POLICY", messageparam, "");

� MQsend(serviceparam, policyparam, messageparam) is translated as
follows:

MQSend(serviceparam, policyparam, messageparam, "");

MQUnSubscribe() Unsubscribes from a previously subscribed topic

MQPublish() Publishes a message into a topic

MQPublishClob() Publishes a CLOB into a topic

CreateMQVTIRead() Creates a read VTI table and maps it to a queue

CreateMQVTIReceive() Creates a receive VTI table and maps it to a queue

MQTrace() Traces the execution of MQ functions

MQVersion() Gets the version of MQ functions

Function name Description
 Chapter 10. The world is relational 447

Examples
Example 10-29 shows how to use these parameters.

Example 10-29 Parameters

SELECT MQSend("myservice", "mypolicy", orderid || ":" || address)
FROM tab
WHERE orderid = 12345;

All WebSphere MQ functions should run in a transaction. In IDS, SELECT,
UPDATE, DELETE, and INSERT automatically start a new transaction.
Alternatively, you can start a new transaction with a BEGIN WORK statement.
Simply executing the function gives the error shown in Example 10-30.

Example 10-30 Error when executing an MQ function

EXECUTE FUNCTION MQSend("MyService",
"<order><id>5</id><custid>6789</custid></order>");

IDS does not implicitly start a new transaction for the EXECUTE statement.
Therefore, you must start a transaction explicitly as shown in Example 10-31.

Example 10-31 Starting a transaction

BEGIN WORK;
EXECUTE FUNCTION MQSend("MyService",
 "<order><id>5</id><custid>6789</custid></order>");
COMMIT WORK;

If the transaction gets rolled back, all operations on WebSphere MQ are rolled
back, just as IDS rolls back its changes. See Example 10-32.

Example 10-32 Rollback of operations

BEGIN WORK;
INSERT INTO resultstab(sendval)

VALUES(MQSend("MyService",
 "<order><id>5</id><custid>6789</custid></order>")

ROLLBACK WORK;
448 Customizing the Informix Dynamic Server for Your Environment

Read and receive functions
The following are examples of the read and receive functions:

� MQRead(Service, Policy, CorrelationID) returns lvarchar(32739).
� MQReadClob(Service, Policy, CorrelationID) returns CLOB.
� MQReceive(Service, Policy, CorrelationID) returns lvarchar(32739).
� MQReceiveClob(Service, Policy, CorrelationID) returns CLOB.

The read operation gets the message from the queue without deleting the
message from the queue. The receive operation removes the message from the
queue and gets the message. These functions can be called with zero or more
parameters. The parameters are interpreted similar to MQSend(). The
transactional behavior of the receive functions is the same as with MQSend.

MQRead() and MQReceive() can return up to 32,739 bytes. The maximum size
of the message itself is a WebSphere MQ configuration parameter. The larger
messages should be read or received as a CLOB. For MQ, a message is a
message. Depending on the length, IDS differentiates between messages to
map the messages to data types.

If a correlation ID is given, WebSphere MQ gets the next message in the queue
matching the correlation ID. Otherwise a NULL message is returned. The policy
determines the wait time when no applicable message is present in the queue.
Therefore, by using a predefined correlation ID, multiple applications can share
the same queue and for different purposes.

Consider the statements shown in Example 10-33.

Example 10-33 Read and receive functions

SELECT mqread('SHIPPING.SERVICE','My.DEFAULT.POLICY')
 FROM systables where tabid = 1;

SELECT mqreceive('SHIPPING.SERVICE','My.DEFAULT.POLICY')
 FROM systables where tabid = 1;

Publish and subscribe functions
Publishing and subscribing to a queue have an effective configuration for
exchanging information between multiple applications on multiple subjects.
When an order entry must go to credit card, shipping, customer relationship
management (CRM), and partner applications, the order entry application
publishes the order once to a queue. Target applications can subscribe to the
queue and obtain the message by using either a read or receive function. Within
this scheme, WebSphere MQ also supports categorizing messages into topics
for finer control. For example, the order entry message can categorize the order
as books, electronics, and clothing topics, for example.
 Chapter 10. The world is relational 449

You must configure the queue for publishing and define the topics. With
WebSphere MQ, you can define topics statically or dynamically. The message
broker provides the publish and subscribe features and must be running in
addition to the queue manager. The message broker component provides
message routing and message translation, easing business integration
challenges.

Subscribers subscribe to a topic and specify the queue on which to receive the
messages. When a publisher inserts a message on that topic into the queue, the
WebSphere MQ broker routes the messages to all of the queues of each
specified subscriber. The subscribers retrieve the message from the queue by
using read or receive functions.

The publish and subscribe functions are as follows:

� MQPublish(publisher_name, policyparam, message, topic, correlationid)
� MQSubscribe(subscriber_name, policy_name, topic)
� MQUnsubscribe(subscriber_name, policy_name, topic)

The publisher name and subscriber names must be defined in the
“informix”.mqipubsub table. Consider the usage samples in Example 10-34.

Example 10-34 Publish and subscribe functions

SELECT mqSubscribe(‘WeatherChannel’,"Weather")
 FROM systables WHERE tabid = 1;

SELECT mqPublish(‘WeatherChannel’,
"<weather><zip>94501</zip><date>7/27/2006</date><high>89</high><low>59<
/low></weather>","Weather")
FROM systables WHERE tabid = 1;

SELECT mqreceive('WeatherChannel',"Weather")
FROM systables WHERE tabid = 1;

“informix”.mqipubsub table: Before using the publish and subscribe
services, you must set up the “informix”.mqipubsub table. See the IDS
documentation for its schema and examples.
450 Customizing the Informix Dynamic Server for Your Environment

MQ utility functions
The utility functions are MQVersion() and MQTrace():

� MQVersion() returns the current version of the WebSphere MQ blade in IDS.

� MQTrace(trace_level, trace_file) enables you to trace the execution path of
WebSphere MQ functions and interaction between IDS and MQ. The tracing
level can be from 10 to 50, in multiples of 10.

Example 10-35 shows the trace output.

Example 10-35 Trace output

14:19:38 Trace ON level : 50
14:19:47 >>ENTER : mqSend<<
14:19:47 status:corrid is null
14:19:47 >>ENTER : MqOpen<<
14:19:47 status:MqOpen @ build_get_mq_cache()
14:19:47 >>ENTER : build_get_mq_cache<<
14:19:47 status:build_get_mq_cache @ mi_get_database_info()
14:19:47 status:build_get_mq_cache @ build_mq_service_cache()
14:19:47 >>ENTER : build_mq_service_cache<<
14:19:47 <<EXIT : build_mq_service_cache>>

10.3.5 MQ table mapping functions

Invoking the WebSphere MQ functions in IDS is relatively simple. For example,
IDS can map a WebSphere MQ queue to an IDS table. Performing a SELECT on
the table fetches the messages in the queue, and an INSERT on the table sends
the message. We discuss its usage in this section. Other operations, such as
UPDATE and DELETE, on the table are not allowed.

The MQ table mapping functions are as follows:

� MQCreateVtiRead(readtable, servicename, policy, maxMessage)
� MQCreateVtiReceive(receivetable, servicename, policy, maxMessage)

A SELECT on a read table imitates MQRead(). It fetches the message without
deleting it from the queue, where a SELECT on a receive table deletes the
message on the queue as well. The maxMessage parameter determines the size
of the column, but it also determines the type of message. A positive length
creates a column. The maximum length of the message defined is 32607. Use -1
as maxMessage to retrieve the message as a CLOB, and use -2 to retrieve the
message as a BLOB.
 Chapter 10. The world is relational 451

Example 10-36 shows how to create a read table.

Example 10-36 Creating a read table

-- Create a READ table with max message length 4096.
execute function MQCreateVTIREAD("myreadtable",
 "myservice", "mypolicy", 4096);

-- Below is the table created by MQCreateVTIREAD() function.

create table myreadtab
(msg lvarchar(4096),

 correlid varchar(24),
 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8))

using "informix".mq (SERVICE = "myservice", POLICY = "mypolicy", ACCESS
= "READ");

-- Get the top 10 messages from the queue.
SELECT first 10 * from myreadtable;
-- INSERT a message into the table
INSERT into myreadtable values("IBM:81.98;Volume:1020");
-- SELECT the first message matching correlation id
SELECT FIRST 1 * from myreadtable where correlid = 'abc123';

IDS is aware of the correlation ID predicate and sends the correlation ID request
to MQ. WebSphere MQ matches the correlation ID and sends the matched
message.

You can create a table to transport BLOB data by using the statement shown in
Example 10-37.

Example 10-37 Creating a table to transport BLOB data

execute function MQCreateVTIRECEIVE("mydoctable", "myservice",
"mypolicy", -2);
452 Customizing the Informix Dynamic Server for Your Environment

The table created by the MQCreateVTIRECEIVE() function is shown in
Example 10-38.

Example 10-38 MQCreateVTIRECEIVE() created table

create table mydoctable
(msg BLOB,
 correlid varchar(24),

 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8))

using "informix".mq (SERVICE = "myservice", POLICY = "mypolicy",
ACCESS = "RECEIVE");

INSERT into mydoctable(msg) select blobcol from ordertab;

-- insert using blob, get through blob
INSERT into mydoctable(msg) values(filetoblob("/etc/passwd",
"client"));

select lotofile(msg, '/tmp/blob.dat','client') from mydoctable;

How not to use this feature
Both the INSERT and SELECT operations on the RECEIVE tables and INSERT
on the READ tables change the data on MQ. You should be aware of these
nuances, which are shown in the statements in Example 10-39.

Example 10-39 SELECT on RECEIVE tables

-- Find all the golf orders in the message queue.
SELECT * from myrecvorder where msg matches ‘%golf%’;
-- Find all the orders from zip 94501.
SELECT * from myrecvorder where msg[12,15] = ‘94501’;
-- Find all the messages greater than a correlation ID
SELECT * from myrecvorder where correlid > “abc123”;
-- Find the number of messages for my correlation id
SELECT count(*) from myrecvorder;

To complete the two first SELECT statements, IDS retrieves all the messages in
the service myrecvorder and then applies the filters and returns the qualified
rows. The unqualified messages are lost. Use the READ tables if you want to
apply these predicates, but be aware of the message fetch overhead.
 Chapter 10. The world is relational 453

10.3.6 Transactions

When invoking any WebSphere MQ function exchanging message with MQ, you
must be in a transaction, either implicitly or explicitly. To provide reliable
interaction between IDS and MQ, transactions are necessary. When the commit
is successful, all application changes to data at IDS and WebSphere MQ are
persisted. If the application rolls back, any operations at WebSphere MQ are
rolled back just as operations on IDS are rolled back.

IDS implicitly starts a transaction when you issue DML (UPDATE, DELETE,
INSERT, or SELECT) and DDL statements (CREATE statements). Alternatively,
you can explicitly start a new transaction with BEGIN WORK statements. APIs,
such as JDBC, start a new transaction when you turn off autocommit. Note that
an EXECUTE FUNCTION/PROCEDURE statement does not start a transaction.
Therefore, you must start a transaction before invoking the WebSphere MQ
function in an EXECUTE statement. This is illustrated in Figure 10-13.

Figure 10-13 WebSphere MQ transaction management

The transaction management is transparent to the application. Applications
simply use WebSphere MQ functionality under a transaction, and IDS handles
the commit or rollback coordination between IDS and WebSphere MQ by using
the open two-phase commit protocol. This is integrated into IDS transaction
manager. IDS handles WebSphere MQ along with its distributed transactions
involving other IDS instances. During IDS and MQ interaction, IDS opens a

ACME
Queue Manager

Inventory Queue

Order Queue

Backorder Queue

IDSXA Transaction
Manager Infrastructure

WebSphere MQ
Message Broker

Informix Dynamic Server

MQ
Functions

M

MQ Series UDR
and XA support
UDRs (xa_open,

xa_commit,
xa_rollback, etc)

Q
I

IDS client

IDS client

IDS client

IDS and MQ
Transaction Management MQ Queue Manager

MQ Queue
454 Customizing the Informix Dynamic Server for Your Environment

connection to WebSphere MQ. When the application invokes the fist WebSphere
MQ function within a transaction, IDS begins a corresponding transaction at MQ.
During commit or rollback, the IDS transaction manager is aware of WebSphere
MQ participation in the transaction and coordinates the transaction with it.

Environment
MQ functionality is provided with IDS, and the DataBlade is installed into
$INFORMIXDIR/extend when IDS is installed. The DataBlade is registered in the
database that is to invoke MQ functions. WebSphere MQ interaction is currently
supported in Informix logged databases. IDS communicates with WebSphere
MQ by using the server API. Therefore, WebSphere MQ must be installed on the
same machine as the server. However, this WebSphere MQ can channel the
messages to one or more remote WebSphere MQ servers. Each IDS instance
can connect to only one WebSphere MQ queue manager.

Platform support
Table 10-7 summarizes the IDS and WebSphere MQ versions by supported
platforms.

Table 10-7 IDS and WebSphere MQ platforms support

10.4 Relational access to flat files

So far we have looked at two VTI implementations, both of which were read only
and dealt with sophisticated data stores such as WebSphere MQ and Amazon
ECS. However, there are several other popular data sources that can populate
flat files. Can IDS “relational-ize” flat file data?

The answer is to this question takes us back to the basic objective of the UDAM
framework, which is to provide an interface to integrate non-relational data into

IDS version Support platforms WebSphere MQ version

10.00.xC3
and later

Solaris, 32 bit
HP/UX (PA-RISC), 32 bit
AIX, 32 bit
Windows, 32 bit

Needs V5.3 and later

10.00.xC4
and later

AIX, 64 bit
HP/UX (PA-RISC), 64 bit

Needs v6.0 and later

10.00.xC5
and later

Linux (Intel®), 32 bit
Linux (IBM eServer™ pSeries®), 64 bit
Solaris, 64 bit

Needs v6.0 and later
 Chapter 10. The world is relational 455

IDS. By using the UDAM framework, it is easy to add relational query support to
flat files. Interestingly enough, there is already a Bladelet, called ffvti, which does
exactly that.

The ffvti Bladelet was written by one of the authors of this book, Jacques Roy. It
provides FFAccess as the primary access method, which is a read-only interface
to make external files look like relational tables to IDS. We extend this access
method to make it read/write by adding capabilities to INSERT and TRUNCATE
rows from the VTI table or underlying flat file.

10.4.1 The ffvti architecture

The ffvti architecture (shown in Figure 10-14) is similar to the standard
UDAM-based designs. It provides FFAccess to UDAM, which understands how to
read delimited records from a flat file and convert it into relational rows. The path
of the flat file to relational and the delimiter character can be configured at
CREATE TABLE time by using access method options in the USING clause.

Figure 10-14 The ffvti architecture

Bladelet: A Bladelet is a small, informal DataBlade module. It is meant to be
ready to use and is offered complete with source code at no cost, but without
support or warranty.

Relational
Storage

Query
optimizer

Query
Execution

engine

UDAM
Framework

FFAccess

ffvti
Table

IDS Engine

Flat Files

File I/O
calls
456 Customizing the Informix Dynamic Server for Your Environment

Example 10-40 shows the CREATE ACCESS METHOD statement for the new
ffvti implementation. It has been improved with the addition of the ff_insert and
ff_truncate purpose functions. The am_readwrite flag is enabled to indicate that
the access method supports read and write. The am_delete and am_update
functions are not defined. Therefore, DELETE and UPDATE of rows for ffvti
tables is not supported.

Example 10-40 CREATE ACCESS METHOD

CREATE PRIMARY ACCESS_METHOD FFAccess(
am_open = ff_open,
am_insert = ff_insert,
am_close = ff_close,
am_drop = ff_drop,
am_beginscan = ff_beginscan,
am_endscan = ff_endscan,
am_getnext = ff_getnext,
am_truncate = ff_truncate,
am_readwrite,
am_sptype = "A");

We now look at each of the purpose functions and its associated tasks, which are
summarized in Table 10-8.

Table 10-8 Purpose functions and tasks

Purpose function Task description

ffvti_open � Extracts the flat file name and delim character from
options.

� Opens flat file access in read, write, or read-write mode
based on the type of access on the VTI table.

� Allocates state information to maintain the flat file
descriptor.

� Caches state information in the MI_AM_TABLE_DESC
descriptor.

ffvti_close � Closes the flat file descriptor.
� Frees the state information.

ffvti_beginscan � Sets up the file seek position at the start of the file in
preparation for file scan.

ffvti_endscan � Empty function because ffvti_begin handles the file
rewind.
 Chapter 10. The world is relational 457

Transaction support
Transactional support for ffvti is not available in the current implementation. This
means that the INSERT and TRUNCATE TABLE options are irreversible.
Transactional support can be included by adding another layer in between the flat
file and access method. However, that is beyond the scope of this chapter and
does not add any value to the common usage scenarios of ffvti.

10.4.2 Testing ffvti

Having looked at the architecture of ffvti, we now test the implementation, by
using the following steps, to exploit the powerful features provided:

1. Download the ffvti source and extract it to any location on your file system. We
refer to this location as ${FFVTI}. The examples provided with this book
contain the files listed in Table 10-9 on page 459.

ffvti_getnext � Performs a buffered read on file. That is, performs read
aheads of lines in a file to improve performance.

� Breaks up a line into delimited values and converts each
value to the appropriate VTI table column type.

� Creates a row out of the column values by using
mi_row_create.

� Applies any filters if necessary to decide whether the row
must be returned to the engine. Uses mi_eval_am_qual().

ffvti_insert � Extracts column values from the row provided by the IDS
SQL engine.

� Converts the column values into character string by
applying casting functions.

� Assembles buffer containing delimited characterized
column values.

� Appends the newly formed buffer to the end of a flat file.

ffvti_truncate � Closes the file descriptor opened by ffvti_open.
� Reopens the file with the O_TRUNC option in order to

truncate the file.

ffvti_drop � Empty function, because dropping the VTI table should not
drop the flat file.

Purpose function Task description
458 Customizing the Informix Dynamic Server for Your Environment

Table 10-9 ffvti files

2. Run the MAKE command in ${FFVTI} to generate the ${FFVTI}/bin/ffvti.bld
shared object.

3. Run as user informix and create directory $INFORMIXDIR/extend/ffvti.

4. Run as user informix and copy ffvti.bld to $INFORMIXDIR/extend/ffvti.

5. Create a new database to work with, as shown in Example 10-41.

Example 10-41 Example create database

bash-3.00$ dbaccess - -
> create database tryffvti with log;

Database created.

6. Register the FFAccess method in the newly created database, as shown in
Example 10-42.

Example 10-42 Registering the access method

bash-3.00$ dbaccess -e tryffvti ffvti.sql

Database selected.

CREATE FUNCTION set_tracing(lvarchar, integer, lvarchar)
RETURNING int
WITH(HANDLESNULLS)
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(set_tracing)"

File Description

ffvti.c Source code for the flat-file access method.

ffvti.h Include file for ffvti.c and ffutil.c.

ffutil.c Source code for utility functions for the flat-file access method.

ffvti.sql SQL script used to create the access method.

Makefile Makefile for the Bladelet.

tab.txt Sample text file.

tryit.sql Test script.

ffvti.def Exported names for an NT DLL.

WinNT.mak NT makefile used to create the DLL (requires Visual C++®).
 Chapter 10. The world is relational 459

LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_open(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_open)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_beginscan(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_beginscan)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_getnext(ptr pointer, ptr2 pointer, OUT rowid int)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_getnext)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_endscan(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_endscan)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_close(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_close)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_drop(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_drop)"
LANGUAGE C;
Routine created.
;
CREATE FUNCTION ff_insert(ptr pointer, ptr2 pointer, OUT rowid int)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_insert)"
LANGUAGE C;
Routine created.
;

460 Customizing the Informix Dynamic Server for Your Environment

CREATE FUNCTION ff_truncate(ptr pointer)
RETURNING int
EXTERNAL NAME "$INFORMIXDIR/extend/ffvti/ffvti.bld(ff_truncate)"
LANGUAGE C;
Routine created.
;
INSERT INTO systraceclasses(name) VALUES("ffvti");
1 row(s) inserted.

CREATE PRIMARY ACCESS_METHOD FFAccess(
am_open = ff_open,
am_insert = ff_insert,
am_close = ff_close,
am_drop = ff_drop,
am_beginscan = ff_beginscan,
am_endscan = ff_endscan,
am_getnext = ff_getnext,
am_truncate = ff_truncate,
am_readwrite,
am_sptype = "A");
Access_method created.

Database closed.

7. Copy ${FFVTI}/tab.txt to /tmp/tab.txt. We use /tmp/tab.txt as our flat file.

8. Run ${FFVTI}/tryit.sql in the new database, as shown in Example 10-43.

Example 10-43 Trying the example

bash-3.00$ dbaccess -e tryffvti tryit.sql

Database selected.

EXECUTE FUNCTION set_tracing("ffvti", 80, "/tmp/trace.out");

(expression)
 0
1 row(s) retrieved.

CREATE TABLE tab
(
 a BOOLEAN,
 b VARCHAR(20),
 c DATE,
 d DATETIME year to second,
 Chapter 10. The world is relational 461

 e INTERVAL hour to second,
 f DECIMAL,
 g DOUBLE PRECISION,
 h SMALLFLOAT,
 i INT8,
 j INT
) USING FFAccess (path='/tmp/tab.txt', delim=';');
Table created.

SELECT FIRST 3 * FROM tab;

a t
b line 1
c 04/17/2001
d 2001-04-17 10:34:20
e 10:34:20
f 17.2300000000000
g 3.141592600000
h 2.180000070000
i 123456789012
j 1

a t
b line 2
c 04/18/2001
d 2001-04-18 10:34:20
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 2

a t
b line 3
c
d
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 3

3 row(s) retrieved.
462 Customizing the Informix Dynamic Server for Your Environment

insert into tab values ('t',"new row", "01/01/2008", "2008-01-01
00:00:00", "00:00:00", 12.6, 12.6,1.0,123456789, 100);
1 row(s) inserted.

SELECT * FROM tab;

a t
b line 1
c 04/17/2001
d 2001-04-17 10:34:20
e 10:34:20
f 17.2300000000000
g 3.141592600000
h 2.180000070000
i 123456789012
j 1

a t
b line 2
c 04/18/2001
d 2001-04-18 10:34:20
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 2

a t
b line 3
c
d
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 3

a t
b new row
c 01/01/2008
d 2008-01-01 00:00:00
e 0:00:00
 Chapter 10. The world is relational 463

f 12.6000000000000
g 12.60000000000
h 1.000000000000
i 123456789
j 100

4 row(s) retrieved.

truncate table tab;
Table truncated.

SELECT * FROM tab;

No rows found.

DROP TABLE tab;
Table dropped.

Database closed.

Example 10-43 first creates a VTI table called tab. Note the use of USING
FFAccess (path='/tmp/tab.txt', delim=';'), which sets up the VTI table to
use a flat file /tmp/tab.txt and delimiter ';'. Then we show a SELECT FIRST 3 on
the VTI to sample the first three rows in the flat file. Next, we INSERT a row into
the VTI table, followed by a SELECT, to illustrate the success of the previous
INSERT. Finally we TRUNCATE table, followed by a SELECT, to show that the
flat file indeed gets truncated.
464 Customizing the Informix Dynamic Server for Your Environment

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247522

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247522.

A

© Copyright IBM Corp. 2008. All rights reserved. 465

ftp://www.redbooks.ibm.com/redbooks/SG247522
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description

TestVTI.zip Compressed code sample for Amazon Web Service VTI
and Flat File Access VTI

Fraction Example.zip Compressed file that contains the following “fraction” files:

• fraction.1.0.zip: Fraction DataBlade for Windows,
including built copy ready to install. Refer to 6.2.3,
“Fractions” on page 233.

• fraction.1.0.tar.gz: Fraction DataBlade for Linux and
UNIX, including built copy, ready to install, for Linux
only. Refer to 6.2.3, “Fractions” on page 233.

• FractionTestScenario.zip: SQL scripts and command
files for running the property tax scenario described in
“Parcel ownership: A worked-out example” on
page 235.

System requirements for downloading the Web material

The following system requirements are for downloading the Web material for two
examples provided with this publication.

The Amazon VTI example
The following system configuration is recommended. It includes the minimum
configuration required to install and run a single instance of the Informix Dynamic
Server (IDS):

Hard disk space: 300 MB
Operating System: Linux 32 bit (Red Hat Enterprise Linux (RHEL) 4.0)
Processor: Pentium® 4 or later
Memory: 512 MB or higher

In addition to the above configuration, gSOAP is required to run the Amazon Web
Service VTI. To use gSOAP, first download a recent version of gSOAP for your
desired development platform (UNIX, Linux, or Windows) from the following Web
address:

http://sourceforge.net/project/showfiles.php?group_id=52781
466 Customizing the Informix Dynamic Server for Your Environment

http://sourceforge.net/project/showfiles.php?group_id=52781

Throughout the development of this book, we have used version 2.7.9l of gSOAP
for Linux x86 32 bit.

After downloading the gSOAP toolkit, extract the compressed file into a folder, for
example /work/gsoap-linux-2.7. In the following sections, we refer to this gSOAP
install location as the ${GSOAP_DIR}.

Since you need to compile C source code files, ensure that a C-compiler is
installed on your development platform. For the examples in this section, we have
been using the GCC version 3.4.6 20060404 (Red Hat 3.4.6-3).

The Fraction DataBlade example
The requirements for using the Fraction DataBlade and test scenario downloads
depend on what you want to do with them. Consider the following points:

� To inspect source code and scripts (all downloads), you need any text or code
editor.

� To install and run the Fraction DataBlade on Windows (fraction.1.0.zip and
FractionTestScenario.zip), you need a working instance of IDS (9.x, 10.x, or
11.x) on one of the supported Windows platforms. The included installation
was tested on IDS 11.10.TC2 running on Windows XP Professional.

� To install and run the Fraction DataBlade on Linux (fraction.1.0.tar.gz and
FractionTestScenario.zip), you need a working instance of IDS (9.x, 10.x, or
11.x) on one of the supported Linux platforms. The included installation was
tested on IDS 11.50.UCB1TL running on Ubuntu Linux 2.6.22-virtual.

� To build or rebuild the Fraction DataBlade on Windows (fraction.1.0.zip):

– Microsoft Visual C++ .NET Version 7, Microsoft Development Environment
2003 or later

– An installed copy of IDS 9.x, 10.x, or 11.x (for C header files)

– (Optional) To create the distribution directory automatically, BladePack
4.20.TC1 or later, from the IBM Informix DataBlade Developers Kit

� To build or rebuild the Fraction DataBlade on Linux or UNIX
(fraction.1.0.tar.gz):

– Development tools including C compiler, linker, and standard libraries

– An installed copy of IDS 9.x, 10.x, or 11.x (for C header and make include
files)

How to use the Web material

To use the Web material, create a subdirectory (folder) on your workstation and
extract the contents of the Web material zip file into that folder.
 Appendix A. Additional material 467

The Amazon VTI example

Extracting the TestVTI.zip file creates two new subdirectories (folders) called
wsvti and ffvti. We refer to the path of this wsvti and ffvti subdirectory as
${WSVTI} and ${FFVTI} respectively.

Use the following steps to test the Amazon VTI source example:

1. Edit wsvti.h and change the macro AWSACCESSKEYID to use your Amazon
access key.

2. Run the MAKE command in the ${WSVTI} directory to generate the
IDSAmazonAccess UDAM shared object. The shared object name is
wsvti.bld and can be found at ${WSVTI}/linux-intel/.

3. Running as user informix, create the $INFORMIXDIR/extend/wsvti directory.

4. Running as user informix, copy ${WSVTI}/linux-intel/wsvti.bld to
$INFORMIXDIR/extend/wsvti. This step ensures that the IDSAmazonAccess
UDAM is copied to where all IDS extensions reside.

5. Configure IDS to run the IDSAmazonAccess UDAM code in a separate virtual
processor, called wsvp. By adding a dedicated virtual processor class to the
IDS configuration, you can separate the execution of the blocking network
calls of the Web service consumer UDAM from the overall IDS query
processing. To enable at least one dedicated virtual processor class for that
purpose, add the following line to the ONCONFIG file of your IDS instance
and restart the IDS instance:

VPCLASS wsvp,num=1

6. Create a new database to work with as shown in Example A-1.

Example: A-1 New database for use with example

bash-3.00$ dbaccess - -
> create database tryamazon with log;

Database created.

7. Register UDAM in the tryamazon database using script wsvti.sql, as shown in
Example A-2

Example: A-2 Sample script for testing

bash-3.00$ dbaccess tryamazon wsvti.sql

8. Run the test script provided in the ${WSVTI}/test directory. The test script
creates two relational tables, customer and orders. It then populates data into
468 Customizing the Informix Dynamic Server for Your Environment

those tables. Finally it creates the Amazon VTI table, called AmazonTable
(shown in Example A-3) and performs a join between all three tables.

Example: A-3 Example table create

CREATE TABLE AmazonTable
(
 ISBN char(10),
 TITLE lvarchar,
 PRICE decimal
) USING IDSAmazonAccess ;

Example A-4 shows the results of executing the test script.

Example: A-4 Script results

bash-3.00$ dbaccess -e tryamazon tryit.sql

Database selected.

create table customer
 (
 customer_num serial(101),
 fname char(15),
 lname char(15),
 company char(20),
 address1 char(20),
 address2 char(20),
 city char(15),
 state char(2),
 zipcode char(5),
 phone char(18),
 primary key (customer_num)
);
Table created.

 create table orders
 (
 order_num serial(1001),
 order_date date,
 customer_num integer not null,
 ship_instruct char(40),
 backlog char(1),
 ISBN char(10),
 ship_date date,
 primary key (order_num),
 Appendix A. Additional material 469

 foreign key (customer_num) references customer (customer_num)
);
Table created.

load from 'customer.unl' insert into customer;
28 row(s) loaded.

load from 'orders.unl' insert into orders;
4 row(s) loaded.

CREATE TABLE AmazonTable
(
 ISBN char(10),
 TITLE lvarchar,
 PRICE decimal
) USING IDSAmazonAccess ;
Table created.

SELECT FIRST 5 * from AmazonTable;

isbn 1401908810
title Spiritual Connections: How to Find Spirituality Throughout All
the Relat
 ionships in Your Life
price 24.9500000000000

isbn 0743292855
title Paula Deen: It Ain't All About the Cookin'
price 25.0000000000000

isbn 1591391105
title The First 90 Days: Critical Success Strategies for New Leaders
at All Le
 vels
price 27.9500000000000

isbn 0072257121
title CISSP All-in-One Exam Guide, Third Edition (All-in-One)
price 79.9900000000000

isbn 0071410155
title The Six Sigma Handbook: The Complete Guide for Greenbelts,
Blackbelts, a
 nd Managers at All Levels, Revised and Expanded Edition
price 89.9500000000000
470 Customizing the Informix Dynamic Server for Your Environment

5 row(s) retrieved.

select --+USE_NL(AmazonTable)
order_num,
AmazonTable.*, fname, lname, order_date from AmazonTable, orders,
customer where (AmazonTable.isbn = orders.isbn) and orders.customer_num
= customer.customer_num;

order_num 1001
isbn 0091883768
title Who Moved My Cheese?
price 20.6500000000000
fname Anthony
lname Higgins
order_date 05/20/1998

order_num 1002
isbn 0091883768
title Who Moved My Cheese?
price 20.6500000000000
fname Ludwig
lname Pauli
order_date 05/21/1998

order_num 1003
isbn 0954681320
title Six Sigma and Minitab: A complete toolbox guide for all Six
Sigma p
 ractitioners (2nd edition)
price 49.9900000000000
fname Anthony
lname Higgins
order_date 05/22/1998

order_num 1004
isbn 0764525557
title Gardening All-in-One for Dummies
price 29.9900000000000
fname George
lname Watson
order_date 05/22/1998

4 row(s) retrieved.
 Appendix A. Additional material 471

DROP TABLE AmazonTable;
Table dropped.

DROP TABLE customer;
Table dropped.

DROP TABLE orders;
Table dropped.

Database closed.

You have successfully installed and used the Amazon Web Service VTI sample
code.

Running the Flat File Access VTI example
To run the flat file access VTI example:

1. Run the MAKE command in the ${FFVTI} directory to generate the FFVTI
UDAM shared object. The shared object name is ffvti.bld and can be found in
${FFVTI}/bin/linux-intel/.

2. Run as user informix and create the $INFORMIXDIR/extend/ffvti directory.

3. Run as user informix and copy ffvti.bld to $INFORMIXDIR/extend/ffvti.

4. Create a new database to work with, as shown in Example A-5.

Example: A-5 Example create database

bash-3.00$ dbaccess - -
> create database tryffvti with log;

5. Register the FFAccess method in the newly created database, as shown in
Example A-6.

Example: A-6 Register the access method

bash-3.00$ dbaccess -e tryffvti ffvti.sql

6. Copy the ${FFVTI}/tab.txt file to /tmp/tab.txt. We used the /tmp/tab.txt file as
our flat file.
472 Customizing the Informix Dynamic Server for Your Environment

7. Run ${FFVTI}/tryit.sql in the new database, as shown in Example A-7.

Example: A-7 Try the example

bash-3.00$ dbaccess -e tryffvti tryit.sql

Database selected.

EXECUTE FUNCTION set_tracing("ffvti", 80, "/tmp/trace.out");

(expression)

 0

1 row(s) retrieved.

CREATE TABLE tab
(
 a BOOLEAN,
 b VARCHAR(20),
 c DATE,
 d DATETIME year to second,
 e INTERVAL hour to second,
 f DECIMAL,
 g DOUBLE PRECISION,
 h SMALLFLOAT,
 i INT8,
 j INT
) USING FFAccess (path='/tmp/tab.txt', delim=';');
Table created.

SELECT FIRST 3 * FROM tab;

a t
b line 1
c 04/17/2001
d 2001-04-17 10:34:20
e 10:34:20
f 17.2300000000000
g 3.141592600000
h 2.180000070000
i 123456789012
j 1

a t
 Appendix A. Additional material 473

b line 2
c 04/18/2001
d 2001-04-18 10:34:20
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 2

a t
b line 3
c
d
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 3

3 row(s) retrieved.

insert into tab values ('t',"new row", "01/01/2008", "2008-01-01
00:00:00", "00:00:00", 12.6, 12.6,1.0,123456789, 100);
1 row(s) inserted.

SELECT * FROM tab;

a t
b line 1
c 04/17/2001
d 2001-04-17 10:34:20
e 10:34:20
f 17.2300000000000
g 3.141592600000
h 2.180000070000
i 123456789012
j 1

a t
b line 2
474 Customizing the Informix Dynamic Server for Your Environment

c 04/18/2001
d 2001-04-18 10:34:20
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 2

a t
b line 3
c
d
e 10:34:20
f 18.2300000000000
g 4.141592600000
h 3.180000070000
i 223456789012
j 3

a t
b new row
c 01/01/2008
d 2008-01-01 00:00:00
e 0:00:00
f 12.6000000000000
g 12.60000000000
h 1.000000000000
i 123456789
j 100

4 row(s) retrieved.

truncate table tab;
Table truncated.

SELECT * FROM tab;

No rows found.

DROP TABLE tab;
Table dropped.

Database closed.
 Appendix A. Additional material 475

You have now successfully installed and used the Flat File Access VTI sample
code.

The Fraction DataBlade example

The downloads for this example include a complete DataBlade called Fraction
(version 1.0) to illustrate the ideas described in 6.2.3, “Fractions” on page 233
and show the implementation details of an opaque data type. The DataBlade,
when built, is fully usable for production work.

fraction.1.0.zip: Fraction DataBlade for Windows
The compressed file contains the following folder structure:

� distrib

– extend

• fraction.1.0

This is the distribution staging folder, which contains the complete
DataBlade distribution package. To install, simply copy this folder to
%INFORMIXDIR%\extend\fraction.1.0.

� install

This folder contains the BladePack control files that allow you to use
BladePack to copy the right scripts and DataBlade dynamic link library (DLL)
to the distribution folder. While the use of BladePack is optional, you can
easily copy the scripts manually.

� scripts

This folder contains the SQL registration scripts that BladeManager requires
to register the DataBlade. These scripts are to be copied to the distribution
folder. In addition, it contains a script, test.sql, that creates all the DataBlade
objects without going through BladeManager. It has no provision for
unregistering or upgrading. Therefore, only use this script for testing
purposes.

� src

This folder contains the readme.txt file that describes the source files (in the c
subfolder) and provides instructions for building the DataBlade. In addition, it
contains the project and solution files for Microsoft Visual Studio/C++.

– c

This folder contains the C source and header files, as well as the .def file
that defines the DLL exports.
476 Customizing the Informix Dynamic Server for Your Environment

– winnt-i386

This folder contains the .bld DataBlade DLL file that is built by Visual C++.

fraction.1.0.tar.gz: Fraction DataBlade for Linux and UNIX
The gnu-zip-compressed tar file contains the following directory structure:

� distrib

– fraction.1.0

This is the distribution staging directory, which contains the complete
DataBlade distribution package. To install, simply copy this directory to
$INFORMIXDIR/extend/fraction.1.0.

� scripts

This folder contains the SQL registration scripts that BladeManager requires
to register the DataBlade. These are to be copied to the distribution directory.
In addition, it contains a script, test.sql, that creates all the DataBlade objects
without going through BladeManager. It has no provision for unregistering or
upgrading. Therefore, only use this script for testing purposes.

� src

This folder contains the readme.txt file that describes the source files (in the c
subdirectory) and provides instructions for building the DataBlade. In addition,
it contains the UNIX or Linux makefile (and the output from a MAKE run).

– c

This folder contains the C source and header files.

– linux-intel

This folder contains the .bld DataBlade shared library created by MAKE,
as well as the object files from the compilation step.

FractionTestScenario.zip: Parcel tax example
This download lets you recreate the example discussed in “Parcel ownership: A
worked-out example” on page 235. The results and tables presented there are
formatted and edited results from the queries in this package; an additional step
is performed in this package that is not represented in this book.

The FractionTestScenario.zip file contains the following files:

� scenario.cmd

This is the Windows command file to run the entire scenario and save the
output in scenario.log. For usage instructions, type the following command:

scenario
 Appendix A. Additional material 477

� scenario.sh:

This file contains the UNIX or Linux shell script to run the entire scenario and
save the output in scenario.log. For usage instructions, type the following
command:

./scenario

� tax.sql:

This file contains the SQL script to create the tables used in the parcel tax
scenario, as well as stored procedures for performing the steps in the
scenario.

� taxtotals.sql

This file has the SQL script that contains the two queries for showing
ownership per owner and per parcel.

TSndx datatype and overloads

In this section we provide the the full listing of all SQL and C code for
implementation and addition of the overloads.

SQL code sample
(c) Copyright IBM Corp. 2002 All rights reserved.

This sample program is owned by International Business Machines Corporation
or one of its subsidiaries ("IBM") and is copyrighted and licensed, not sold.

You may copy, modify, and distribute this sample program in any form without
payment to IBM, for any purpose including developing, using, marketing or
distributing programs that include or are derivative works of the sample program.

The sample program is provided to you on an "AS IS" basis, without warranty of
any kind. IBM HEREBY EXPRESSLY DISCLAIMS ALL WARRANTIES EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some jurisdictions do not allow for the exclusion or limitation of
implied warranties, so the above limitations or exclusions may not apply to you.
IBM shall not be liable for any damages you suffer as a result of using, modifying
or distributing the sample program or its derivatives.

Each copy of any portion of this sample program or any derivative work, must
include a the above copyright notice and disclaimer of warranty.

**
478 Customizing the Informix Dynamic Server for Your Environment

The following are SQL commands used the the soundex DataBlade example.
You will not just be able to run this file directly. Rather, use something like
SQLEditor to selectively execute them.

Author: Jon Machtynger (jon.machtynger@uk.ibm.com)

Create type for TSndx:
create opaque type TSndx (

internallength = 286,
alignment = 8

);

Define the Input Function for TSndxInput:
drop function TSndxIn (lvarchar);
create function TSndxIn (lvarchar)
returns TSndx
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxInput)'
language c;

Define the Output Function for TSndxOutput:
drop function TSndxOut (TSndx);
create function TSndxOut (TSndx)
returns lvarchar
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxOutput)'
language c;

Provide Compare Function:
drop function Compare (TSndx,TSndx);
create function Compare (TSndx,TSndx)
returns integer
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxCompare)'
language c;

Provide Equal Function:
drop function Equal (TSndx,TSndx);
create function Equal (TSndx,TSndx)
returns boolean
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxEqual)'
language c;

Provide NotEqual Function:
drop function NotEqual (TSndx,TSndx);
create function NotEqual (TSndx,TSndx)
returns boolean
 Appendix A. Additional material 479

with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxNotEqual)'
language c;

Provide LessThan Function:
drop function LessThan (TSndx,TSndx);
create function LessThan (TSndx,TSndx)
returns boolean
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxLessThan)'
language c;

Provide GreaterThan Function:
drop function GreaterThan (TSndx,TSndx);
create function GreaterThan (TSndx,TSndx)
returns boolean
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxGreaterThan)'
language c;

Provide LessThanOrEqual Function:
drop function LessThanOrEqual (TSndx,TSndx);
create function LessThanOrEqual (TSndx,TSndx)
returns boolean
with (not variant)
external name
'$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxLessThanOrEqual)' language
c;

Provide GreaterThanOrEqual Function:
drop function GreaterThanOrEqual (TSndx,TSndx);
create function GreaterThanOrEqual (TSndx,TSndx)
returns boolean
with (not variant)
external name
'$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxGreaterThanOrEqual)'
language c;

drop function Like (TSndx, lvarchar);
create function Like (TSndx, lvarchar)
returning boolean
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxRE)' language
c;
480 Customizing the Informix Dynamic Server for Your Environment

Function to return internal value of sound:
drop function TSndxValue (TSndx);
create function TSndxValue (TSndx)
returning integer
with (not variant)
external name '$INFORMIXDIR/extend/Sndx/Soundex.bld(TSndxValue)'
language c;

C code sample
(c) Copyright IBM Corp. 2002 All rights reserved.
This sample program is owned by International Business Machines Corporation
or one of its subsidiaries ("IBM") and is copyrighted and licensed, not sold.
You may copy, modify, and distribute this sample program in any form without
payment to IBM, for any purpose including developing, using, marketing or
distributing programs that include or are derivative works of the sample program.

The sample program is provided to you on an "AS IS" basis, without warranty of
any kind. IBM HEREBY EXPRESSLY DISCLAIMS ALL WARRANTIES EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some jurisdictions do not allow for the exclusion or limitation of
implied warranties, so the above limitations or exclusions may not apply to you.
IBM shall not be liable for any damages you suffer as a result of using, modifying
or distributing the sample program or its derivatives.

Each copy of any portion of this sample program or any derivative work, must
include a the above copyright notice and disclaimer of warranty.

Example 10-44 contains all the C code necessary to create your Soundex
DataBlade.

Author: Jon Machtynger (jon.machtynger@uk.ibm.com)

Example 10-44 C code sample

/* Standard library includes. */
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

/* Include when accessing the Informix API. */
#include <mi.h>

typedef struct {
 mi_char data[256];
 Appendix A. Additional material 481

 mi_char sound[30];
} TSndx;

// Define Sound-bytes

#define SOUND_S '0'
#define SOUND_S '1'
#define SOUND_S '2'
#define SOUND_S '3'
#define SOUND_S '4'
#define SOUND_S '5'
#define SOUND_S '6'
#define SOUND_S '7'
#define SOUND_S '8'
#define SOUND_S '9'
#define SOUND_SKIP 0

#define RE_MULTI '*' // Alternative could be '%'
#define RE_SINGLE '?' // Alternative could be '_'

UDREXPORT TSndx *TSndxInput (mi_lvarchar *InValue)
{

TSndx *result;// Return Value
mi_char *textval;// Container for text value
mi_char *textsnd;// Container for Sound Value
mi_char *thesound;// Sound of the text

mi_char *Sndx(char *);

// Convert externally passed string to a character string
textval = mi_lvarchar_to_string(InValue);

 // Allocate mem for return value
result = (TSndx *)mi_alloc(sizeof(TSndx));

// Fill the structure values
strcpy(result->data, textval);
thesound = Sndx(textval);
strcpy(result->sound, thesound);

// Clean up

mi_free(thesound);
mi_free(textval);
482 Customizing the Informix Dynamic Server for Your Environment

// Return data type to calling statement
return result;

}

UDREXPORT mi_integer TSndxValue(TSndx *Value)
{

// The following works around the fact that an initial '0'
// value may be ignored. Multiple 0's will be missing
// substitute a starting 0 with a decimal point.
if (Value->sound[0] == '0') {

Value->sound[0] = '-';
}

return atoi(Value->sound);
}

UDREXPORT mi_lvarchar *TSndxOutput(TSndx *Value)
{

return mi_string_to_lvarchar(Value->data);
}

// The following are functions used in comparing one sound to another

// This function effectively does a string compare on the sounds. It
is
// arguable whether this makes sense to compare sounds, but it does
allow
// us to index the values in a B-Tree which has performance benefits.
UDREXPORT mi_integer TSndxCompare (TSndx *Value1, TSndx *Value2)
{

mi_integerval;

if (val = strcmp(Value1->sound, Value2->sound))
return (val > 0) ? 1 : -1;

return val;
}

// All following functions use TSndxCompare

UDREXPORT mi_boolean TSndxEqual (TSndx *Value1, TSndx *Value2)
{

return (mi_boolean)(0 == TSndxCompare(Value1, Value2));
}

 Appendix A. Additional material 483

UDREXPORT mi_boolean TSndxNotEqual (TSndx *Value1, TSndx *Value2)
{

return (mi_boolean)(0 != TSndxCompare(Value1, Value2));
}

UDREXPORT mi_boolean TSndxLessThan (TSndx *Value1, TSndx *Value2)
{

return (mi_boolean)(-1 == TSndxCompare(Value1, Value2));
}

UDREXPORT mi_boolean TSndxLessThanOrEqual (TSndx *Value1, TSndx
*Value2)
{

return (mi_boolean)(1 > TSndxCompare(Value1, Value2));
}

UDREXPORT mi_boolean TSndxGreaterThan (TSndx *Value1, TSndx *Value2)
{

return (mi_boolean)(1 == TSndxCompare(Value1, Value2));
}

UDREXPORT mi_boolean TSndxGreaterThanOrEqual(TSndx *Value1, TSndx
*Value2)
{

return (mi_boolean)(-1 < TSndxCompare(Value1, Value2));
}

// This is a consonant based soundex routine. Any soft letters
// are ignored unless they play a significant part in modifying
// a hard sound (e.g. 'h' ignored unless it makes a 's' a 'sh').

char *Sndx(char *txt)
{

mi_integerlength, i, pcntr;
mi_charccurr, cnext, cprev, cnext2, cnext3, cnext4, sound;
mi_char*buf, *p, assign_no_prev_char(mi_char cprev, mi_char check,

mi_char sound);

length=strlen(txt);

buf = (char *)mi_alloc(length + 100);

for (pcntr=0, cprev=0, i=0;i<length;i++)
484 Customizing the Informix Dynamic Server for Your Environment

{
cprev = (i>0) ? tolower(txt[i-1]) : 0;
ccurr=tolower(txt[i]);
cnext = ((i+1) < length) ? tolower(txt[i+1]) : 0;
cnext2 = ((i+2) < length) ? tolower(txt[i+2]) : 0;
cnext3 = ((i+3) < length) ? tolower(txt[i+3]) : 0;
cnext4 = ((i+4) < length) ? tolower(txt[i+4]) : 0;

if (!isalpha(ccurr) &&
(ccurr != RE_MULTI) && (ccurr != RE_SINGLE) &&
(ccurr != '[') && (ccurr != ']') &&
(ccurr != '^') && (ccurr != '!'))
continue;

switch(ccurr)
{

// Soft characters
case 'a':
case 'e':
case 'h':
case 'i':
case 'o':
case 'u':
case 'w':
case 'y':

sound=SOUND_SKIP;
break;

// Non Compound consonents.

case 'b':
sound = assign_no_prev_char(cprev, ccurr, SOUND_B);
break;

case 'd':
sound = assign_no_prev_char(cprev, ccurr, SOUND_T);
break;

case 'f':
case 'v':

sound = assign_no_prev_char(cprev, ccurr, SOUND_F);
break;

case 'j':
sound = assign_no_prev_char(cprev, ccurr, SOUND_SH);
 Appendix A. Additional material 485

break;

case 'l':
sound = assign_no_prev_char(cprev, ccurr, SOUND_L);
break;

case 'm':
sound = assign_no_prev_char(cprev, ccurr, SOUND_M);
break;

case 'n':
sound = assign_no_prev_char(cprev, ccurr, SOUND_N);
break;

case 'q':
sound = assign_no_prev_char(cprev, ccurr, SOUND_K);
break;

case 'r':
sound = assign_no_prev_char(cprev, ccurr, SOUND_R);
break;

case 'z':
sound = assign_no_prev_char(cprev, ccurr, SOUND_S);
break;

// The beginning of the compound characters

case 'c':
if (cnext == 'e') {

sound=SOUND_S;
break;

}

if (cnext == 'h'){
sound=SOUND_SH;
break;

}

if (cnext == 'i') {
if ((cnext2=='o') && (cnext3=='u') && (cnext4=='s')) {

sound = SOUND_SH;
i += 2;
break;
486 Customizing the Informix Dynamic Server for Your Environment

}
sound=SOUND_S;
break;

}

sound = assign_no_prev_char(cprev, 'c', SOUND_K);
break;

case 'g':
if (cnext=='e') {

sound=SOUND_SH;
break;

}
sound = assign_no_prev_char(cprev, 'g', SOUND_K);
break;

case 'k':
if (cprev=='c') {

sound=SOUND_SKIP;
break;

}
sound = assign_no_prev_char(cprev, 'k', SOUND_K);
break;

case 'p':
if (cnext=='h') {

sound=SOUND_F;
break;

}
sound = assign_no_prev_char(cprev, 'p', SOUND_B);
break;

case 's':
if (cnext == 'h') {

sound=SOUND_SH;
break;

}
sound = assign_no_prev_char(cprev, 's', SOUND_S);
break;

case 't':

if ((cnext=='i') && (cnext2=='o')) {
sound = SOUND_SH;
break;
 Appendix A. Additional material 487

}
sound = assign_no_prev_char(cprev, 't', SOUND_T);
break;

case 'x':
buf[pcntr]=SOUND_K;
buf[pcntr+1]=SOUND_S;
buf[pcntr+2]='\0';
pcntr += 2;
break;

default:
sound = ccurr;

}

if (sound != SOUND_SKIP) {
buf[pcntr]=sound;
buf[pcntr+1]='\0';
pcntr++;

}
}

return (buf);
}

// Where recurring characters are present, don't force a double
// sound e.g. (madder does not sound like maddadder)

mi_char assign_no_prev_char(mi_char cprev, mi_char check, mi_char
sound)
{

if (cprev==check)
return SOUND_SKIP;

else
return sound;

}

//
// Pattern Match routine.
//
// Simplistic Regular expression handler
//
// Allows use of:
// '%' to match any string
488 Customizing the Informix Dynamic Server for Your Environment

// '_' to match a single character
// [] to provide a set of matchable characters
// ^ and ! to negate the contents of matched characters
//
// The guts of this code has been taken from GNU make.
//

UDREXPORT mi_boolean TSndxRE(TSndx *p_string, mi_lvarchar *p_pattern)
{

mi_booleanflag;
mi_char *pattern;
mi_char *patternsound;
registerchar c;
mi_booleanstrmatch (char *, char *);

pattern = mi_lvarchar_to_string(p_pattern);
if (pattern == NULL) {

mi_db_error_raise(NULL, MI_SQL, "error",
"FUNCTION %s", "TSndxRE 1", (char *)NULL);

}

patternsound = Sndx(pattern);

flag = strmatch(patternsound, p_string->sound);

printf("Matching %s against %s gives %d\n", patternsound,
p_string->sound, flag);

mi_free(pattern);
mi_free(patternsound);

return flag;
}

// Actual strmatch code to allow regular expression matching
mi_boolean strmatch (char *pattern, char *string)
{

register char*p = pattern,
*n = string;

register char c;

while ((c = *p++) != '\0')
{

c = tolower(c);
 Appendix A. Additional material 489

switch (c)
{

case RE_SINGLE:

if (*n == '\0')
return MI_FALSE;

break;

case RE_MULTI:

for (c = *p++; c == RE_SINGLE || c == RE_MULTI; c = *p++)
{

if (c == RE_SINGLE)
{

if (*n == '\0')
return MI_FALSE;

else
++n;

}
}

if (c == '\0')
return MI_TRUE;

{
char c1 = tolower(c);
for (--p; *n != '\0'; ++n)

if ((c == '[' || tolower(*n) == c1) &&
strmatch (p, n) == MI_TRUE)
return MI_TRUE;

return MI_FALSE;
}

case '[':
{

register int not;

if (*n == '\0')
return MI_FALSE;

not = (*p == '!' || *p == '^');
if (not)

++p;

c = *p++;
490 Customizing the Informix Dynamic Server for Your Environment

for (;;)
{

register char cstart = c, cend = c;

cstart = cend = tolower(cstart);

if (c == '\0')
return MI_FALSE;

c = tolower(*p++);

if (c == '-' && *p != ']')
{

cend = *p++;
if (cend == '\0')

return MI_FALSE;
cend = tolower(cend);

c = *p++;
}

if (tolower(*n) >= cstart && tolower(*n) <= cend)
goto matched;

if (c == ']')
break;

}

if (!not)
return MI_FALSE;

break;

matched:;
while (c != ']')
{

if (c == '\0')
return MI_FALSE;

c = *p++;
}

if (not)
return MI_FALSE;

}

 Appendix A. Additional material 491

break;

default:
if (c != tolower(*n))

return MI_FALSE;
}

++n;
}

if (*n == '\0')
return MI_TRUE;

return MI_FALSE;
}

492 Customizing the Informix Dynamic Server for Your Environment

Glossary

access control list (ACL). The list of principals
that have explicit permission (to publish, to
subscribe to, and to request persistent delivery of a
publication message) against a topic in the topic
tree. The ACLs define the implementation of
topic-based security.

aggregate. Precalculated and prestored
summaries, kept in the data warehouse to improve
query performance.

aggregation. An attribute-level transformation that
reduces the level of detail of available data, for
example, having a Total Quantity by category of
items rather than the individual quantity of each item
in the category.

application programming interface (API). An
interface provided by a software product that
enables programs to request services.

asynchronous messaging. A method of
communication between programs in which a
program places a message on a message queue
and then proceeds with its own processing without
waiting for a reply to its message.

attribute. A field in a dimension table.

BLOB. Binary large object. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid
entity that cannot be interpreted.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins.

composite key. A key in a fact table that is the
concatenation of the foreign keys in the dimension
tables.
© Copyright IBM Corp. 2008. All rights reserved.
computer. A device that accepts information (in
the form of digitalized data) and manipulates it for a
result based on a program or sequence of
instructions about how the data is to be processed.

configuration. The collection of brokers, their
execution groups, the message flows and sets that
are assigned to them, and the topics and associated
access control specifications.

continuous data replication. See enterprise
replication.

data append. A data loading technique where new
data is added to the database leaving the existing
data unaltered.

data cleansing. A process of data manipulation
and transformation to eliminate variations and
inconsistencies in data content. Data cleansing
typically improves the quality, consistency, and
usability of the data.

Data Definition Language (DDL). An SQL
statement that creates or modifies the structure of a
table or database, for example, CREATE TABLE,
DROP TABLE, ALTER TABLE, or CREATE
DATABASE.

data federation. The process of enabling data
from multiple heterogeneous data sources to appear
as though it is contained in a single relational
database. Can also be referred to “distributed
access.”

Data Manipulation Language (DML). An
INSERT, UPDATE, DELETE, or SELECT SQL
statement.
 493

data mart. An implementation of a data
warehouse, typically with a smaller and more tightly
restricted scope, such as for a department or
workgroup. It can be independent or derived from
another data warehouse environment.

data mining. A mode of data analysis that has a
focus on the discovery of new information, such as
unknown facts, data relationships, or data patterns.

data partition. A segment of a database that can
be accessed and operated on independently even
though it is part of a larger data structure.

data refresh. A data loading technique where all
the data in a database is completely replaced with a
new set of data.

data warehouse. A specialized data environment
developed, structured, and used specifically for
decision support and informational applications. It is
subject oriented rather than application oriented.
Data is integrated, non-volatile, and time variant.

database partition. Part of a database that
consists of its own data, indexes, configuration files,
and transaction logs.

DataBlades. These are program modules that
provide extended capabilities for Informix databases
and are tightly integrated with the database
management system (DBMS).

DB Connect. Enables connection to several
relational database systems and the transfer of data
from these database systems into the SAP Business
Information Warehouse.

DDL. See Data Definition Language.

debugger. A facility on the Message Flows view in
the Control Center that enables message flows to be
visually debugged.

deploy. To make the configuration and topology of
the broker domain operational.

dimension. Data that further qualifies or describes
a measure, or both, such as amounts or durations.

distributed application In message queuing, a
set of application programs that can each be
connected to a different queue manager, but that
collectively constitute a single application.

DML. See Data Manipulation Language.

drill-down. Iterative analysis, exploring facts at
more detailed levels of the dimension hierarchies.

dynamic SQL. SQL that is interpreted during
execution of the statement.

engine. A program that performs a core or
essential function for other programs. A database
engine performs database functions on behalf of the
database user programs.

enrichment. The creation of derived data. An
attribute-level transformation performed by a type of
algorithm to create one or more new (derived)
attributes.

enterprise replication. An asynchronous,
log-based tool for replicating data between IBM
Informix Dynamic Server (IDS) database servers.

extenders. Program modules that provide
extended capabilities for DB2 and are tightly
integrated with DB2.

FACTS. A collection of measures and the
information to interpret those measures in a given
context.

federation. Providing a unified interface to diverse
data.

gateway. A means to access a heterogeneous
data source. Can use native access or Open
Database Connectivity (ODBC) technology.

grain. The fundamental lowest level of data
represented in a dimensional fact table.

instance. A particular realization of a computer
process. Relative to the database, the realization of
a complete database environment.
494 Customizing the Informix Dynamic Server for Your Environment

Java Database Connectivity (JDBC). An API that
has the same characteristics as ODBC, but is
specifically designed for use by Java database
applications.

Java Development Kit (JDK). Software package
used to write, compile, debug, and run Java applets
and applications.

Java Message Service (JMS). An API that
provides Java language functions for handling
messages.

Java Runtime Environment (JRE). A subset of
the JDK that enables you to run Java applets and
applications.

materialized query table. A table where the
results of a query are stored for later reuse.

measure. A data item that measures the
performance or behavior of business processes.

message domain. The value that determines how
the message is interpreted (parsed).

message flow. A directed graph that represents
the set of activities performed on a message or event
as it passes through a broker. A message flow
consists of a set of message processing nodes and
message processing connectors.

message parser. A program that interprets the bit
stream of an incoming message and creates an
internal representation of the message in a tree
structure. A parser is also responsible for generating
a bit stream for an outgoing message from the
internal representation.

metadata. Typically called data (or information)
about data. It describes or defines data elements.

MOLAP. Multidimensional OLAP. Can be called
MD-OLAP. Refers to OLAP that uses a
multidimensional database as the underlying data
structure.

multidimensional analysis. Analysis of data
along several dimensions, for example, analyzing
revenue by product, store, and date.

multitasking. Operating system capability that
allows multiple tasks to run concurrently, taking turns
using the resources of the computer.

multithreading. Operating system capability that
enables multiple concurrent users to use the same
program. This saves the overhead of initiating the
program multiple times.

nickname. An identifier that is used to reference
the object located at the data source that you want
to access.

node. An instance of a database or database
partition.

node group. Group of one or more database
partitions.

ODS. See operational data store.

online analytical processing (OLAP).
Multidimensional data analysis, performed in real
time. Not dependent on an underlying data schema.

Open Database Connectivity (ODBC). A
standard API for accessing data in both relational
and non-relational database management systems.
Using this API, database applications can access
data stored in database management systems on a
variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based
on the call-level interface (CLI) specification of the
X/Open SQL Access Group.

operational data store (ODS). (1) A relational
table for holding clean data to load into InfoCubes,
and can support some query activity. (2) Online
Dynamic Server, an older name for IDS.
 Glossary 495

optimization. The capability to enable a process
to execute and perform in such a way as to maximize
performance, minimize resource utilization, and
minimize the process execution response time
delivered to the user.

partition. Part of a database that consists of its
own data, indexes, configuration files, and
transaction logs.

pass-through. The act of passing the SQL for an
operation directly to the data source without being
changed by the federation server.

pivoting. Analysis operation where a user takes a
different viewpoint of the results, for example, by
changing the way the dimensions are arranged.

primary key. Field in a table that is uniquely
different for each record in the table.

process. An instance of a program running in a
computer.

program. A specific set of ordered operations for a
computer to perform.

pushdown. The act of optimizing a data operation
by pushing the SQL down to the lowest point in the
federated architecture where that operation can be
executed. More simply, a pushdown operation is
executed at a remote server.

RSAM. Relational Sequential Access Method. The
disk access method and storage manager for the
Informix DBMS.

ROLAP. Relational OLAP. Multidimensional
analysis using a multidimensional view of relational
data. A relational database is used as the underlying
data structure.

roll-up. Iterative analysis, exploring facts at a
higher level of summarization.

server. A computer program that provides services
to other computer programs (and their users) in the
same or other computers. However, the computer
that a server program runs in is also frequently
referred to as a server.

shared nothing. A data management architecture
where nothing is shared between processes. Each
process has its own processor, memory, and disk
space.

static SQL. SQL that has been compiled prior to
execution. Typically provides best performance.

subject area. A logical grouping of data by
categories, such as customers or items.

synchronous messaging. A method of
communication between programs in which a
program places a message on a message queue
and then waits for a reply before resuming its own
processing.

task. The basic unit of programming that an
operating system controls. Also see multitasking.

thread. The placeholder information associated
with a single use of a program that can handle
multiple concurrent users. See also multithreading.

unit of work. A recoverable sequence of
operations performed by an application between two
points of consistency.

user mapping. An association made between the
federated server user ID and password and the data
source (to be accessed) user ID and password.

virtual database. A federation of multiple
heterogeneous relational databases.

warehouse catalog. A subsystem that stores and
manages all the system metadata.

xtree. A query-tree tool that enables you to monitor
the query plan execution of individual queries in a
graphical environment.
496 Customizing the Informix Dynamic Server for Your Environment

acronyms
ACS access control system

ADK Archive Development Kit

AIO asynchronous input/output

API application programming
interface

AQR automatic query rewrite

AR access register

ARM automatic restart manager

ART access register translation

ASCII American Standard Code for
Information Interchange

AST application summary table

ASYNC asynchronous

AWS Amazon Web Services

BLOB binary large object

BTS basic text search

BW Business Information
Warehouse (SAP)

CA Continuous Availability

CCMS Computing Center
Management System

CDR Continuous Data Replication

CGI Common Gateway Interface

CLI call-level interface

CLOB character large object

CLP command line processor

CLR Continuous Log Recovery

CLR Continuous Log Restore

CORBA Common Object Request
Broker Architecture

CPU central processing unit

CQL Common Query Language

Abbreviations and
© Copyright IBM Corp. 2008. All rights reserved.
CRM customer relationship
management

CS cursor stability

CSM communication support
module

DAC Discretionary Access Control

DAS DB2 Administration Server

DB database

DB2 II DB2 Information Integrator

DB2 UDB DB2 Universal Database™

DBA database administrator

DBDK DataBlade Development Kit

DBM database manager

DBMS database management
system

DBSA database server administrator

DBSSO database system security
officer

DCE distributed computing
environment

DCM Dynamic Coserver
Management

DCOM Distributed Component
Object Model

DDL Data Definition Language

DES Data Encryption Standard

DIMID Dimension Identifier

DLL dynamic link library

DML Data Manipulation Language

DMS database managed space

DOS denial-of-service

DPF data partitioning facility

DRDA Distributed Relational
Database Architecture™
 497

DSA Dynamic Scalable
Architecture

DSN data source name

DSS Decision Support System

EAI Enterprise Application
Integration

EBCDIC Extended Binary Coded
Decimal Interchange Code

ECS E-Commerce Service

EDA enterprise data architecture

EDA enterprise data availability

EDU engine dispatchable unit

EGL Enterprise Generation
Language

EGM Enterprise Gateway Manager

EJB™ Enterprise JavaBean

ER enterprise replication

ERP Enterprise Resource Planning

ESB enterprise service bus

ESE Enterprise Server Edition

ETL Extract, Transform, and Load

ETX Excalibur Text

FP fix pack

FTP File Transfer Protocol

GB gigabytes

GIS geographic information
system

GML Geography Markup Language

GPS global positioning system

GUI graphical user interface

GUID Globally Unique IDentifier

Gb gigabits

HA high availability

HADR High Availability Disaster
Recovery

HDR High Availability Data
Replication

HPL High Performance Loader

HQ headquarters

HR human resource

I/O input/output

IBM International Business
Machines Corporation

ID identifier

IDE Integrated Development
Environment

IDS Informix Dynamic Server

II Information Integrator

IIUG International Informix User's
Group

IMS™ Information Management
System

ISA Informix Server Administrator

ISAM Indexed Sequential Access
Method

ISM Informix Storage Manager

ISV independent software vendor

IT information technology

ITR internal throughput rate

ITSO International Technical
Support Organization

J2EE™ Java 2 Platform Enterprise
Edition

JAR Java archive

JDBC Java Database Connectivity

JDK Java Development Kit

JE Java Edition

JMS Java Message Service

JRE Java Runtime Environment

JVM Java virtual machine

KAIO kernel AIO

KB kilobytes

LBAC label-based access control

LBS location-based services
498 Customizing the Informix Dynamic Server for Your Environment

LDAP Lightweight Directory Access
Protocol

LLD Large Object Locator

LPAR logical partition

LRU least recently used

LSN Log Sequence Number

LUN logical unit number

LUW Linux, UNIX, and Windows

LV logical volume

MAC Mandatory Access Control

MB megabytes

MDC multidimensional clustering

MLS multilevel security

MPP massively parallel processing

MQ message queue

MQI message queuing interface

MQT materialized query table

MRM message repository manager

MTK DB2 Migration Toolkit for
Informix

MVC Model-View-Controller

Mb megabits

NFS Network File System

NIS Network Information Service

NPI non-partitioning index

O/S operating system

OAT Open Administration Tool

ODBC Open Database Connectivity

ODS operational data store

OGC Open GeoSpatial Consortium

OLAP online analytical processing

OLE object linking and embedding

OLTP online transaction processing

ORDBMS Object Relational Database
Management System

OS operating system

PAM Pluggable Authentication
Module

PDQ parallel database query

PDS partitioned data set

PHP Hypertext preprocessor
(general purpose scripting
language)

PIB parallel index build

PIT Point-in-Time

PSA persistent staging area

QA quality assurance

RAID Redundant Array of
Independent Disks

RBA relative byte address

RBAC role-based access control

RBW red brick warehouse

RDB relational database

RDBMS relational database
management system

RID record identifier

RPO recovery point objective

RR repeatable read

RS read stability

RSAM Relational Sequential Access
Method

RSS Really Simple Syndication

RSS Remote Standalone
Secondary

RTO recovery time objective

SA systems administrator

SAN storage area network

SCB session control block

SDK Software Developer Kit

SDS Shared Disk Secondary

SE Standard Engine

SFS Simple Feature Specification

SID surrogate identifier
 Abbreviations and acronyms 499

SMIT Systems Management
Interface Tool

SMP symmetric multiprocessing

SMS System Managed Space

SMX server multiplexer

SOA service-oriented architecture

SPL Stored Procedure Language

SQL Structured Query Language

SRS Spatial Reference System

SSJE Server Studio Java Edition

SYNC synchronous

TB terabytes

TCB thread control block

TCO total cost of ownership

TMU table management utility

UDA user-defined aggregate

UDAM user-defined access method

UDB Universal Database

UDF user-defined function

UDR user-defined routine

UDT user-defined type

URL Uniform Resource Locator

VG volume group (RAID disk
terminology)

VII Virtual Index Interface

VLDB very large database

VP virtual processor

VSAM virtual sequential access
method

VTI Virtual Table Interface

WAN wide area network

WCS Web Coverage Service

WFS Web Feature Service

WKB Well-Known Binary

WKT Well-Known Text

WMS Web Mapping Service

WORF Web Services Object Runtime
Framework

WSDL Web Service Description
Language

WWW World Wide Web

XBSA X-Open Backup and Restore
APIs

XML Extensible Markup Language

XPS Extended Parallel Server
(Informix)
500 Customizing the Informix Dynamic Server for Your Environment

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 503. Note that some of the documents referenced here may be available in
softcopy only.

� Developing PHP Applications for IBM Data Servers, SG24-7218

� Informix Dynamic Server V10 . . . Extended Functionality for Modern
Business, SG24-7299

� Informix Dynamic Server V10: Superior Data Replication for Availability and
Distribution, SG24-7319

� Informix Dynamic Server 11: Advanced Functionality for Modern Business,
SG24-7465

� Informix Dynamic Server 11 Extending Availability and Replication,
SG24-7488

Other publications

These publications are also relevant as further information sources:

� Built-In DataBlade Modules User’s Guide, G251-2770

� C-ISAM DataBlade Module User’s Guide, Version 1.0, G251-0570

� Data Director for Web Programmer’s Guide, Version 1.1, G251-0291

� Data Director for Web User's Guide, Version 2.0, G210-1401

� DataBlade API Function Reference, G251-2272

� DataBlade API Programmer Guide, G251-2273

� DataBlade Developer’s Kit User Guide, G251-2274

� DataBlade Module Development Overview, G251-2275

� DataBlade Module Installation and Registration Guide, G251-2276-01
© Copyright IBM Corp. 2008. All rights reserved. 501

� Geodetic DataBlade Module User’s Guide, Version 3.11, G251-0610

� Guide to SQL: Syntax, G251-2284-02

� IBM Informix Database Design and Implementation Guide, G251-2271

� IBM Informix DataBlade API Function Reference, G229-6364

� IBM Informix DataBlade API Programmer's Guide, G229-6365

� Doe, Carlton. IBM Informix Dynamic Server 11: The Next Generation in OLTP
Data Server Technology. McPress, 2007, ISBN-10 1583470751, ISBN-13
978-1583470756.

� IBM Informix Dynamic Server Administrator's Guide, Version 11.1,
G229-6359-01

� IBM Informix Dynamic Server Administrator’s Reference, G229-6360

� IBM Informix Dynamic Server Enterprise Replication Guide, G229-6371

� IBM Informix Dynamic Server Installation Guide for Microsoft Windows,
G251-2776

� IBM Informix Dynamic Server Installation Guide for UNIX and Linux,
G251-2777

� IBM Informix Dynamic Server Performance Guide Version 10.0, G251-2296

� IBM Informix Dynamic Server Performance Guide v11.10, G229-6385

� IBM Informix GLS User’s Guide, G229-6373

� IBM Informix Guide to SQL: Reference, G251-2283

� IBM Informix Guide to SQL: Syntax, G229-6375

� IBM Informix High-Performance Loader User's Guide, G229-6377

� IBM Informix Spatial DataBlade Module User’s Guide, G229-6405

� IDS Administrators Guide, G251-2267-02

� Image Foundation DataBlade Module User’s Guide, Version 2.0, G251-0572

� Modeling a BLM Business Case with the IBM Informix Spatial DataBlade,
Version 8.10, G251-0579

� Modeling a Forestry Business Case with IBM Informix Spatial DataBlade,
Version 8.10, G251-0580

� Read Me First Informix Data Director for Web, Version 2.0, G251-0512

� Spatial DataBlade Module User’s Guide, Version 8.20, G251-1289

� TimeSeries DataBlade Module User’s Guide, Version 4.0, G251-0575

� TimeSeries Real-Time Loader User's Guide, Version 1.10, G251-1300

� User Defined Routines and Data Types Developer’s Guide, G251-2301
502 Customizing the Informix Dynamic Server for Your Environment

� Virtual-Index Interface Programmer’s Guide, G251-2302

� Virtual Table Interface Programmer’s Guide, G251-2303

Online resources

These Web sites are also relevant as further information sources:

� IBM CIO article, “Improve Database Performance on File System Containers
in IBM DB2 Universal Database V8.2 using Concurrent I/O on AIX,” by Kenton
DeLathouwer, Alan Y Lee, and Punit Shah, August 2004.

http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0408lee/

� “Non-blocking checkpoints in Informix Dynamic ServerDescription2,” by Scott
Lashley

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0703las
hley/index.html

� Downloadable Bladelets and demos

http://www-128.ibm.com/developerworks/db2/zones/informix/library/sam
ples/db_downloads.html

� Object-relational database extensibility, including DataBlades

http://www.iiug.org/software/index_ORDBMS.html

� Introduction to the TimeSeries DataBlade

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-051
0durity2/index.html

� Informix Web DataBlade Architecture

http://www.ibm.com/developerworks/db2/library/techarticle/0207harris
on/0207harrison.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks
 Related publications 503

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0408lee/
http://www.ibm.com/developerworks/db2/library/techarticle/0207harrison/0207harrison.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-128.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html
http://www.iiug.org/software/index_ORDBMS.html
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0510durity2/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0703lashley/index.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
504 Customizing the Informix Dynamic Server for Your Environment

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.NET 2.0-based Web services 321

A
access method

primary 258, 405
secondary 258
UDAM 402–403

accessors 228
administration 3, 25, 162–163

OAT 192
remote 173
robust 113
SQL-based 164

administration free zone 2, 11, 161
administrator-only mode 134
ADMINMAIL 152
Advanced Access Control Feature 8
aggregate 309

argument 309
agile 8
AIO (asynchronous input/output) 114
AIOVPS 129
AIX 455
ALARMPROGRAM configuration parameter 106,
152
allocated resources 40
ALTER ACCESS_METHOD 405
am_check 418
am_scancost 417
Amazon

E-Commerce Service (ECS) 425
VTI 427
VTI architecture 437
VTI example 430

Amazon Web service 425
Apache 56
application development 3, 9, 321
application redirection using server groups 103
appPages 292
approximate numeric types 234
archecker utility 157
architecture 312, 320, 346, 373–374, 376,
© Copyright IBM Corp. 2008. All rights reserved.
390–391, 458
Amazon VTI 437
ER 84
extensible for robust solutions 219
ffvti 456
for robust solutions 12
SDS 80

array 139, 244, 253
asynchronous (ASYNC) mode 77
asynchronous application-to-application message
exchange 442
asynchronous event 377
asynchronous I/O 114
asynchronous input/output (AIO) 114
auditing feature 146
AUTO_AIOVPS 45, 129
AUTO_CKPTS 45, 127
AUTO_LRU_TUNING 46, 128
AutoDesk 353
automatic checkpoint 11, 114
automatic tuning 127

AUTO_AIOVPS 129
AUTO_CKPTS 127
AUTO_LRU_TUNING 128

autonomic features 11

B
backup 11, 113–114, 147, 164, 170, 195–196

database 149
filters 158
incremental 149
levels of 149
logical log 156
ON-Bar 151
ontape 150
to directory and stdout 150
tracking 155

backup and restore 18, 147
external 155
failover and disaster recovery 93

BAR_MAX_BACKUP 152
BAR_PERFORMANCE 153
basic text search (BTS) 119
 505

Basic Text Search DataBlade module 22, 290, 402
Binary DataBlade module 22, 289
binary large object (BLOB) 118, 283, 311, 451, 453
blade server 93
Bladelet 12, 289, 293, 456
BladeManager 284, 289
BladePack 284
BladeSmith 284
BLOB (binary large object) 118, 283, 311, 451, 453

data 452
blobspace 118, 149
books 426, 429
Boolean 310
boot up time 121
B-tree index 116, 228, 252, 258
BTS (basic text search) 119
BUFFERPOOL 126
business decision enablement 5
business environment 24
business intelligence, data warehousing 99
business logic 422
business-to-business scenarios 321

C
C/C++ Web services 321
CA (continuous availability) 2
cache 189, 410, 420
cache rate 44
cadastre 233
calendar 251
call center 99
callback function 380
callbacks 377
capacity relief 84
cardinality 290
cartographic publishing 324
C-based iterator function 297
CGI (Common Gateway Interface) 346
character large object (CLOB) 118, 290, 311, 446,
449, 451
character strings 267–268, 366

Soundex 362
checkpoint 122, 127, 169, 174–175, 198, 201
chunk 113, 149, 164, 169, 171, 173, 178, 200

cooked 114
offline error condition 152
raw 114

C-ISAM DataBlade module 22, 292

CKPTINTVL 45, 122
CLEANERS 44
client application 422
Client Software Development Kit (SDK) 20
CLOB (character large object) 118, 290, 311, 446,
449, 451
CLR (Continuous Log Restore) 8, 82, 84–86,
89–90, 105

EDA 75–76, 81
cluster activity monitoring 105
collection 311

data type 303
column-level encryption 8
column-level security 144–145
commit 441, 454
Committed Read isolation level 159
Common Criteria certification 9
Common Gateway Interface (CGI) 346
Common Query Language (CQL) 335
commutator functions 280
complex qualifier 413
concurrency 159, 279, 397
configuration 15, 161, 163, 171, 174, 180–183,
194–195, 209, 259, 283, 406, 422–424, 449

file 163, 183
parameters 133, 174

Connect, Informix 20
connection database 66
consistency, SOA 255
console device 105–106
consolidation 90
continuous availability (CA) 2

feature 7
Continuous Log Restore (CLR) 8, 82, 84–86,
89–90, 105

EDA 75–76, 81
cooked chunk 114

direct I/O 115
coord_dimension 351
coordinates 222
cost functions 280
CQL (Common Query Language) 335
CQL operator 340
CQL predicate PropertyIsBetween 360
CREATE INDEX statement 415
CREATE TABLE 146
CREATE TABLE statement 415
CREATE TRIGGER 379, 387
CREATE VIEW 305, 307
506 Customizing the Informix Dynamic Server for Your Environment

customization 253

D
DAC (Discretionary Access Control) 135
data

access 135
availability 98
cache, UDAM 420
distribution 84, 410
encryption 146

between HDR servers 147
integrity 17, 113, 162, 169
iterators 300
load activity 42
partitioning 120

round-robin fragmentation 120
replication 75–76, 83–84
retrieval, efficiency 256
sharing 84, 93

Data Definition Language (DDL) 134, 137, 414, 454
Data Director for Web 20
Data Manipulation Language (DML) 414, 454
data partitioning, OLTP 120
data type 2–3, 12, 230, 242, 264, 277, 280,
290–291, 294, 309, 311, 410, 449

birthday club example 232
delivery service example 230
parcel ownership example 235
standards 259
tax bills and ownership transactions 238
TSndx 364, 367
UDT 327

data warehousing 3, 36, 42, 99
business intelligence 99
denormalization 242
IDS 16
monitoring and optimization tool 19
table types 120

database
administration 162
administration system 208
backup 149
connection security 130
creation 167
events 13, 377
objects 114
replication 98
search 362

searching with Soundex 362
database management system (DBMS) 2, 18
database server 130, 163, 166–167, 170–171,
174–176, 178–186, 193–196, 199, 277, 321, 374,
378–379, 384, 389, 402, 404, 411–412, 414–415,
422

data processing 321, 422
database server administrator (DBSA) 11, 113
database system security officer (DBSSO) 146
DataBlade 3, 12, 220, 237, 259, 263, 277,
279–280, 284–285, 287–289, 291, 294, 325, 327,
380–382, 384, 386, 394, 397–398, 424, 456, 468

Basic Text Search 290
Binary 289
C-ISAM 292
Excalibur Text 292
Fraction example 476
Geodetic 291, 324
IDS 220
modules 22, 287–288
MQSeries 290
Node 290
resiliency 256
Spatial 290–291, 324
technology 2
TimeSeries 292
Video Foundation 292
Web 292
WFS 290

DataBlade API 228, 277–278, 285, 294, 378,
380–382, 384, 393, 395, 397, 403, 410, 420, 430

C-based iterator functions 297
extensions for UDAM 410
implementation Option B 391
iterator function 309
mi_call() function 317
object-relational extensibility 221

DataBlade Developers Kit 24
DataBlade Manager 287
data-centric mashup 375
DBCREATE_PERMISSION 135–136
DBMS (database management system) 2, 18
DBPATH 103
DBSA (database server administrator) 11, 113
DBSERVERNAME 104
dbspace 31, 149, 164–165, 167–170, 172, 178,
196, 199–200

layout 113
management of 115
 Index 507

multiple partitions 117
page size 116
tblspace tblspace extents 116
temporary 119

DBSPACETEMP 41, 119
hash join 41

DBSSO (database system security officer) 146
DDL (Data Definition Language) 134, 137, 414, 454
DECIMAL data type 312
Decision Support Systems (DSS) 4–5, 10, 15,
34–35, 41, 47–49, 119, 133, 155, 175, 184

configuration for 36
data warehousing 36, 99

decision-support memory 39
decryption 147
DEFAULT clause 140
degree of parallelism 152
DELETE 343–344, 380, 421, 448, 451, 454, 457
denial-of-service flood attacks 133
denormalization, data warehousing 242
deployment 15
Deployment Wizard 9–10, 26

component tree 26
DescribeFeatureType operation 336
descriptor, UDAM 410
direct I/O on cooked chunks 115
disaster 75
disaster recovery 84–85, 90, 93, 147
Discretionary Access Control (DAC) 135
disk hardware mirroring 92
disk management 11, 114
disk mirroring 148, 151, 155
distributed joins 18
distributed queries 441
Distributed Relational Database Architecture
(DRDA) 19
distribution 93, 98
DLL (Data Definition Language) 414
DML (Data Manipulation Language) 414, 454
domain 236
DRDA (Distributed Relational Database Architec-
ture) 19
DROP 282, 287, 405, 416, 436, 464
DROP ACCESS_METHOD 406
DROP TABLE 146, 436
DS_MAX_QUERIES 39
DS_MAX_SCANS 39
DS_NONPDQ_QUERY_MEM 39
DS_TOTAL_MEMORY 39

DSS (Decision Support Systems) 4–5, 10, 15,
34–35, 47–49, 119, 133, 155, 175, 184

configuration for 36
data warehousing 36, 99
PDQ parameter values 41

dynamic SQL 293

E
E-Commerce Service (ECS)

Amazon 425
gSOAP code 427
ItemLookup operation 425
ItemSearch operation 426

ECS (E-Commerce Service)
Amazon 425
gSOAP code 427
ItemLookup operation 425
ItemSearch operation 426

EDA (enterprise data availability) 10, 75, 84
capabilities and failover options 90
CLR 75–76, 81
ER 75–76, 83
HDR 75–77
recommended solutions 92
RSS 75–76, 78
SDS 75–76, 80
solutions 10
solutions in IDS 76
technologies and advantages 88

efficiency 256
EGL (Enterprise Generation Language) 321
encryption 9, 147

data 146
passwords 146

encryption, password 132
end node 374
enterprise data availability (EDA) 10, 75, 84

capabilities and failover options 90
CLR 75–76, 81
ER 75–76, 83
HDR 75–77
recommended solutions 92
RSS 75–76, 78
SDS 75–76, 80
solutions 10
solutions in IDS 76
technologies and advantages 88

Enterprise Gateway Manager 18
508 Customizing the Informix Dynamic Server for Your Environment

with DRDA 19
Enterprise Generation Language (EGL) Web servic-
es 321
Enterprise Replication (ER) 2, 83–84, 89, 105–106,
441

application upgrades 100
clustering solutions 84
data availability and distribution 98
EDA 75–76, 83
with HA cluster 86
workload balancing with SDS 96

enterprise service bus (ESB), SOA 442
environment variables 267, 281
ER (Enterprise Replication) 2, 83–84, 89, 105–106,
441

application upgrades 100
clustering solutions 84
data availability and distribution 98
EDA 75–76, 83
with HA cluster 86
workload balancing with SDS 96

ESQL/C 21, 285, 291
ESQL/COBOL 21
ESRI 325, 332

ArcGIS 351
ESRI Shapefiles 353
event

how to use 379
why use 378

event alarms 105–106
event processing implementation Option A 390
event processing implementation Option B 391

named memory 391
rollback 391

event-driven architecture 393
Excalibur Text DataBlade 291–292, 402
Excalibur Text Search DataBlade module 22
Extended Parallel Server (XPS) 16
extensibility 2–3, 12–13, 263, 269, 276, 283–284,
289, 294–295, 309–310, 326

architecture 261
consistency 256
data server 261
efficiency 257
IDS 399
object-relational movement 257

extensible architecture 12
for robust solutions 219

extension 220

extent 178
external backup 151
external backup and restore 148, 155
external routines, security 136
extspace 119

F
f_geometry_column 351
f_table_catalog 351
f_table_name 351
f_table_schema 351
failover 75, 84–85, 93
fast recovery 121

time 121
fastpath interface 278, 394
fault tolerance 98
feature 334
feature id 334
feature type 334
federated 6
ffvti

architecture 456
Bladelet 456
external file access 402

filter, backup 158
FIRST 191, 435, 452, 462, 464
flat earth 329
flat-earth model 331
FLOAT 234
forest of trees topology 84
Fract data type 236–237
Fraction DataBlade example 476
fragmentation 36, 41, 43, 46, 178, 269

data partitioning 120
fragments 40, 169, 178
full text search 22
function polymorphism 328
functional index 269, 368

G
Gaia 3 353
geocoding 325
geodesy 331
Geodetic DataBlade 256, 291, 324, 327, 331, 347

globes 326
maps 326
round-earth model 329
spatiotemporal queries and WFS 358
 Index 509

srid 352
Geodetic DataBlade module 23
Geodetic Web services 9
geographic analysis 324
geographic information system (GIS) 234, 324, 326

software 328, 330
techniques 325
tools 325

geographic point locations 325
geographic processing 324
geographic technology 325
Geography Markup Language (GML) 328, 353, 356
geometric shapes 326
geometry_type 351
GeoPoint 361
GeoPolygon data type 332
geospatial file format 353
geospatial mapping 353
get and set methods 228
GetCapabilities operation 334
GetCapabilities transaction 353

document 356
GetFeature operation 338
GIS (geographic information system) 234, 324, 326

software 328, 330
techniques 325
tools 325

global mode 183
global positioning system (GPS) 259
GML (Geography Markup Language) 328, 353, 356
Google 325
GoogleEarth 353
GOOGLEMAPKEY field 65
GPS (global positioning system) 259
GPS-enabled devices 259
GRANT user labels 140, 145
great-circle, shortest path 330
GROUP BY 269, 276, 283, 303, 305, 307
group, new 69
gSOAP code 427
GUI 284

H
HA (high availability) 2, 7, 9, 75–76, 84–85, 93,
105–106, 112–113, 164

application redirection 103
cluster 85
sysmaster database 106

HA cluster 85
ER 86

hardware mirroring 155
hash join, DBSPACETEMP 41
HDR (High Availability Data Replication) 8, 84–86,
89, 91, 105, 278

data encryption 147
EDA 75–77

Health Center 196, 212
heterogeneous data sources 6
hierarchical server tree 84
hierarchical tree topology 84
high availability (HA) 2, 7, 9, 75–76, 84–85, 93,
105–106, 112–113, 164

application redirection 103
cluster 85
sysmaster database 106

High Availability Data Replication (HDR) 8, 84–86,
89, 91, 105, 278

data encryption 147
EDA 75–77

High Performance Loader (HPL) 42, 120
Home 193
host variables 182
hot backup 81
HPL (High Performance Loader) 42, 120
HTTP 290, 335, 423–424
human resources system 100

I
I/O throughput 36
IBM Informix TimeSeries DataBlade 250
IDS

administration 3
application development 3
business environment 24
capabilities 6
database events 377
DataBlade 220
decryption functions 147
EDA 75
EDA solutions 76
encryption functions 147
extensibility 3, 295, 372
features and tools 17
LIST collection type 253
memory management 228
mixed and changing environments 34
510 Customizing the Informix Dynamic Server for Your Environment

multiple instances 192
server deployment 24
service consumption 321
SOA 321
solutions 16
VII 401
VTI 401
Web service 321
WebSphere MQ 444

IDS (Informix Dynamic Server) 16
IFX_EXTEND_ROLE 135
Image Foundation DataBlade module 22
implicit cast 366
imported restore 151
incremental backup 149
index 162, 169, 176, 202, 204, 228, 269, 276, 363,
367, 402

functional 269, 368
utilization 46

inequality conditions 121
Informix

4GL 20
Client Software Development Kit (SDK) 20, 349
Connect 20
DataBlade technology 2
Enterprise Gateway Manager 18
Enterprise Gateway Manager with DRDA 19
ESQL/C 21
ESQL/COBOL 21
Java Database Connectivity (JDBC) 21
MaxConnect 19
NAG DataBlade module 253
OnLine 16–17
SQL 21
Standard Engine 16–17
WebSphere MQ 443

Informix Dynamic Server (IDS) 16
administration 3
application development 3
capabilities 6
database events 377
DataBlade 220
decryption 147
EDA solutions 76
encryption 147
enterprise data availability (EDA) 75
extensibility 3, 295, 399
features and tools 17
instance 84, 454–455

LIST collection type 253
shared memory 279
solutions 16
SQL optimizer 413
SQL-based administration 192
VII 401
VTI 401

Informix Extended Parallel Server (XPS) 16
informix.sysams catalog 407
Informix-Connect 349
INFORMIXDIR 349
INFORMIXSERVER 103, 349
infoshp utility 349
INSERT 175–177, 179, 209, 211, 213, 215, 222,
309, 343–344, 351, 358, 366, 375, 379–380,
387–388, 421, 445, 448, 451–453, 456, 458, 461,
464
INSERT, DELETE, UPDATE flow 416
Installation Wizard 25

footprint 25
instance 162, 288, 337, 441, 443, 455
INSTEAD OF triggers 147, 380
integration, multiple customizations 253
invisible 9
I-Spy 19
ItemLookup operation 425
ItemSearch operation 426
iterator function 282, 296–300, 303, 307, 309

J
Java 263, 280–283, 293–294, 296, 394, 397, 422,
442
Java Database Connectivity (JDBC) 21
Java UDF 395

Web services 398
JavaSoft specification 21
JDBC (Java Database Connectivity) 17, 21, 282,
321, 422, 454

WebSphere Application Server 21
joins 433

K
KAIO (Kernel Asynchronous Input/Output) 114,
130
Kernel Asynchronous Input/Output (KAIO) 114,
130
key descriptor 410
key-value pairs 333
 Index 511

KVP syntax 341, 344

L
label-based access control (LBAC) 8–9, 11, 114,
135, 137

column level 143
row-level 138

Large Object Locator (LLD) module 291
last committed isolation level 8
latency, minimizing 79
LBAC (label-based access control) 8–9, 11, 114,
135, 137

column-level 143
row-level 138

LBS (location-based services) 357
LDAP 132
least recently used (LRU) 44, 114
light append buffer 42
light scan 37

buffers 38
line 244
linestring 244
Linux 43, 287, 423–424, 455, 466
LIST 303, 311
LIST collection type 253
LLD (Large Object Locator) module 291
load 162, 295, 434
loadshp utility 349, 351
location-based services (LBS) 357
lock table 44
locking 421
LOCKS 44
log recovery 82
LOGBUFF 45
logical log 78, 162, 170–171, 201, 205

backup 156
buffer 45
file 170

logical recovery time 122
logical restore 148
logs 194, 205
LRU (least recently used) 44, 114
LTAPEDEV 150–151

M
MAC (Mandatory Access Control) 135
MAILUTILITY 152
mainstream IT 325

Mandatory Access Control (MAC) 135
MapInfo 325, 353
Mapquest 325
mashup 14, 325, 374

data-centric 375
relational 422

MAX_PDQPRIORITY 39
MAXAIOSIZE 38
MaxConnect 19
MEAN() 312
MedianApprox() 318
MedianExact() 317
memory 121, 163–164, 174, 177, 180–181, 184,
189–190, 208, 278, 297–299, 301–303, 312, 315,
317–319, 383, 388–389, 402, 404, 411, 420, 430

allocation 298, 383–385, 389, 392, 430
duration 383
for query 40
management, IDS 228
quantum 39
usage 184
utilization 36–37

message log file 105–106
message queue

integration 398
VTI tables 402

metadata 293, 305, 334, 406, 408–409, 423
Microsoft mapping 325
mirroring 148
MLS (multi-level security) 135
Mode() 319
model 391, 401–402
Model-View-Controller (MVC) 260
MQ 446
MQ Publish and Subscribe functions 449
MQ Read and Receive functions 449
MQ Table mapping functions 451
MQ Utility functions 451
MQSeries DataBlade module 290, 398
multi-level security (MLS) 135
multimedia data management 17
multiple instances 162, 164
MULTISET 303, 311
multithreaded architecture 393
MVC (Model-View-Controller) 260

N
named memory 279, 384
512 Customizing the Informix Dynamic Server for Your Environment

event processing Option B 391
signal, sending 397

named pipe 43
named row type 224
namespace 334
network 42
new group 69
Node DataBlade module 23, 290
non-blocking checkpoint 8, 169, 174
nonlogging tables 42
non-traditional data 257
not a 3-D product 331
N-tile (quantile) 318
NULL values 277

O
OAT (Open Admin Tool) 2, 10–11, 18, 25, 33, 57,
105, 107, 110, 162, 192, 208, 212, 216

administration 192
configuration page 68
installation 55, 63
installation configuration 67
main page 72
PHP 18
software download 60

object-oriented application programmer 229
object-oriented programming advantages 221
object-relational extensibility 219–220

movement 257
ODBC (Open Database Connectivity) 17, 321, 422

interface 280
OGC (Open GeoSpatial Consortium) 321, 326

WFS-T 333
OGC WFS API 8
OGC WFS specification 13
OLTP 2–5, 10, 15, 47–49, 93, 169, 174–175, 184,
258

configuration 43
data partitioning 120
data warehousing 36
stored procedure 133
TCP/IP connections for security 43
workload balancing with SDS and ER 96

oltp2dss.sql file 49
oltp2dss.sql script 53
onaudit 146
ON-Bar 195

API 149

backup and restore 151, 157
performance monitoring 153

onbar 148, 154
restore 148
script customization 152

oncheck 37, 162, 164, 169, 179
ONCONFIG 182
onconfig 126, 128, 163, 182–183, 187, 281, 283

dependent parameters in RTO policy 123
file 31, 34, 394, 431, 468
parameter values 35
parameters 43, 48

onconfig.std file 125
online schema evolution 90
OnLine, Informix 16–17
onmode 48, 122, 128, 162, 164, 171, 175, 179,
210, 213
onsmsync 154
onspaces 162, 164, 167
onstat 37, 105–106, 122, 163–164, 201, 431

trace information 187
ontape 148

backup and restore 150
restore 151

opaque row type 293
encapsulation and performance 227

opaque type 228, 236–237, 293, 364–365
Open Admin Tool (OAT) 2, 10–11, 18, 25, 33, 57,
105, 107, 110, 162, 192, 208, 212, 216

administration 192
installation 55, 63
installation configuration 67
software download 60

Open Database Connectivity (ODBC) 17, 321, 422
interface 280

Open GeoSpatial Consortium (OGC) 321, 326
WFS-T 333

Open GeoSpatial Consortium Web Feature Service
(OGC WFS) API 8, 290
open standards 422
Open Systems Backup Services Data Movement
(XBSA) API 149
operator class functions 280
optimization 375
optimizer 433, 437, 440
Option A event processing 390
Option B event processing 391

named memory 391
rollback 391
 Index 513

Oracle 441
ORDER BY 269, 276, 283, 303
ordered set 139
out-of-memory error condition 152

P
page 181, 189, 200

cleaner threads 45
size 116

PAGERMAIL 152
PAM (Pluggable Authentication Module) 8, 131

LDAP 132
parallel database query (PDQ) 36, 39–40, 49, 80,
119

shared memory 40
stored procedure 133

parallelism 152, 421
parallelization 421
partitioning 113
password

authentication 130
encryption 132, 146

PDQ (parallel database query) 36, 39–40, 49, 80,
119

parameter values 41
shared memory 40
stored procedure 133

PDQPRIORITY 39
performance 2, 184, 201, 295, 303–304, 306, 309

features 11
tools 19
tuning 43

Perl Web services 321
permissions, data access 136
PHP 55

driver 21
OAT 18
Web services 321

PHYSBUFF 45, 125
PHYSDBS 125
PHYSFILE 125
physical recovery time 121
Pitney Bowes 325
Pluggable Authentication Module (PAM) 8, 131

LDAP 132
polyline 244
polymorphism, function 328
primary access method 258, 402, 405, 438

primary-target replication 84
privileges 173

database connection 114
processes 267, 283, 383, 396, 423
PropertyIsBetween CQL predicate 360
purpose function 403
Python driver 21

Q
qualification descriptor 410
qualifier, VTI and VII 413
quantile 318
quantum 39
quantum unit 39
quasi-spatial techniques 324
query

memory 40
plan 305–306, 308

queues 392, 442–443, 446, 450
quotations 423

R
RA_PAGES 44
RA_THRESHOLD 45
RAS_LLOG_SPEED 125
RAS_PLOG_SPEED 125
raw chunk 114
raw disk device 114–115
RBAC (role-based access control) 11, 114, 136
read-ahead 114, 178
read-ahead threshold 45
REAL 234
real-time data 258

GPS-enabled devices 259
stock trades 258

Real-Time Loader DataBlade 258
recoverability 279
recovery 75, 121
recovery point objective (RPO) 114
recovery time objective (RTO) 11, 43, 45, 114

dependent onconfig parameters 123
Redbooks Web site 465, 503

Contact us xix
relational data sources 401
relational mashup 422
relational tables 401
remote administration 164, 173
remote instances administration tool 33
514 Customizing the Informix Dynamic Server for Your Environment

Remote Standalone Secondary (RSS) 84–86, 89,
91, 94, 105

EDA 75–76, 78
SMX communications interface 79

replication 27, 441
environment 84
network 86
of data 76
primary target 84
topologies 84
update anywhere 84

resiliency 7, 256
resources allocated 40
response file 29
responsefile.ini file 27
restartable restore 159
restore 11, 113–114, 147, 195

external 155
imported 151
ON-Bar 151
ontape 150
restartable 159
table-level 157

retail pricing 99
role-based access control (RBAC) 11, 114, 136
roles 137
rollback 279, 379, 397, 445, 454

event processing Option B 391
roll-forward mode 77
round-earth model 329, 331
round-robin

fragementation 120
temporary dbspace 119

row descriptor 410
row-id descriptor 410
row-level security 141
RPO (recovery point objective) 114
RSS (Remote Standalone Secondary) 84–86, 89,
91, 94, 105

EDA 75–76, 78
SMX communications interface 79

RTO (recovery time objective) 11, 43, 45, 114
dependent onconfig parameters 123

RTO_SERVER_RESTART 45, 122
when not to use 126

R-tree index 293, 329, 332
Ruby Web services 321

S
SAP stack 441
sbspace 118, 149
scalability 276, 374
scan descriptor 410
schema 208, 258, 304–305, 338, 407, 438, 440,
450

editing 18
editor 21
evolution 100
upgrade 100

SDS (Shared Disk Secondary) 80, 84–86, 89–91,
105

architecture 80
EDA 75–76, 80
SMX communications interface 80
workload balancing with ER 96

secondary access method 258, 402
security 9, 11

column-level 144–145
components 138
database connection 114, 130
external routines 136
IDS 16
label 141
labels 138–139, 144
policy 139–140, 144
row-level 141

SELECT 169, 173, 190–191, 203, 210, 213, 239,
268–271, 276, 278, 283, 296, 300, 302, 305,
307–308, 317, 375, 380, 409–410, 413, 421, 433,
435, 440, 448–453, 462–464
selectivity functions 281
self-maintenance 9
sending of a signal 396
sending of information to a file 392
sensors 176
serial column 343
serial8 column 343
server 1, 15, 24, 71, 161, 392, 431

deployment 24
group 104

application redirection 103
server multiplexer (SMX) communications interface
79
Server Studio 18
Server Studio Sentinel 19
server.ini file 27
SERVERNUM 154
 Index 515

service provider 424
service-oriented architecture (SOA) 13, 256, 321,
422

data integration 320
foundation technologies in IDS 11 320
framework 320

set 139
ordered 139

SET ENVIRONMENT 134
SET ISOLATION COMMITTED READ 159
SET PDQPRIORITY 134
SET ROLE 136
SFS (Simple Feature Specification) 326
shapefile utilities 349
Shared Disk Secondary (SDS) 80, 84–86, 89–91,
105

architecture 80
EDA 75–76, 80
SMX communications interface 80
workload balancing with ER 96

shared library 285–287, 299, 395
shared memory 43
SHMVIRTSIZE 45
Show command 194
signal, sending 396

named memory 397
silent configuration 31
silent installation 25, 27
silent log file 30
Simple Feature Specification (SFS) 326
smart large object 279
SMX communication 79
SMX layer 80
SOA (service-oriented architecture) 13, 256, 321,
422

data integration 320
ESB 442
foundation technologies in IDS 11 320
framework 320

SOAP 55, 323, 422, 424, 428
message 424

software components 220
Soundex 362

DataBlade 363
examples 363

spatial analysis 324
spatial coordinates 325
spatial data 324
spatial data type 327, 331

Spatial DataBlade 290–291, 324, 327, 329, 347,
358

globes 326
maps 326
shapefile utilities 349
SRS 328

Spatial DataBlade module 23
spatial extent 359–360
spatial operators 329
Spatial Reference System (SRS) 328
Spatial Web services 9
spatiotemporal query 332, 358
SPL (Stored Procedure Language) 257, 263, 270,
283, 293, 296, 303–304, 306, 309

routines 160
SQL

data types 257
Informix 21
level 422

Web services 422
optimizer 120, 413
UDAM syntax 403

SQL Administration API 9, 18, 163–164, 167, 170,
173, 179, 182–186, 208
SQLHOSTS file 104
sqlhosts file 130–131
srid 329, 352
SRS (Spatial Reference System) 328
standards for data types 259
startup sensors 179
startup tasks 178–179
statistical information 161, 163
statistics 162, 176, 181–182, 189–190, 203, 405

descriptor 410
functions 281

stdout, backup to 150
stock trades 258
storage manager 154
Storage Manager commands 152
storage_type 351
stored procedure 13, 133, 161, 166–167, 174,
211–212, 270, 272, 379, 445
Stored Procedure Language (SPL) 257, 263, 270,
283, 293, 296, 303–304, 306, 309

routines 160
subtypes 328
support functions 228
synchronous (SYNC) mode 77
syntax 182, 403, 405, 412
516 Customizing the Informix Dynamic Server for Your Environment

ALTER ACCESS_METHOD 405
DROP ACCESS_METHOD 406
KVP 341, 344
regular expression 371

sysdbclose 133
sysdbclose() 379
sysdbopen 133
sysdbopen() 379
sysmaster database 105–106
syssqltrace table 190
syssqltrace_info table 190
syssqltrace_iter table 190
system catalog 406
system configuration 18
system monitoring 18
system scalability 19
system-defined alert 166

T
tab_abstract 352
tab_keywords 352
tab_title 352
table descriptor 410
table functions 281
table space 178
table types 120
table-level restore 157
tables 162, 165–167, 169, 176, 189–190, 192, 202,
204, 206–207, 287, 289, 293, 374–376, 388,
402–403, 406, 409, 414, 418–419, 433, 437,
440–441, 453, 456–457

primary access method 258
TAPEDEV 150–151
tar file 430
task 174
tblspace tblspace extents 116
TBLTBLFIRST 116
TBLTBLNEXT 116
TCP/IP

connections for security in an OLTP environ-
ment 43

template 317, 428
temporary dbspaces 119
text search 290, 394
The Carbon Project, Gaia 3 353
thread 166, 210, 277, 314, 431
time series 23, 248
time-indexed array 248

TimeSeries DataBlade module 23, 250, 256, 258,
292
TimeSeries Real Time Loader DataBlade module
23
tracing

global mode 183
onstat command 187
user mode 183

transaction 4, 341
boundaries 378
processing 4
recovery process 4

Transaction WFS 334
transition 386
tree 139
trigger 380, 445

capabilities 380
introspection 380

TRUNCATE 419, 456, 458, 464
TSndx

data type 364, 367
tuning 11, 113, 127, 175, 201, 309
two-phase commit protocol 419
type constructor 251
type hierarchy 327

U
UDA (user-defined aggregate) 310–314, 316,
318–319, 327

MEAN() 312
MedianApprox() 318
MedianExact() 317
Mode() 319

UDAM
caching data 420
CREATE TABLE and CREATE INDEX flow 415
DataBlade API extensions 410
descriptor 410
DROP TABLE or DROP INDEX flow 416
INSERT, DELETE, UPDATE flow 416
locking 421
logging and recovery 420
oncheck flow 418
onstat options 421
parallelization 421
SELECT flow 418
SQL syntax 403
tips and tricks 419
 Index 517

transactions 419
truncate flow 419

UDF (user-defined function) 287, 291, 296
calling 394

UDR (user-defined routine) 12, 134, 162, 167, 174,
220, 223, 231–232, 277–278, 280, 282–284, 289,
297–298, 300, 303, 311, 327, 384, 386, 397,
403–404, 407, 412, 422, 430
UDT (user-defined type) 231, 234, 250, 327

Fract data type 236
UNIX 19, 152, 194–195, 208, 287, 349, 396
unloadshp utility 349
UPDATE 343–344, 380, 421, 448, 451, 454, 457
UPDATE STATISTICS 160
update-anywhere replication 84
user label 140, 145
user mode 183
userdata field 410
user-defined

alert 166
primary access method 402
record 381
secondary access method 402
statistics functions 281
table functions 281
virtual processor 394

network connection 397
user-defined access method (UDAM) 402

SQL syntax 403
user-defined aggregate (UDA) 310–314, 316,
318–319, 327

MEAN() 312
MedianApprox() 318
MedianExact() 317
Mode() 319

user-defined function (UDF) 287, 291, 296
calling 394

user-defined routine (UDR) 12, 134, 162, 167, 174,
220, 223, 231–232, 277–278, 280, 282–284, 289,
297–298, 300, 303, 311, 327, 384, 386, 397,
403–404, 407, 412, 422, 430
user-defined type (UDT) 231, 234, 250, 327

Fract data type 236
user-state information 298

V
vertex 244
Video Foundation DataBlade module 24, 292

views 12, 287, 289, 295, 303, 305, 309
VII (Virtual Index Interface) 13, 228, 258, 280,
401–402

qualifier 413
Virtual Index Interface (VII) 13, 228, 258, 280,
401–402

qualifier 413
virtual processor 164, 205, 210, 279, 393–394,
430–432
Virtual Shared Memory segments 41
Virtual Table Interface (VTI) 13, 252, 257, 281, 401

qualifier 413
VTI (Virtual Table Interface) 13, 252, 257, 281, 401

qualifier 413

W
Web DataBlade module 24, 292
Web development 20
Web Feature Service (WFS) 13, 290, 326, 332

architecture 346
Basic 333
capabilities 333
DataBlade 290, 325, 327

installation and setup 347
overview 332
publishing location 324
spatiotemporal queries 358
Transaction 334
XLink 334

Web Feature Service API 8
Web Mapping Service (WMS) 333
Web service 13, 283, 295, 325, 353, 375, 422–425,
428, 437–438, 468

accessing 398
Amazon E-Commerce Service 425
IDS 321
standards 422

Web services
.NET 2.0-based 321
EGL-based 321
Java-based 321
OGC 321
PHP, Ruby, Perl, and C/C++ 321

Web Services Object Runtime Framework (WORF)
321
WebSphere 441–442, 455
WebSphere Application Server 21
WebSphere MQ 441, 443, 455
518 Customizing the Informix Dynamic Server for Your Environment

description 441
IDS support 444
Informix 443
Informix and other database application use
443
Message Broker 442
programming 445
queue manager 455
sending messages from IDS to WebSphere MQ
447
transactions 454

Well-Known Binary (WKB) 328
Well-Known Text (WKT) 328, 331
WFS (Web Feature Service) 13, 290, 326, 332

architecture 346
Basic 333
capabilities 333
DataBlade 290, 325, 327

installation and setup 347
overview 332
publishing location 324
spatiotemporal queries 358
Transaction 334
XLink 334

WFS Delete transaction 344
WFS GeoPoint 358
WFS GetFeature operation 357
WFS GetFeature request 340, 344, 361
WFS GetFeature transaction 342
WFS INSERT transaction 343
WFS Transaction operation 343
WFS Update Transaction 344
WFS with Transactional extension 333
wfsdriver 346
wfspwcrypt utility 349
wfssetup 348
Windows 43, 152, 208, 284, 286–287, 289, 424,
455, 466
WKB (Well-Known Binary) 328
WKT (Well-Known Text) 328, 331
WMS (Web Mapping Service) 333
WORF (Web Services Object Runtime Framework)
321
workload balancing 75, 84, 93
workload partitioning 90

X
XBSA API 149

XLink 334
XML 284, 290, 293, 311, 422–423, 425
XPS (Extended Parallel Server) 16

Y
Yahoo 325
 Index 519

520 Customizing the Informix Dynamic Server for Your Environment

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Custom
izing the Inform

ix Dynam
ic

Server for Your Environm
ent

®

SG24-7522-00 ISBN 0738485896

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Customizing the
Informix Dynamic Server
for Your Environment

An administration
free zone to reduce
the cost of systems
management

IBM Informix
DataBlade
technology for
extending
applications

Robust flexibility to
get the best fit for
you

In this IBM Redbooks publication, we provide an overview of some
of the capabilities of version 11 of the IBM Informix Dynamic
Server (IDS), referred to as IDS 11, that enable it to be easily
customized for your particular environment. Although many
capabilities are available, the focus of this book is on the areas of
ease of administration and application development. We describe
and demonstrate these capabilities with examples to show how it
can be done and provide a model as you begin your customization.

IDS 11 provides nearly hands-free administration to businesses of
all sizes. It also offers significant advantages in availability,
manageability, security, and performance. Built on the IBM
Informix Dynamic Scalable Architecture (DSA), these capabilities
can result in a lower total cost of ownership. For example, many of
the typical database administrator operations are self-managed by
the IDS database.

IDS customers report that they are using one-third or less of the
staff typically needed to manage other database products.
Shortened development cycles are also realized due to rapid
deployment capabilities and the choice of application development
environments and languages. There are also flexible choices for
business continuity with replication and continuous availability. By
taking advantage of these functions and features of IDS 11, you
can customize your IDS implementation to enable you to better
satisfy your particular business requirements.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. IDS and your business
	1.1 An introduction to IDS
	1.2 Your business environment
	1.2.1 Transaction processing
	1.2.2 Enabling business decisions

	1.3 IDS capabilities
	1.4 Chapter abstracts
	1.5 Summary

	Chapter 2. Optimizing IDS for your environment
	2.1 Informix Dynamic Server solutions
	2.1.1 Available server solutions
	2.1.2 IDS features and tools

	2.2 Server deployment
	2.2.1 Business environment
	2.2.2 Features for customizing the environment
	2.2.3 Installation Wizard footprint
	2.2.4 Silent installation
	2.2.5 Silent configuration
	2.2.6 Remote instances administration tool

	2.3 Mixed and changing environments
	2.3.1 Example business environment
	2.3.2 OLTP and DSS (data warehousing)
	2.3.3 Configuring for DSS
	2.3.4 Configuring for OLTP
	2.3.5 Dynamically changing environments

	2.4 Installing the Open Admin Tool
	2.4.1 Preparing for the installation
	2.4.2 Downloading the software
	2.4.3 Installing the Open Admin Tool
	2.4.4 Configuring the installation

	Chapter 3. Enterprise data availability
	3.1 Enterprise data availability solutions in IDS
	3.1.1 High Availability Data Replication
	3.1.2 Remote Standalone Secondary
	3.1.3 Shared Disk Secondary
	3.1.4 Continuous Log Restore
	3.1.5 Enterprise Replication

	3.2 Clustering EDA solutions
	3.2.1 HA clusters
	3.2.2 ER with HA clusters

	3.3 Selecting the proper technology for your business
	3.3.1 EDA technologies
	3.3.2 Summary of capabilities and failover options
	3.3.3 Recommended solutions

	3.4 Sample scenarios
	3.4.1 Failover and disaster recovery
	3.4.2 Workload balancing with SDS and ER
	3.4.3 Data availability and distribution using ER
	3.4.4 Rolling upgrades for ER applications
	3.4.5 Application redirection using server groups

	3.5 Monitoring cluster activity
	3.5.1 Checking the message log file and console
	3.5.2 Event alarms
	3.5.3 The onstat utility
	3.5.4 The sysmaster database
	3.5.5 The Open Admin Tool

	Chapter 4. Robust administration
	4.1 Disk management
	4.1.1 Raw chunks versus cooked chunks
	4.1.2 Managing dbspaces
	4.1.3 Table types
	4.1.4 Data partitioning

	4.2 Predictable fast recovery
	4.2.1 Benefits of RTO_SERVER_RESTART over CKPTINTVL
	4.2.2 RTO: Dependent onconfig parameters
	4.2.3 When not to use RTO_SERVER_RESTART

	4.3 Automatic tuning
	4.3.1 AUTO_CKPTS
	4.3.2 AUTO_LRU_TUNING
	4.3.3 AUTO_AIOVPS

	4.4 Database connection security
	4.4.1 OS password authentication
	4.4.2 Pluggable Authentication Module
	4.4.3 Lightweight Directory Access Protocol
	4.4.4 Password encryption
	4.4.5 Stored procedures (sysdbopen and sysdbclose)
	4.4.6 Administrator-only mode

	4.5 Controlling data access
	4.5.1 Creating permissions
	4.5.2 Security for external routines
	4.5.3 Role-based access control
	4.5.4 Label-based access control
	4.5.5 Auditing
	4.5.6 Data encryption

	4.6 Backup and restore
	4.6.1 Levels of backup
	4.6.2 Ontape backup and restore
	4.6.3 ON-Bar backup and restore
	4.6.4 External backup and restore
	4.6.5 Table level restore
	4.6.6 Backup filters
	4.6.7 Restartable restore

	4.7 Optimistic concurrency

	Chapter 5. The administration free zone
	5.1 IDS administration
	5.2 SQL-based administration
	5.2.1 The sysadmin database
	5.2.2 SQL Administration APIs
	5.2.3 Examples of task() and admin() usage
	5.2.4 Remote administration

	5.3 Scheduling and monitoring tasks
	5.3.1 Tasks
	5.3.2 Sensors
	5.3.3 Startup tasks
	5.3.4 Startup sensors

	5.4 Monitoring and analyzing SQL statements
	5.4.1 Enabling and disabling tracing
	5.4.2 Global and user modes of tracing
	5.4.3 Examples of enabling and disabling tracing
	5.4.4 Displaying and analyzing trace information

	5.5 The Open Admin Tool for administration
	5.6 The Database Admin System
	5.6.1 Creating an idle timeout threshold
	5.6.2 Developing a stored procedure to terminate idle users
	5.6.3 Scheduling a procedure to run at regular intervals
	5.6.4 Viewing the task in the Open Admin Tool

	Chapter 6. An extensible architecture for robust solutions
	6.1 DataBlades: Components by any other name
	6.1.1 Object-relational extensibility

	6.2 Data types that match the problem domain
	6.2.1 Coordinates
	6.2.2 Date types
	6.2.3 Fractions

	6.3 Denormalization for performance and modeling
	6.3.1 Line shapes
	6.3.2 Time series
	6.3.3 Arrays

	6.4 Business logic where you need it
	6.4.1 Integration: Doing multiple customizations
	6.4.2 Consistency: Deploying once, supporting all applications
	6.4.3 Resiliency: Responding to changing requirements
	6.4.4 Efficiency: Bringing the logic to the data

	6.5 Dealing with non-traditional data
	6.5.1 Virtual Table Interface and Virtual Index Interface
	6.5.2 Real-time data
	6.5.3 Emerging standards
	6.5.4 A word of caution

	Chapter 7. Easing into extensibility
	7.1 Manipulating dates
	7.1.1 The date functions
	7.1.2 Functional indexes
	7.1.3 Creating new date functions
	7.1.4 The quarter() function

	7.2 DataBlade API demystified
	7.3 Java UDRs made easy
	7.4 Development and deployment
	7.4.1 Building a C UDR
	7.4.2 Installation and registration

	7.5 DataBlades and Bladelets
	7.5.1 DataBlades included with IDS
	7.5.2 Other available DataBlades
	7.5.3 Available Bladelets

	7.6 Summary

	Chapter 8. Extensibility in action
	8.1 Pumping up your data with iterators
	8.1.1 Writing a C-based iterator function
	8.1.2 Generating data with iterators
	8.1.3 Improving performance with iterator functions
	8.1.4 A challenge

	8.2 Summarizing your data with user-defined aggregates
	8.2.1 Extensions of built-in aggregates
	8.2.2 User-defined aggregates

	8.3 Integrating your data with SOA
	8.3.1 SOA foundation technologies in IDS 11
	8.3.2 Service providing with IDS 11
	8.3.3 Service consumption with IDS 11

	8.4 Publishing location data with a Web Feature Service
	8.4.1 How organizations use spatial data
	8.4.2 Maps and globes: The Spatial and Geodetic DataBlades
	8.4.3 Basics of WFS
	8.4.4 Installing and setting up WFS
	8.4.5 Using WFS
	8.4.6 WFS and spatiotemporal queries

	8.5 Searching your database differently with Soundex
	8.5.1 Creating the TSndx data type
	8.5.2 Indexing the TSndx data type
	8.5.3 Extending the base functionality

	8.6 Summary

	Chapter 9. Taking advantage of database events
	9.1 Database servers and application architectures
	9.2 Database events
	9.3 Why use events
	9.4 How to use events
	9.4.1 IDS trigger capabilities
	9.4.2 Trigger introspection
	9.4.3 Creating a callback function
	9.4.4 Registering a callback function
	9.4.5 Memory duration
	9.4.6 Named memory
	9.4.7 Callback processing

	9.5 Implementation options
	9.5.1 Option A
	9.5.2 Option B

	9.6 Communicating with the outside world
	9.6.1 Sending information to a file
	9.6.2 Misbehaved functions
	9.6.3 Calling a user-defined function
	9.6.4 Sending a signal
	9.6.5 Opening a network connection
	9.6.6 Integrating message queues
	9.6.7 Other possibilities

	9.7 Conclusion

	Chapter 10. The world is relational
	10.1 Virtual Table and Virtual Index Interfaces
	10.1.1 The UDAM framework
	10.1.2 Qualifiers
	10.1.3 Flow of DML and DDL with virtual tables and indices
	10.1.4 UDAM tips and tricks

	10.2 Relational mashups
	10.2.1 Web services
	10.2.2 Amazon Web service
	10.2.3 Test driving Amazon VTI
	10.2.4 Amazon VTI architecture

	10.3 WebSphere MQ virtual tables
	10.3.1 WebSphere MQ
	10.3.2 How Informix and other database applications use WebSphere MQ
	10.3.3 IDS support for WebSphere MQ
	10.3.4 Programming for WebSphere MQ
	10.3.5 MQ table mapping functions
	10.3.6 Transactions

	10.4 Relational access to flat files
	10.4.1 The ffvti architecture
	10.4.2 Testing ffvti

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	The Amazon VTI example
	The Fraction DataBlade example
	TSndx datatype and overloads

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

