

Draft Document for Review January 9, 2011 1:25 pm SG24-7915-00

ibm.com/redbooks

Front cover

Extremely pureXML
in DB2 10 for z/OS

Paolo Bruni
Neale Armstrong

Ravi Kumar
Kirsten Ann Larsen

Tink Tysor
Hao Zhang

Develop Java and COBOL applications
accessing SQL and XML data

Administer your XML and SQL data

Choose the best options for
installation and use

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Extremely pureXML in DB2 10 for z/OS

January 2011

Draft Document for Review January 9, 2011 1:25 pm 7915edno.fm

SG24-7915-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

7915edno.fm Draft Document for Review January 9, 2011 1:25 pm

First Edition (January 2011)

This edition applies to Version 10.1 of IBM DB2 for z/OS (program number 5605-DB2).

This document created or updated on January 9, 2011.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Note: This book is based on a pre-GA version of a program and may not apply when the program becomes
generally available. We recommend that you consult the program documentation or follow-on versions of
this IBM Redbooks publication for more current information.

Draft Document for Review January 9, 2011 1:25 pm 7915TOC.fm
Contents

Figures . ix

Tables . xi

Examples . xiii

Notices . xvii
Trademarks . xviii

Preface . xix
The team who wrote this book . xix
Now you can become a published author, too! .xx
Comments welcome. xxi
Stay connected to IBM Redbooks . xxi

Chapter 1. Introduction. 1
1.1 Importance of XML data . 2

1.1.1 Growth of XML . 2
1.1.2 The value of XML data . 3

1.2 XML introduction . 4
1.2.1 XML definitions . 4
1.2.2 Document validity and well-formedness . 5
1.2.3 XML Schema . 9
1.2.4 Extensible Stylesheet Language. 11
1.2.5 XPath . 13
1.2.6 XQuery . 15
1.2.7 XHTML . 15
1.2.8 XSL, XSLT, Xpath, and XHTML examples . 17

1.3 What is in this book . 19

Chapter 2. XML and DB2 for z/OS . 21
2.1 XML capabilities provided by DB2 . 22

2.1.1 Native XML data type . 23
2.1.2 SQL/XML language. 24
2.1.3 Hybrid data access . 31
2.1.4 XML update. 32
2.1.5 XML indexes . 34
2.1.6 XML schema repository and schema validation . 36

2.2 Supporting infrastructure. 38
2.2.1 XSR installation steps . 38
2.2.2 XSR installation validation . 39
2.2.3 XSR setup troubleshooting . 40
2.2.4 z/OS XML system services . 42

2.3 Choice of tools . 43
2.3.1 3270 based tools. 43
2.3.2 GUI based tools . 43

Chapter 3. Application scenario . 45
3.1 Requirement for XML event logging and auditing . 46
3.2 Application scenario . 46
© Copyright IBM Corp. 2011. All rights reserved. iii

7915TOC.fm Draft Document for Review January 9, 2011 1:25 pm
3.2.1 Using ISO 20022 with DB2 pureXML . 47
3.3 Application code samples . 48

3.3.1 DB2 SQL/XML programming pureXML. 49
3.3.2 Using Java with DB2 pureXML . 50
3.3.3 Using COBOL with DB2 pureXML . 50

Chapter 4. Creating and adding XML data . 51
4.1 Creation of tables with XML columns . 52
4.2 Storage structure for XML data . 52
4.3 Multi-versioning concurrency control for XML . 58

4.3.1 Example of improved concurrency with XML versions . 58
4.3.2 Example of improved storage usage with XML versions 59
4.3.3 Storage structure for XML data with versions . 60

4.4 Catalog queries to gather information . 63
4.5 Display database command . 66
4.6 Ingesting XML data . 67
4.7 XML indexes . 70

Chapter 5. Validating XML data . 73
5.1 XML schema validation . 74
5.2 XML type modifier . 74
5.3 Automatic validation . 78
5.4 User-controlled validation . 82
5.5 Determining whether an XML document has been validated . 84

Chapter 6. DB2 SQL/XML programming . 87
6.1 Native SQL stored procedures and XML . 88

6.1.1 Native SQL stored procedure example . 89
6.1.2 XML error handling in native SQL procedures . 91
6.1.3 Stored procedures development tools . 93

6.2 Receiving XML messages from MQ . 93
6.2.1 WebSphere MQ functions. 94
6.2.2 DB2 stored procedure reading from MQ. 95
6.2.3 DB2 MQ Listener automation . 97

6.3 Audit queries (against logged XML messages). 99
6.3.1 Simple SQL/XML search examples . 99
6.3.2 Choosing XML indexes . 104
6.3.3 Verifying XML index usage . 106

6.4 SQL/XML query techniques . 106
6.4.1 Manipulating XML data with XPath functions . 107
6.4.2 Filtering the rows returned with XMLEXISTS . 108
6.4.3 Creating documents with publishing functions . 109
6.4.4 Aggregating documents with XMLAGG . 110
6.4.5 Enumerating all occurrences using XMLTABLE . 111
6.4.6 Grouping data with XMLTABLE . 112

6.5 User defined functions with XML. 112
6.5.1 UDFs for reading from XML documents . 112
6.5.2 UDFs for writing updates to XML documents . 115

6.6 Triggers with XML . 115
6.7 XML joins . 116

6.7.1 XML to relational join . 116
6.7.2 XML to XML join . 117

6.8 XML with change data capture tools . 118
6.8.1 Change data capture tools background . 119
iv Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915TOC.fm
6.8.2 Using DB2 pureXML to receive CDC messages. 120
6.8.3 XML history objects. 125

Chapter 7. Using XML with Java . 129
7.1 XML in Java . 130

7.1.1 XML support in JDBC 3.0 . 131
7.1.2 XML support in JDBC 4.0 . 132
7.1.3 Constructing XML document in Java . 133
7.1.4 Binary XML format in Java applications . 135

7.2 The BankStmt application in Java. 137
7.2.1 Setting up the environment . 137
7.2.2 Insertion of rows with XML column values . 139
7.2.3 Updates of XML columns . 141
7.2.4 Retrieving XML data . 144
7.2.5 Call stored procedure to shred XML . 145
7.2.6 XSLT to transform XML document . 147
7.2.7 Java interface to MQ. 151

Chapter 8. Using XML with COBOL . 155
8.1 XML representation in COBOL . 156

8.1.1 XML host variables in COBOL . 156
8.1.2 Using non-XML variables for XML data . 159
8.1.3 Using file reference variables for efficient insert and retrieval. 160

8.2 The BankStmt application in COBOL . 161
8.2.1 Setting up the environment . 162
8.2.2 Inserting XML documents . 164
8.2.3 Updating XML documents. 167
8.2.4 Querying XML documents . 171
8.2.5 Designing indexes. 172
8.2.6 Schema evolution . 173

8.3 COBOL functions for manipulating XML . 176
8.3.1 Generation of XML documents in COBOL . 176
8.3.2 Shredding XML documents in COBOL . 178
8.3.3 Validation of XML documents in COBOL . 179

Chapter 9. Utilities with XML . 181
9.1 CHECK DATA . 182
9.2 CHECK INDEX . 186
9.3 COPY . 188
9.4 COPYTOCOPY. 191
9.5 EXEC SQL . 192
9.6 LISTDEF . 193
9.7 LOAD . 195
9.8 MERGECOPY. 202
9.9 QUIESCE . 203
9.10 REBUILD INDEX. 205
9.11 RECOVER INDEX and RECOVER TABLESPACE . 206
9.12 REORG INDEX and REORG TABLESPACE . 211
9.13 REPAIR. 215
9.14 REPORT . 215
9.15 RUNSTATS. 219
9.16 UNLOAD . 220
9.17 DSNTIAUL . 225
9.18 DSN1COPY . 228
 Contents v

7915TOC.fm Draft Document for Review January 9, 2011 1:25 pm
Chapter 10. XML-related tasks for the DBA . 229
10.1 Tasks regarding system setup . 230

10.1.1 Setting up the XSR . 230
10.1.2 Buffer pool for XML . 231
10.1.3 Sizing XMLVALA and XMLVALS . 231
10.1.4 Be up to date with maintenance . 231

10.2 Tasks regarding object creation . 231
10.2.1 Creation of table with XML columns . 232
10.2.2 Alteration of implicitly created XML objects. 232
10.2.3 Sizing table spaces . 232
10.2.4 Compression. 234
10.2.5 Registration of schemas . 235
10.2.6 Creation of XML indexes. 236
10.2.7 Grants and authorizations required. 236

10.3 Housekeeping . 237
10.4 Backup and recovery . 237
10.5 Diagnostics . 238

10.5.1 Identification of XML related objects . 238
10.5.2 Investigating XML specific errors . 238
10.5.3 Correcting XML data . 240

Chapter 11. Performance considerations . 243
11.1 Choice of relational or XML storage . 244

11.1.1 XML only storage . 244
11.1.2 Hybrid storage. 245
11.1.3 Natural fit for XML storage . 246

11.2 XML Schema validation . 248
11.3 Managing access path selection with XML . 249

11.3.1 Differences between XML and relational indexes. 249
11.3.2 XML index design . 250

11.4 Encourage use of native SQL DB2 routines . 256
11.5 External language programming . 257
11.6 DBA considerations. 257
11.7 SQL/XML coding techniques. 260

11.7.1 XMLTABLE to minimize database calls . 260
11.7.2 XMLEXISTS for index access. 261
11.7.3 Simple XPath expressions . 261

Appendix A. Application scenario documents. 263
A.1 Schema. 264
A.2 XML message. 264

Appendix B. Additional material . 273
Locating the Web material . 273
Using the Web material . 273

System requirements for downloading the Web material . 273
Downloading and extracting the Web material . 274

Glossary . 279

Related publications . 293
IBM Redbooks . 293
Other publications . 293
Online resources . 293
vi Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915TOC.fm
How to get Redbooks. 294
Help from IBM . 294

Index . 295
 Contents vii

7915TOC.fm Draft Document for Review January 9, 2011 1:25 pm
viii Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915LOF.fm
Figures

1-1 XML: The foundation for Web services. 3
1-2 DOM tree . 12
1-3 DOM tree after XSL transformation . 13
1-4 Hello world . 19
2-1 SQL/XML query with XMLEXISTS predicate . 27
2-2 XMLTABLE function example . 29
2-3 z/OS XML system services and zAAP processing flow . 42
2-4 Splitting an XPath expression over multiple lines in 3270 SPUFI session 43
3-1 Application scenario . 47
3-2 Four application code samples . 49
4-1 XML objects for segmented base table space . 53
4-2 XML objects for partition-by-growth base table space . 53
4-3 XML objects for classic partitioned base table space . 55
4-4 XML objects for range-partitioned base table space. 55
4-5 XML basic storage scheme. 57
4-6 XML multi-versioning scheme. 60
4-7 Multi-versioning for XML data . 61
4-8 XML Locking scheme with multi-versioning . 62
4-9 -DISPLAY DATABASE command output . 67
5-1 XML schemas . 76
5-2 XML Schemas in XML Schema Repository . 79
5-3 Schema determination . 79
6-1 SQL Query - SELECT * FROM BK_TO_CSTMR_STMT . 100
6-2 Optim Development Studio XML document viewer - Design view 101
6-3 Optim Development Studio XML document viewer - Source view 102
6-4 Tabular result set of bank statement entries . 103
6-5 Relational result set spanning data elements from multiple XML documents. 104
6-6 Typical “Ntry” node within a Bk_To_Cstmr_Stmt document . 105
6-7 SQL Results using UDFs on XML documents . 114
6-8 Scenario to receive XML CDC messages into DB2 pureXML via MQ 121
6-9 Initial CUST_HISTORY table contents for ‘CUST1’ . 122
6-10 Updated CUST_HISTORY table contents for ‘CUST1’. 125
6-11 DB2 PureXML as historical repository . 127
7-1 Exchange data as textual or binary XML format . 136
7-2 Bank To Customer Statement example . 142
7-3 HTML output after XSLT . 150
7-4 Put a message into a Queue . 151
8-1 Data conversion in a three-layer structure using CLOBs or BLOBs 159
8-2 BankToCustomerStatement message as shown in a browser 162
8-3 Subset of the BankToCustomerStatement schema . 163
8-4 Message recipient of a BankToCustomerStatement . 167
8-5 Schema definition for the GrpHdr element . 170
8-6 MsgRcpt element with namespace declaration . 170
8-7 Schema definition of GrpHdr element . 174
8-8 Revised schema definition for GrpHdr with multiple MsgRcpt elements. 174
8-9 MsgRcpt element created with XML GENERATE . 177
8-10 MsgRcpt element created with XML GENERATE WITH ATTRIBUTES. 178
9-1 CHECK DATA syntax - new keywords . 183
© Copyright IBM Corp. 2011. All rights reserved. ix

7915LOF.fm Draft Document for Review January 9, 2011 1:25 pm
9-2 CHECK DATA - SHRLEVEL REFERENCE considerations . 185
9-3 CHECK DATA - SHRLEVEL CHANGE considerations (1 of 2) 185
9-4 CHECK DATA - SHRLEVEL CHANGE considerations (2 of 2) 186
9-5 Make a partial update to the XML document . 190
9-6 Copy enable the DOCID and NODEID indexes . 204
9-7 Status of database DSN00242 . 207
9-8 Content of the XML document . 208
9-9 Status of database DSN00242 (after partial recovery) . 210
9-10 Status of database DSN00242 (after partial recovery and rebuild of indexes) 210
9-11 Content of the XML document after partial recovery . 211
11-1 XML-only database design . 244
11-2 Hybrid storage model . 245
11-3 Physical access path using an XML Index.. 250
11-4 Catalog query to sysibm.sysindexes. 252
x Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915LOT.fm
Tables

1-1 XPath . 14
2-1 IBM tools for DB2 administration and development with DB2 pureXML. 44
4-1 Data in table T1. 58
6-1 MQ scalar functions provided by DB2 10.. 94
6-2 IBM change data capture tools that publish XML messages. 119
7-1 XML data type support in JCC3 and JCC4 . 130
7-2 JDBC 3.0 Getter methods of ResultSet . 131
7-3 DB2Xml Getter Methods . 131
7-4 Methods to retrieve XML data from SQLXML object . 133
7-5 Method to set XML value to SQLXML object . 133
8-1 Insert an XML document with different host variable types . 158
8-2 Options for file reference variables . 160
9-1 CHECK DATA invocation . 184
9-2 Action to be taken based on CHECK INDEX output . 188
9-3 Example LISTDEF statements . 193
10-1 Properties can be altered for XML objects . 232
10-2 Table space types for base and XML tables. 233
10-3 DSSIZE of the XML table space . 233
10-4 Restricted states related to XML. 239
10-5 Corrective action after running CHECK INDEX . 240
© Copyright IBM Corp. 2011. All rights reserved. xi

7915LOT.fm Draft Document for Review January 9, 2011 1:25 pm
xii Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915LOE.fm
Examples

1-1 An XML document . 5
1-2 DTD. 6
1-3 XML document . 6
1-4 Introducing need for namespaces. 7
1-5 The need for namespaces . 8
1-6 Namespaces . 8
1-7 Namespaces without prefixes . 9
1-8 A book description . 10
1-9 XML Schema . 10
1-10 XPath . 14
1-11 Sample XQuery. 15
1-12 Strict DTD . 16
1-13 Transitional DTD . 16
1-14 Frameset DTD . 16
1-15 Simple tags . 17
1-16 hello.xm. 18
1-17 hellohtm.xsl . 18
1-18 Output from XSLT processor . 18
2-1 Defining and populating an XML column . 24
2-2 XML Publishing Functions of SQL/XML . 25
2-3 Example table with XML column. 25
2-4 Simple XMLEXISTS example . 26
2-5 XMLEXISTS example with namespace declaration . 28
2-6 Simple XMLTABLE example. 28
2-7 Simple XMLQUERY example . 30
2-8 XMLCAST example casting a numeric data element to varchar or integer 30
2-9 XMLPARSE function and whitespace handling . 31
2-10 XMLSERIALISZE example to convert an XML document to a UTF-8 CLOB 31
2-11 Hybrid data access example. 32
2-12 Initial contents of XMLADDRESS table . 33
2-13 XMLMODIFY to replace a node . 33
2-14 XMLMODIFY to delete a node . 33
2-15 XMLMODIFY to insert a node. 34
2-16 XML Index creation examples. 35
2-17 Simple XML schema example . 36
2-18 XML document that conforms to previous XML schema. 37
2-19 XML schema registration . 37
2-20 SYSXSR.DSN_XMLVALIDATE example . 37
2-21 XML type modifier example . 37
2-22 DSNTIJRV installation verification job output . 39
2-23 z/OS console display WLM APPLENV status . 40
2-24 Check XSR tables exist . 40
2-25 Check XSR routines exist . 40
2-26 Creation of Java stored procedures . 41
4-1 BK_TO_CSTMR_STMT table with XML column. 52
4-2 Catalog Queries (1 of 3) . 63
4-3 Catalog Queries (2 of 3) . 65
4-4 Catalog Queries (3 of 3) . 66
© Copyright IBM Corp. 2011. All rights reserved. xiii

7915LOE.fm Draft Document for Review January 9, 2011 1:25 pm
4-5 Using the SQL INSERT statement to insert XML document to an XML column. 67
4-6 XML index on DtTm elements. 70
5-1 Specify an XML type modifier for an XML column at create time 76
5-2 Table definition without XML type modifier . 76
5-3 Specify XML type modifier for XML column at alter time . 76
5-4 Add an XML schema to the XML type modifier. 77
5-5 Reset XML type modifier for XML column at alter time. 77
5-6 Identify an XML schema by target namespace and schema location 77
5-7 Identify an XML schema by target namespace. 78
5-8 No namespace . 78
5-9 Specifying global element name . 78
5-10 Schema selection for validation from an XML type modifier - Example 1 80
5-11 Schema selection for validation from an XML type modifier - Example 2 81
5-12 Schema selection for validation from an XML type modifier - Example 3 81
5-13 Schema selection for validation from an XML type modifier - Example 4 81
5-14 Schema selection for validation for DSN_XMLVALIDATE - Example 1 82
5-15 Schema selection for validation for DSN_XMLVALIDATE - Example 2 83
5-16 Schema selection for validation for DSN_XMLVALIDATE - Example 3 83
5-17 Schema selection for validation for DSN_XMLVALIDATE - Example 4 83
5-18 Search for documents not validated . 84
5-19 Retrieve target namespaces and XML schema names used for validation 85
6-1 Tables used for following examples. 88
6-2 Registering the ISO20022 Bnk_To_Cst_Stmt XML schema. 89
6-3 Simple stored procedure for registering the ISO20022 Bnk_To_Cst_Stmt XML schema.

89
6-4 Stored procedure with error handling logic . 91
6-5 Populating the MQSERVICE-TABLE . 94
6-6 Sample MQREAD and MQSEND function calls . 95
6-7 Stored procedure to read XML message from MQ . 96
6-8 Command to configure MQ listener . 97
6-9 Command to show MQ listener configuration . 97
6-10 Contents of SYSMQL.LISTENERS. 98
6-11 Stored procedure modified for MQ listener integration . 98
6-12 Commands to operate MQ listener . 99
6-13 SQL/XML Query to yield a “traditional” style bank statement 102
6-14 SQL/XML query spanning multiple XML documents . 103
6-15 Candidate XML index definitions . 106
6-16 Calculating the sum of the entries in a BankToCustomerStatement. 107
6-17 Using time and date functions in an XPath expression. 108
6-18 Avoiding empty sequences in result by using XMLEXISTS 109
6-19 Combining XMLQUERY with publishing functions . 109
6-20 Using XMLAGG to consolidate all entries into one document 110
6-21 Extracting one entry per row using XMLTABLE . 111
6-22 Grouping entries obtained from XMLTABLE according to currency 112
6-23 Creating three user defined functions . 113
6-24 Usage of UDFs . 113
6-25 Modified stored procedure using UDFs instead of XQuery expressions. 114
6-26 UDF for XML sub-document update . 115
6-27 Contents of relational address table . 116
6-28 XML to Relational Join example using XMLEXISTS. 116
6-29 XML to relational join example using XMLTABLE . 117
6-30 Script to convert the relational address table to XML . 117
6-31 XML to XML join using XMLEXISTS. 118
xiv Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915LOE.fm
6-32 Sample XML CDC message format for DB2 and Classic Data Event Publishers. . . 119
6-33 Sample XML CDC message format for InfoSphere CDC . 120
6-34 Stored Procedure to receive and apply CDC message . 122
6-35 XMLTABLE function for Event Publisher XML schemas. 125
7-1 Creating a GroupHeader of the BankToCustomerStatement message 133
7-2 Constructing XML as a DOM tree . 134
7-3 Setting the xmlFormat . 136
7-4 Register XML schema in Java application . 138
7-5 DDL for table BK_TO_CSTMR_STMT . 139
7-6 Parsing XML value and inserting into DB2 . 139
7-7 Modifying an XML document . 142
7-8 Retrieving the entire or partial XML document . 144
7-9 DDL for STMT table . 145
7-10 Creating a SQLstored procedure . 145
7-11 Handling the SQL stored procedure . 147
7-12 Expecting output after transform. 148
7-13 XSLT example to transform from XML to XML . 148
7-14 Java application to transform XML document . 149
7-15 XSLT example to transform from XML to HTML. 149
7-16 Java example to put a message into a queue . 152
8-1 XML host variables in COBOL . 156
8-2 XML host variables after transformation by the DB2 pre-compiler 156
8-3 XML declaration with encoding declaration as an attribute. 157
8-4 Explicit declaration of variable CCSID . 157
8-5 XML file reference filterable in COBOL. 160
8-6 XML file reference variables after transformation by the DB2 pre-compiler 160
8-7 Initialization of a file reference variable. 161
8-8 CLP commands for registration of XML schema. 164
8-9 DDL for the table in the BankStmt application . 164
8-10 Insert a BankToCustomerStatement. 164
8-11 Extracting key fields using XMLTABLE. 165
8-12 JCL for running COBOL insert program . 165
8-13 Validation error on insert . 166
8-14 Determining whether an XML document has been validated 166
8-15 COBOL program for updating a BkToCstmrStmt with a new MsgRcpt. 168
8-16 SQL error when updating XML document with MsgRcpt element 169
8-17 Retrieval of an XML document to a file . 171
8-18 Retrieval of data in relational format from an XML document 172
8-19 Candidate index pattern for the BankStmt application . 173
8-20 XML index on DtTm elements. 173
8-21 Access path using the index IXMLNTRY . 173
8-22 Adding a new schema to an XML type modifier . 175
8-23 Insert a MsgRcpt element after the CreDtTm element . 175
8-24 COBOL program for generation of the MsgRcpt element . 176
8-25 COBOL program for shredding a MsgRcpt element into variables 178
8-26 Converting a schema to OSR format . 179
8-27 XMLPARSE with schema validation . 179
8-28 DD statement for supplying a schema to the COBOL program 180
9-1 CHECK DATA example . 184
9-2 CHECK INDEX utility JCL and output . 186
9-3 COPY utility JCL for taking full image copy and output . 188
9-4 COPY utility JCL for taking incremental image copy and output. 190
9-5 COPYTOCOPY utility JCL and output . 191
 Examples xv

7915LOE.fm Draft Document for Review January 9, 2011 1:25 pm
9-6 JCL for LISTDEF utility and output (1 of 3) . 193
9-7 JCL for LISTDEF utility and output (2 of 3) . 194
9-8 JCL for LISTDEF utility and output (3 of 3) . 195
9-9 LOAD utility JCL and output . 196
9-10 LOAD utility JCL (using file reference variable) and output 198
9-11 LOAD utility JCL and output (input to load is in binary format) 199
9-12 LOAD utility JCL and output (input to load is in spanned record format) 201
9-13 MERGECOPY utility JCL and output . 202
9-14 QUIESCE utility JCL and output (1 of 2) . 203
9-15 QUIESCE utility JCL and output (2 of 2) . 204
9-16 REBUILD INDEX utility JCL and output . 205
9-17 RECOVER TABLESPACE utility JCL and output . 208
9-18 RECOVER TABLESPACE utility JCL (with modified control statement) and output 208
9-19 REORG TABLESPACE utility JCL and output . 213
9-20 REPORT utility JCL (with TABLESPACESET option) and output 215
9-21 REPORT utility JCL (with RECOVERY option for base table space) and output . . . 216
9-22 REPORT utility JCL (with TRECOVERY option for XML table space) and output . . 217
9-23 RUNSTATS utility JCL and output . 219
9-24 UNLOAD utility JCL and output . 221
9-25 UNLOAD utility JCL (using file reference variable) and output 222
9-26 UNLOAD utility JCL (to unload XML data in binary) and output 223
9-27 UNLOAD utility JCL (to unload XML data in spanned record format) and output . . . 224
9-28 DSNTIAUL with SQL parameter . 225
9-29 DSNTIAUL with LOBFILE parameter . 227
10-1 Creating a range-partitioned table . 233
10-2 Creating an XML index with compression. 235
10-3 Create an XML index . 236
10-4 Display database command shows XML table space in AUXW 238
10-5 REPAIR LOCATE control statements for diagnosing XML inconsistencies 240
10-6 Using REPAIR utility to clear ACHKP status on table space 241
11-1 A lean XML index . 251
11-2 A heavy XML index . 251
11-3 A “silly” XML index . 251
11-4 Explain for XMLEXISTS . 253
11-5 Explain for XMLTABLE with XMLEXISTS. 254
11-6 Explain for XMLTABLE with an XML predicate. 255
11-7 Explain for XMLQUERY with XMLEXISTS . 255
11-8 sysibm.syscolumns contents for auxiliary XML table space 257
11-9 REORG of a table space with an XML table space . 259
11-10 Multiple XMLQUERY calls replaced with a single XMLTABLE call. 260
11-11 single select statement combining two xmlquery expressions 260
A-1 XML message received . 264
A-2 XML message parts processed . 269
xvi Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. xvii

7915spec.fm Draft Document for Review January 9, 2011 1:25 pm
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
DataPower®
DB2 Connect™
DB2®
Domino®
DRDA®
ESCON®
FICON®
IBM®

IMS™
Informix®
InfoSphere™
iSeries®
MVS™
Optim™
OS/390®
OS/400®
PR/SM™
pureXML®

RACF®
Rational®
Redbooks®
Redpaper™
Redbooks (logo) ®
S/390®
System z®
VisualAge®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xviii Extremely pureXML in DB2 10 for z/OS

http://www.ibm.com/legal/copytrade.shtml

Draft Document for Review January 9, 2011 1:25 pm 7915pref.fm
Preface

The DB2® pureXML® feature offers sophisticated capabilities to store, process and manage
XML data in its native hierarchical format. By integrating XML data intact into a relational
database structure, users can take full advantage of DB2’s relational data management
features.

In this IBM® Redbooks® publication we document the steps for the implementation of a
simple but meaningful XML application scenario. We have chosen to provide samples in
COBOL and Java™ language. The purpose being to provide an easy path to follow to
integrate the XML data type for the traditional DB2 user.

We also add considerations for the data administrator and suggest best practices for ease of
use and better performance.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Paolo Bruni is a DB2 Information Management Project Leader at the International Technical
Support Organization based in the Silicon Valley Lab. He has authored several IBM
Redbooks publications about DB2 for z/OS® and related tools and has conducted workshops
and seminars worldwide. During Paolo's many years with IBM, in development and in the
field, his work has been mostly related to database systems.

Neale Armstrong is a Consultant IT Specialist in IBM United Kingdom, responsible for
technical support for System z® Information Management products. He has 24 years of
experience in DB2 solutions on z/OS and distributed platforms. He holds a degree in Physics
from the University of Bristol. His areas of expertise include database federation, replication
and event publishing, for DB2, IMS™ and VSAM data sources, which could more generally be
referred to a “database plumbing”. He has co-authored three previous IBM Redbooks
publications.

Ravi Kumar is a Senior Instructor and Specialist for DB2 with IBM Software Group, Australia.
He has about 25 years of experience in DB2. He was on assignment at the International
Technical Support Organization, San Jose Center, as a Data Management Specialist from
1994 to 1997. He has co-authored many IBM Redbooks publications including DB2 UDB for
z/OS Version 8 Everything You Ever Wanted to Know, ... and More, SG24-6079, DB2 9 for
z/OS Technical Overview, SG24-7330, and DB2 10 for z/OS Technical Overview, SG24-7892.
He is currently on virtual assignment as a Course Developer in the Education Planning and
Development team, Information Management, IBM Software Group, USA.

Kirsten Ann Larsen is a senior IT specialist and technical lead with IT Delivery in IBM
Nordics. She has 14 years of experience with DB2 for z/OS and has co-authored the IBM
Redbooks publication Securing DB2 and Implementing MLS on z/OS, SG24-6480. She holds
a master's degree in Computer Science from Aarhus University. She has worked with XML
since pureXML support was included with the release of DB2 9 in 2007 and has co-authored
a number of articles on XML.
© Copyright IBM Corp. 2011. All rights reserved. xix

7915pref.fm Draft Document for Review January 9, 2011 1:25 pm
Tink Tysor is president of Bayard Lee Tysor, Inc. in the United States of America. He has 40
years of experience in programming, the last 14 years specializing in DB2. He holds a degree
in Economics from American University. His areas of expertise include SQL, DB2 Database
Administrating, and Data Modeling. He has written and presented extensively on SQL for DB2
including the IBM Redbooks publication DB2 for z/OS Tools for Database Administration and
Change Management, SG24-6480-00.

Hao Zhang is a software engineer in IBM China Software Development Lab. He has over 6
years of experience in DB2 QA field. He participated in testing several DB2 pureXML features
in DB2 9 and DB2 10 for z/OS, and presented DB2 9 pureXML support in CDUG (Chinese
DB2 Users' Group) in 2009. His areas of expertise include distributed area in JCC driver,
temporal table and XML.

Thanks to the following people for their contributions to this project:

Rich Conway
Bob Haimowitz
Emma Jacobs
International Technical Support Organization

Li Chen
Mengchu Cai
Jason Cu
Thanh Dao
Eric Katayama
Andrew Lai
Susan Malaika
Gary Mazo
Roger Miller
Jinfeng Ni
Matthias Nicola
Bryan Patterson
Tom Ross
Guogen Zhang
IBM Silicon Valley Lab

Heidi Arnold
IBM Boeblingen

Michael Schwartzbach
Aarhus University

Rick Butler
BMO Toronto

Lee Ackerman
IBM Ottawa

Nagesh Subrahmanyam
IBM India

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
xx Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915pref.fm
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

7915pref.fm Draft Document for Review January 9, 2011 1:25 pm
xxii Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
Chapter 1. Introduction

This chapter provides an introduction to XML technology, its importance in the IT business,
and the contents of the book.

This chapter contains the following:

� Importance of XML data

� XML introduction

� What is in this book

1

© Copyright IBM Corp. 2011. All rights reserved. 1

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
1.1 Importance of XML data

XML technology has become pervasive in virtually all industries and sectors, owing to its
versatility and neutrality for exchanging data among diverse devices, applications, and
systems from different vendors. These qualities of XML along with its easy to understand
self-describing nature, ability to handle structured, semi-structured and unstructured data,
and support for Unicode have made XML a universal standard for data interchange.

1.1.1 Growth of XML

Nearly every company today comes across XML in some form. The amount of XML data that
organizations have to deal with is growing at a rapid rate. In fact, the volume of XML data is
growing faster than the traditional data that typically resides in relational databases. Factors
fueling the growth of XML data include:

� XML-based industry and data standards
� Service-oriented architectures (SOA) and Web services
� Web 2.0 technologies such as XML feeds and syndication services

XML-based industry standards
Almost every industry has multiple standards based on XML and there are numerous
cross-industry XML standards as well. A few examples of XML-based industry standards are
listed here:

� ACORD - XML for the Insurance Industry:
http://www.acord.org/

� FPML - Financial Product:
http://www.fpml.org/

� HL7 - Health Care:
http://www.hl7.org/

� IFX - Interactive Financial Exchange:
http://www.ifxforum.org/

� IXRetail - Standard for Retail operation:
http://www.nrf-arts.org/

� XBRL - Business Reporting / Accounting:
http://www.xbrl.org/

� NewsML - News / Publication:
http://www.newsml.org/

These standards facilitate purposes such as the exchange of information between the various
players within these industries and their value chain members, data definitions for ongoing
operations, and document specifications. More and more companies are adopting such XML
standards or are being compelled to adopt them in order to stay competitive, improve
efficiencies, communicate with their trading partners or suppliers, or just to perform everyday
tasks.

SOA and Web services
Service-oriented frameworks and deployments are growing in popularity, owing to their ability
to integrate systems, permit reuse of resources, and respond quickly to changing market
2 Extremely pureXML in DB2 10 for z/OS

http://www.acord.org/
http://www.fpml.org/
http://www.hl7.org/
http://www.ifxforum.org/
http://www.nrf-arts.org/
http://www.nrf-arts.org/
http://www.xbrl.org/
http://www.newsml.org/

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
conditions, allowing companies to save money and improve competitiveness. In
service-oriented architectures, consumers and service providers exchange information using
messages. These messages are invariably encapsulated as XML. As such, XML can provide
the plumbing in SOA environments as illustrated in Figure 1-1. Therefore the drive towards
information as a service and rapid adoption of SOA environments is also stimulating the
growth of XML.

Figure 1-1 XML: The foundation for Web services

Web 2.0 technologies
Syndication is considered to be the heartbeat of Web 2.0, the next generation of the Internet.
Atom and RSS feeds can be found abundantly on the Web, allowing the user to subscribe to
them and be kept up-to-date about all kinds of Web content changes, such as news stories,
articles, wikis, audio and video files.

Content for these feeds is rendered as XML files and can contain links, summaries, full
articles, and even attached multimedia files such as podcasts. Syndication and Web feeds
are transforming the Web as we know it. New business models are emerging around these
technologies. As a consequence, XML data now exists not only in companies adopting XML
industry standards, or enterprises implementing SOAs, but also on virtually every
Web-connected desktop.

1.1.2 The value of XML data

As a result of XML industry standards becoming more prevalent, the drive towards SOA
environments, and rapid adoption of syndication technologies, more and more XML data is
being generated every day as Web feeds, purchase orders, transaction records, messages in
SOA environments, financial trades, insurance applications, and other industry-specific and
cross-industry data. That is, XML data and documents are becoming an important business
asset containing valuable information (such as customer details, transaction data, order
records, and operational documents).

The growth and pervasiveness of XML assets presents challenges and opportunities for
companies. When XML data is harnessed, and the value of the information it contains is
unlocked, it can translate into opportunities for organizations to streamline operations, derive
insight, and become agile.

On the other hand, as XML data becomes more critical to the operations of an enterprise, it
presents challenges in that XML data must be secured, maintained, searched, and shared.
Depending on its use, XML data might also have to be updated, audited, and integrated with
traditional data. All of these tasks must be done with the reliability, availability, and scalability
afforded to traditional data assets.

Service
Requestor

Service
Provider

XML
Chapter 1. Introduction 3

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
That is, in order to unleash the potential of XML data, it requires storage and management
services similar to what enterprise-class relational database management systems such as
DB2 have been providing for relational data.

1.2 XML introduction

This brief introduction to XML is extracted from XML on z/OS and OS/390: Introduction to a
Service-Oriented Architecture, SG24-6826.

The idea of universal data formats is not new. Programmers have been trying to find ways to
exchange information between different computer programs for a long time. Standard
Generalized Markup Language (SGML) was developed to achieve this. SGML can be used to
mark up data, that is, to add metadata in a way that allows data to be self-describing. SGML
is meta-language.

The markup process involves using tags to identify pieces of information in a document. Tags
are names (strings of characters) surrounded by arrow brackets (< and >). Every piece of
data that is encoded will have a start tag and an end tag, for example, <town> patiya</town>.
The start and end tags make it easy for software to process the encoded information, as it
clearly delineates where certain pieces of information start and where they end.

SGML does not prescribe any particular markup; instead, it defines how any markup
language can be formally specified.

The most popular SGML application is HTML (Hypertext Markup Language), the markup
language that rules the Web. The HTML specification is owned by W3C. However, different
browser vendors introduced a number of incompatible tags to HTML, which are outside the
scope of the original HTML specifications. These tags create problems for developers when
they author Web pages because they must consider what browser will display the pages.
And, although HTML has been very successful for displaying information on browsers, it was
not found to be useful in describing the data that it represents, meaning it did not have the
metadata capability that is essential for a self-describing data document.

Furthermore, SGML is quite inefficient and cumbersome when it is used to encode complex
data structure. Hence, there arose a need to develop a more lightweight markup language, so
W3C developed the specification for XML (eXtensible Markup Language). XML is similar to
SGML in that it preserves the notion of general markup. There are very few optional features,
and most SGML features that were deemed difficult to implement have been dropped.

In this section we look at the following topics:

� XML definitions
� Document validity and well-formedness
� XML Schema
� Extensible Stylesheet Language
� XPath
� XQuery
� XHTML
� XSL, XSLT, Xpath, and XHTML examples

1.2.1 XML definitions

XML is a system-independent standard for the representation of data. XML is not just some
new version of HTML; it is different from HTML. Like HTML, XML has tags, and in these tags
4 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
it encloses data. Where an HTML tag says something like “display this data in bold font”
(...), an XML tag acts like a field name in your program. It puts a label on a piece of
data that identifies it (for example: <message>...</message>). This is the first of a number of
differences between the languages.

In XML you can create the tags you want, with only a small number of restrictions, and these
tags are used by a program (parser) to process the data enclosed between them.

Example 1-1 shows a simple XML document.

Example 1-1 An XML document

<?xml version=”1.0”?>
<!DOCTYPE JavaXML:EmployeeList SYSTEM “DTD\JavaXML.dtd”>
<JavaXML:employeeList xmlns:JavaXML=”http://www.ibm.com”>

<JavaXML:Employee action=”add”>
<JavaXML:firstName>David</JavaXML:firstName>
<JavaXML:secondName>Sanchez Carmona</JavaXML:secondName>
<JavaXML:age>20</JavaXML:age>

</JavaXML:Employee>
<JavaXML:Employee action=”delete”>

<JavaXML:firstName>Jose Luis</JavaXML:firstName>
<JavaXML:secondName>Fernandez Lastra</JavaXML:secondName>

</JavaXML:Employee>
</JavaXML:employeeList>

Clients with their Web browser could fill out a form, entering the names of the employees they
want to add or delete. The data could then be sent to a Web application that could process
the XML document and extract the data, generating the necessary updates, for example, on a
DB2 table.

As this example illustrates, the rules are very few: each tag must have an enclosing tag, and
not much more. The tags are invented tags, which means that they are free-form.

Text is system-independent, and since XML is very flexible and is based only on text, it is
used as the main way to transport data between different environments.

Often, XML documents are automatically generated by tools, and in many situations we need
these XML documents to follow rules we create. We use other documents, containing XML
data definitions in which we specify our restrictions, to accomplish this.

Document Type Definition (DTD) is a set of markup declarations that define a document type
for SGML-family markup languages (SGML, XML, HTML). DTD is described in “Document
Type Definition” on page 7.

XML Schema1 is another rules language that aims to provide more complex semantic rules. It
also introduces new semantic capabilities, such as support for namespaces and
type-checking within an XML document. XML Schema is described in 1.2.3, “XML Schema”
on page 9.

1.2.2 Document validity and well-formedness
XML documents can be well-formed, or they can be well-formed and valid. These are two
very important rules that do not exist for HTML documents. These iron-clad rules contrast

1 The W3C-recommended schema language for XML is XML Schema, see http://www.w3.org/XML/Schema.
Chapter 1. Introduction 5

http://www.w3.org/XML/Schema

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
with the more free-style nature of a lot of the concepts in XML. The rules can be defined
briefly as follows:

� A well-formed document satisfies a list of syntax rules provided in the specification for
XML documents.

� A valid document contains a reference to a Document Type Definition (DTD) or XML
Schema Definition (XSD), and its elements and attributes follow the grammatical rules that
the DTD or XSD specifies.

Schema languages typically constrain the set of elements that may be used in a document,
which attributes may be applied to them, the order in which they may appear, and the
allowable parent/child relationships

XSD schema, often referred to as (XML Schema, is a newer schema language, successor to
DTD language. XSD documents are far more powerful than DTD’s in describing XML
languages. They use a rich datatyping system and allow for more detailed constraints on an
XML document's logical structure. XSDs also use an XML-based format, which makes it
possible to use ordinary XML tools to help process them. This has become the more popular
approach to working with XSD.

With few exceptions, every DTD can be converted to an equivalent XML Schema.

Difference between well-formedness and validity
All of the constraints are defined in the XML 1.0 recommendation. For more information refer
to the Web site:

http://www.w3.org/XML

Determining whether a particular document is in compliance with these rules is a two step
process. Well-formedness insures that XML parsers is able to read the document, validity
(which implies well-formedness) determines whether an XML document adheres to a DTD or
XML Schema. An XML application checks for and rejects documents that are not well-formed
before checking whether they comply with validity constraints (VCs).

A document might be well-formed but still not be valid. The following examples illustrate the
difference between well-formedness and validity:

� Documents that adhere to rules described in the associated DTD or XSD are valid.

� Documents that carry out the syntactical rules for XML documents are well-formed. These
rules have to do with attribute names, which should be unique within an element, and
attribute values, which must not contain the character <, and so on.

Example 1-2 shows a DTD.

Example 1-2 DTD

<!ELEMENT BANCO (TARJETA+)>
<!ELEMENT TARJETA (Nom, Cod_Cuenta)>
<!ELEMENT Nom (#PCDATA)>
<!ELEMENT Cod_Cuenta ((#PCDATA)>

Example 1-3 shows a sample XML document.

Example 1-3 XML document

<BANCO>
<TARJETA>

<NOM>Silvia</NOM>
6 Extremely pureXML in DB2 10 for z/OS

http://www.w3.org/XML

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
<Cod_Cuenta>2562789452</Cod_Cuenta>
</TARJETA>

</BANCO>

The document shown in Example 1-3 is well-formed, but it is not valid according to the
sample DTD shown in Example 1-2 because the <NOM> tag is not defined in the associated
DTD (tags are case sensitive).

Document Type Definition
A Document Type Definition, or DTD, specifies the kinds of tags that can be included in your
XML document, the valid arrangements of those tags, and the structure of the XML
document. The DTD defines the type of elements, attributes, and entities allowed in the
documents, and may also specify some limitations to their arrangement. You can use the DTD
to make sure you don't create an invalid XML structure since the DTD defines how elements
relate to one another within the document’s tree structure. You can also use it to define which
attributes can be used to define an element and which ones are not allowed.

The DTD can be either stored in a separate file or embedded within the same XML file. If it is
stored in a separate file it may be shared with other documents.

An XML document is not required to have a DTD. DTDs provide parsers with clear
instructions on what to check for when they are determining the validity of an XML document.
DTDs or other mechanisms, like XML schemas, contribute to the goal of ensuring that the
application can easily determine whether the XML document adheres to a given set of rules,
beyond the well-formedness rules defined in the XML standard.

DTDs do have limitations, for example:

� A DTD makes it possible to validate the structure of relatively simple XML documents, but
that's as far as it goes. A DTD can't restrict the content of elements, and it cannot specify
complex relationships.

� In a DTD, you only get to specify the structure of the <heading> element one time. There
is no context-sensitivity.

� A DTD specification is not hierarchical. For a mailing address that contains several
“parsed character data” (PCDATA) elements, for instance, the DTD might look something
like that shown in Example 1-4. As you can see, the specifications are linear. That fact
forces you to come up with new names for similar elements in different settings.

Example 1-4 Introducing need for namespaces

<!ELEMENT mailAddress (name, address, zipcode)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>

� Another problem with the non-hierarchical nature of DTD specifications is that it is not
clear what comments are meant to explain.

� Finally, a DTD uses syntax which is substantially different from XML, so it cannot be
processed with a standard XML parser. That means you cannot read a DTD into a DOM2,
for example, modify it, and then write it back out again.

2 XML Document Object Models (DOM) is a programming interface for HTML and XML documents which defines the
way a document can be accessed and manipulated.
Chapter 1. Introduction 7

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
Namespaces
Before talking about XML Schema, we must first clarify the concept of Namespaces.
Namespaces are used when there is a need to have different elements with different
attributes but with the same name. Depending on the context, a tag is related to an element or
to another one. Example 1-5 illustrates this situation.

Example 1-5 The need for namespaces

<widget type="gadget">
<head size="medium"/>

<info>
<head>
 <title>Description of gadget</title>
</head>
<body>
 <h1>Gadget</h1>
</body>

</info>
</widget>

It is obvious that there is a problem with the meaning of <head>. It depends on the context.
This situation complicates things for processors and might even cause ambiguities. We need
some mechanism to distinguish between the two, and apply the correct semantic description
to the correct tag. The root of the problem is one common name space.

There is a simple solution to this problem: namespaces. Namespaces are a simple and
straightforward way to distinguish names used in XML documents. If you can specify the
related DTD when an element is being validated, the problem is solved.

As you can see in Example 1-6, the <title> tag is used twice, but in a different context: once
within the <author> element and once within the <book> element. Note the use of the xmlns
keyword in the namespace declaration, one for authr, one for bk. Interestingly, the XML
recommendation does not specify whether a namespace declaration should point to a valid
Uniform Resource Identifier (URI), only that it should be unique and persistent.

Example 1-6 Namespaces

<?xml version="1.0" ?>
<library-entry xmlns:authr="http://sc58ts.itso.ibm.com/Jose/2002/author.dtd"
xmlns:bk="books.dtd">
 <bk:book>
 <bk:title>XML Sample</bk:title>
 <bk:pages>210</bk:pages>
 <bk:isbn>1-868640-34-2</bk:isbn>
 <authr:author>
 <authr:firstname>JuanJose</authr:firstname>
 <authr:lastname>Hernandez</authr:lastname>
 <authr:title>Mr</authr:title>
 </authr:author>
 </bk:book>
</library-entry>

In Example 1-6, in order to illustrate the relationship of each element to a given namespace,
we specify the relevant namespace prefix before each element. Prefixes are bound to
namespace URIs by attaching the xmlns:prefix attribute to the prefixed element or one of its
ancestors. Bindings have scope within the element where they are declared.
8 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
Once a prefix is applied to an element name, it applies to all descendants of that element
unless it is overridden by another prefix. The extent to which a namespace prefix applies to
elements in a document is defined as the namespace scope.

Example 1-7 is equivalent to Example 1-6, but only the necessary namespace prefixes have
been used.

Example 1-7 Namespaces without prefixes

<?xml version="1.0" ?>
<library-entry xmlns:authr="http://sc58ts.itso.ibm.com/Jose/2002/author.dtd"
xmlns:bk="books.dtd">
 <bk:book>
 <title>XML Sample</title>
 <pages>210</pages>
 <isbn>1-868640-34-2</isbn>
 <authr:author>
 <firstname>JuanJose</firstname>
 <lastname>Hernandez</lastname>
 <title>Mr</title>
 </authr:author>
 </bk:book>
</library-entry>

Information on namespaces can be found at the following Web site:

http://www.w3.org/TR/REC-xml-names

1.2.3 XML Schema

The W3C XML Schema Definition (XSD) language is an XML language for describing and
constraining the content of XML documents. A Schema is similar to a DTD in that it defines
which elements an XML document can contain, how they are organized, and which attributes
and attribute types elements can be assigned. Therefore it is a method to check the validity of
well-formed XML documents. For more information, see http://www.w3.org/XML/Schema.

DTD and XML Schema
In “Document Type Definition” on page 7 we introduced DTD and identified some of its
limitations. In addition to those limitations, we can add the following:

� There are no constraints on character data. If character data is allowed, any character
data is allowed.

� The attribute value models are too simple.
� There is no support for namespaces.
� There is no support for schema evolution, extension, or inheritance of declarations.
� It is difficult to write, maintain, and read large DTDs, and to define families of related

schemas.
� It is only possible to set defaults for attributes, not for elements.

Therefore, there is a need for a way to specify more complex semantic rules and provide all
those things that DTDs cannot do, like type-checking within an XML document. XML Schema
provides such functionality; it also introduces semantic capabilities, such as support for
namespaces and type-checking.

The main advantages of XML Schemas over DTDs are:

� Schemas use XML syntax.
Chapter 1. Introduction 9

http://www.w3.org/XML/Schema
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
� It is possible to specify data types.
� Schemas are extensible.

XML Schema example
It is difficult to give a general outline of the elements of a schema due to the number of
elements that can be used according to the W3C XML Schema Definition Language. The
purpose of this language is to provide an inventory of XML markup constructs with which to
write schemas. Example 1-8 is a simple document which describes the information about a
book.

Example 1-8 A book description

<?xml version="1.0" encoding="UTF-8"?>
<book isbn="0836217462">

<title>
Don Quijote de la Mancha
</title>
<author>De Cervantes Saavedra, Miguel</author>
<character>

<name>Sancho Panza</name>
<friend-of>El Quijote</friend-of>
<since>1547-10-04</since>
<qualification> escudero </qualification>

</character>
<character>

<name>ElbaBeuno</name>
<since>1547-08-22</since>
<qualification>Amor Platonico de Don Quijote</qualification>

</character>
</book>

Since the XML Schema is a language, there are several choices to build a possible schema
that covers the XML document. Example 1-9 is a possible and very simple design.

Example 1-9 XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="character" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="friend-of" type="xs:string" minOccurs="0"

 maxOccurs="unbounded"/>
 <xs:element name="since" type="xs:date"/>
 <xs:element name="qualification" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="isbn" type="xs:string"/>
10 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
 </xs:complexType>
 </xs:element>
</xs:schema>

It is clear that Example 1-9 is an XML document since it begins with the XML document
declaration. The schema element opens our schema holding the definition of the target
namespace. Then we define an element named book. This is the root element in the XML
document. We decided it is a complex type since it has attributes and non-text children. With
sequence we begin to declare the children elements of the root element book. W3C XML
Schema lets us define the type of data, as well as the number of possible occurrences of an
element. For more information on possible values for these types, refer to the specification
documents from W3C.

XML Schema options
XML Schema Language offers possibilities and alternatives beyond what is shown in
Example 1-9. We could develop another schema based on a flat catalog of all the elements
available in the instance document and, for each of them, lists of child elements and
attributes. Thus we would have two choices: defining elements and attributes as they are
needed, or creating them first and referencing them. The first option has a real disadvantage:
the schema could become very difficult to read and maintain when documents are complex.

W3C XML Schema allows us to define data types and use these types to define our attributes
and elements. It also allows the definition of groups of elements and attributes. In addition,
there are several ways to arrange relationships between elements.

Documentation for XML Schemas can be defined by the xs:documentation element, and
processing instructions for applications can be include with the xs:appinfo element.

As of August 2009, XSD 1.1 is a Candidate Recommendation with significant new features as
defined at:

http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/

1.2.4 Extensible Stylesheet Language

Up to this point we have been concerned with XML—its syntax, how XML is used to mark up
information according to our own vocabularies, how a program can check the validity of an
XML document, and so forth. In other words, we have described how XML can ensure that an
application running on any particular platform receives valid data. This is how we ensure that
a program is able to process this data.

However, since XML only describes document syntax, the program does not know how to
format this data without specific instructions about style.

The solution is XSL transformations. The Extensible Stylesheet Language (XSL) specification
describes powerful tools to accomplish the required transformation of XML data. XSL consists
of:

� The XSL Transformations (XSLT) language for transformation

� Formatting Objects (FO), a vocabulary for describing the layout of documents

� XSLT uses the XML Path Language (XPath), a separate specification that describes a
means of addressing XML documents and defining simple queries.
Chapter 1. Introduction 11

http://www.w3.org/TR/xmlschema11-2/

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
XSLT offers a powerful means of transforming XML documents into other forms, producing
XML, HTML, and other formats. It is capable of sorting, selecting, numbering, and has many
other features for transforming XML. It operates by reading a style sheet, which consists of
one or more templates, then matching the templates as it visits the nodes of the XML
document. The templates can be based on names and patterns.

XSLT is increasingly being used to transform XML data into another form, sometimes different
XML (for example, filtering out certain data, SQL statements, plain text, and so on), or any
other format. Thus, any XML document may be shown in different formats, such as HTML,
PDF, RTF, VRML, Postscript, and so forth.

The question is how to access and display the information contained in an XML file. After all,
data is useless unless you can use it. This is where XSLT comes into the picture.

A comparison can be made between the relationship of CSS3 and HTML and the relationship
of XSLT and XML. Indeed, XSLT is usually referred to as the stylesheet language of XML;
however XML and XSLT are far more sophisticated technologies than HTML and CSS.

XSLT is a high-level declarative language. It is also a transforming and formatting language. It
behaves in the following way:

� The pertinent data is extracted from an XML source document and transformed into a new
data structure that reflects the desired output. The XSLT markup is commonly called a
stylesheet. A parser is used to convert the XML document into a tree structure composed
of various types of nodes. The transformation is accomplished with XSLT by using pattern
matching and templates. Patterns are matched against the source tree structure, and
templates are used to create a result tree.

� Next, the new data structure is formatted, for example in HTML or as text, and finally the
data is ready for display.

Figure 1-2 shows the source tree from the XML document shown in Example 1-10.

Figure 1-2 DOM tree

The result tree after an XSL transformation could be an XHTML document, as shown in
Figure 1-3.

3 Cascading Style Sheets (CSS) is a simple mechanism for adding style (e.g., fonts, colors, spacing) to Web
documents. See http://www.w3.org/Style/CSS/

library

book book book book

title title title title

copies copies copies copies
12 Extremely pureXML in DB2 10 for z/OS

http://www.w3.org/Style/CSS/

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
Figure 1-3 DOM tree after XSL transformation

Based on how we instruct the XSLT processor to access the source of the data being
transformed, the processor will incrementally build the result by adding the filled-in templates.
We write our stylesheets, or “transformation specifications,” primarily with declarative
constructs, though we can employ procedural techniques if and when needed. We assert the
desired behavior of the XSLT processor based on conditions found in our source.

Note that XSLT only manipulates the source tree and that the original XML document is left
unchanged.

The most important aspect of XSLT is that it allows you to perform extremely complex
manipulations on the selected tree nodes by affecting both content and appearance. Indeed,
the final output may bear absolutely no resemblance to the source document. This ability to
manipulate the nodes is where XSLT far surpasses CSS.

The World Wide Web Consortium (W3C) has set the recommended standards for XSLT
Version 1.0. The W3C proposed recommendation for XSL is available at the following URL:

http://www.w3.org/TR/xslt

1.2.5 XPath

XPath is a string syntax for building addresses to the information found in an XML document.
We use this language to specify the locations of document structures or data found in an XML
document when processing that information using XSLT. XPath allows us from any location to
address any other location or content. In other words, XPath is a tool used in XSLT to select
certain information to be formatted.

XPath 2.0 is the current version of the language. A number of implementations exist but are
not as widely used as XPath 1.0. The XPath 2.0 language specification changes some of the
fundamental concepts of the language such as the type system.

For details, see http://www.w3.org/TR/xpath20/

XPath expressions are usually built out of patterns, which describe a branch of an XML tree.
A pattern therefore is used to reference one or more hierarchical nodes in a document tree.

book

title

copies

XHTML

HEAD BODY

title P
Chapter 1. Introduction 13

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
Some XPath patterns are shown in Table 1-1. These are just a few examples to give you an
idea what kind of things can be selected.

Table 1-1 XPath

XPath models an XML document as a tree of nodes, as follows:

� A root node
� Element nodes
� Attribute nodes
� Text nodes
� Namespace nodes
� Processing instruction nodes
� Comment nodes

The basic syntactic construct in XPath is the expression (see Example 1-10). An object is
obtained by evaluating an expression, which has one of the following four basic types:

� Node-set (an unordered collection of nodes without duplicates)
� Boolean
� Number
� String

Example 1-10 XPath

<?xml version="1.0"?>
<!DOCTYPE library system "library.dtd">
<library>

<book ID="B1.1">
<title>xml</title>
<copies>5</copies>

</book>
<book ID="B2.1">

<title>WebSphere</title>
<copies>10</copies>

</book>
<book ID="B3.2">

<title>great novel</title>
<copies>10</copies>

</book>
<book ID="B5.5">

<title>good story</title>

Symbol Meaning

/ Root pattern. It refers to immediate child.

// Separator of steps. It refers any descendant in the the
node. By default of axisa, in the next step it refers to a
child.

a. An axis defines a node-set relative to the current node.

. Context item. It refers to current node.

* Wildcard pattern. It refers to all elements in the actual
node.

@ It refers to an attribute by preceding an attribute name.

@* Refer to all attributes in the actual node.
14 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
<copies>10</copies>
</book>

</library>

Considering Example 1-10, we could make paths like:

� /book/copies

Selects all copies element children of book elements.

� /book//title

Selects all title elements in the tree, although title elements are not immediate
children.

� /book/@ID

Selects all ID attributes for book elements.

But as we mentioned previously, it is also possible to select elements based on other criteria,
such as:

� /library/*/book[title eq "good story"]

Selects all book elements beyond library element, but only if the title element matches
with good story.

1.2.6 XQuery

XQuery is a functional language that extends XPath. Its basic building blocks are expressions
constructed from keywords, operators (symbols), and operands (that are usually other
expressions). Expressions can be nested with full generality. An XQuery query is composed
of a prologue and a body. The query prologue is optional and consists of declarations that
define the execution environment of the query. The query body consists of an expression that
provides the result of the query. The input and the output of the query are values (instances)
of the XQuery 1.0 and XPath 2.0 Data Model (XDM)4.

In Figure 1-11 we show a typical XQuery query. It begins with the XQUERY keyword followed
with a prologue (optional) and a body. The prologue in our example contains default
namespace declaration (the second line). The rest of the query is its body. It consists of one
or more XQuery expressions.

Example 1-11 Sample XQuery

declare default element namespace "http://sample.name.space.com";
for $cust in db2-fn:xmlcolumn('XPS.DOC')
return
$cust/Name/LastName;

1.2.7 XHTML

The history of XHTML is very simple: it is derived directly from HTML version 4.01 and is
designed to be used with XML. Indeed, XHTML is part of a whole new suite of “X”
technologies, with acronyms such as XML, XPATH, XSL, and XSLT, that are destined to have
a profound effect on the Internet.

4 The term XDM instance is used, like the term value, to denote an unconstrained sequence of nodes or atomic
values in the data model.
Chapter 1. Introduction 15

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
People often think XML is an extension of HTML, but XHTML is the real extension of HTML.

There are a few fundamental differences between HTML and XHTML that significantly affect
how you code with XHTML. While HTML is a loose and forgiving language, XHTML demands
firm adherence to the rules of grammar.

Fortunately, the syntax and coding rules are very straightforward, easy to implement, and
they make sense. The real purpose of these rules is to allow a seamless integration of
XHTML with XML and other related X technologies. The rules are summarized as follows:

� All attributes, events, and tags must be written in lower case.
� All elements must be closed.
� The value assigned to an attribute must be enclosed in quotes.
� No attribute may be minimized.
� All elements must be properly nested.
� XHTML documents must be well-formed.
� There must be a DOCTYPE declaration.

Notice that this last rule implies that there must be a DTD to validate the XHTML document.
HTML has become an XML document.

XHTML document types
XHTML 1.0 specifies three XML document types that correspond to three DTDs: Strict,
Transitional, and Frameset. The most common is XHTML transitional. The DOCTYPE
declaration at the beginning of the XHTML document specifies which type is being used.

� XHTML 1.0 Strict

Use this when you want really clean markup, free of presentational clutter. Use this
together with Cascading Style Sheets. Example 1-12 shows a strict DTD.

Example 1-12 Strict DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

� XHTML 1.0 Transitional

Use this when you need to take advantage of HTML's presentational features and when
you want to support browsers that don't understand Cascading Style Sheets.
Example 1-13 shows a transitional DTD.

Example 1-13 Transitional DTD

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

� XHTML 1.0 Frameset

Use this when you want to use HTML Frames to partition the browser window into two or
more frames. Example 1-14 shows a frameset DTD.

Example 1-14 Frameset DTD

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
16 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
XLink
XML Linking Language (XLink) is a powerful and compact specification for the use of links in
XML documents.

Every developer is familiar with the linking capabilities of the Web today. However, as the use
of XML grows, we quickly realize that simple tags like the following ones in Example 1-15 are
not going to be enough in a near future.

Example 1-15 Simple tags

Freud</a information about X > are not going to be
enough for many of our needs.

XLink allows elements to be inserted into XML documents to create and describe links
between resources. It uses XML syntax to create structures that can describe links similar to
the simple unidirectional hyperlinks of today's HTML, as well as more sophisticated links.

XLink provides a framework for creating both basic unidirectional links and more complex
linking structures. It allows XML documents to:

� Assert linking relationships among more than two resources
� Associate metadata with a link
� Express links that reside in a location separate from the linked resources

Even though XLink has not been implemented in any of the major commercial browsers yet,
its impact will be crucial for the XML applications of the near future. Its extensible and
easy-to-learn design should prove an advantage as the new generation of XML applications
develop.

For more information about Xlink, refer to the specification document from W3C:

http://www.w3.org/TR/xlink/

XPointer
XML Pointer Language (XPointer) specifies a language that builds upon the XPath, to support
addressing into the internal structures of XML documents. In particular, it provides for specific
references to elements, character strings, selections, and other parts of XML
documents—whether or not they bear an explicit ID attribute—using traversals of a
document's structure and choice of parts based on their properties, such as element types,
attribute values, character content, and relative position, containment, and order. Xpointer
defines the meaning of the “selector” or “fragment identifier” portion of URIs that locate
resources of MIME media types text/xml and application/xml.

In XPointer, one defines the addressing expression to link XML documents using XPath. For
more information about XPointer, refer to the specification documents from W3C:

http://www.w3.org/TR/xptr/

1.2.8 XSL, XSLT, Xpath, and XHTML examples

Let's first look at some example stylesheets using two implementations of XSLT 1.0 and
XPath 1.0

Consider the XML file shown in Example 1-16. It is a very simple file we are going to use as
the source of information for our XSLT transformation.
Chapter 1. Introduction 17

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xptr/
http://www.w3.org/TR/xptr/
http://www.w3.org/TR/xptr/

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
Example 1-16 hello.xm

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="hello.xsl"?>
<greeting>Hello world.</greeting>

Note that the stylesheet association processing instruction in line 2 refers to a stylesheet with
the name hello.xsl of type XSL. Recall that an XSLT processor is not obliged to respect the
stylesheet association preference, so let us first use a standalone XSLT processor with the
stylesheet hellohtm.xsl, shown in Example 1-17.

Example 1-17 hellohtm.xsl

<?xml version="1.0"?><!--hellohtm.xsl-->
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xsl:version="1.0">
<head><title>Greeting</title></head>
<body><p>Words of greeting:

<i><u><xsl:value-of select="greeting"/></u></i>
</p></body>
</html>

This file looks like a simple XHTML file: an XML file using the HTML vocabulary. Indeed, it is
just that, but we are allowed to inject into the instance XSLT instructions using the prefix for
the XSLT vocabulary declared in line 3. We can use any XML file as an XSLT stylesheet
provided it declares the XSLT vocabulary within and indicates the version of XSLT being
used. Any prefix can be used for XSLT instructions, though convention often sees XSL: as the
prefix value.

The xsl:value-of instruction uses an XPath expression in the select= attribute to calculate a
string value from our source information. XPath views the source hierarchy using parent/child
relationships. The XSLT processor's initial focus is the root of the document, which is
considered the parent of the document element. Our XPath expression value "greeting"
selects the child named "greeting" from the current focus, thus returning the value of the
document element named "greeting" from the instance.

We invoke the XSLT processor to point to which is the XML source file, which is the XSL
stylesheet, and where to leave the result. Example 1-18 shows the result file.

Example 1-18 Output from XSLT processor

<html>
<head>
<title>Greeting</title>
</head>
<body>
<p>Words of greeting:

<i><u>Hello world.</u></i>
</p>
</body>
</html>

This is an HTML file, any browser could interpret it as shown in Example 1-4.
18 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch01.fm
Figure 1-4 Hello world

1.3 What is in this book

In this book we provide information in four areas related to the use of pureXML in a DB2 for
z/OS environment:

� Level set information on XML

We describe XML basics in 1.1, “Importance of XML data” on page 2 and 1.2, “XML
introduction” on page 4 of this chapter.

Chapter 2, “XML and DB2 for z/OS” on page 21 starts describing the pureXML support in
DB2 for z/OS.

� Introducing XML in a DB2 for z/OS environment

Chapter 3, “Application scenario” on page 45 describes the scenario which we will use
across the various implementation steps.

Chapter 4, “Creating and adding XML data” on page 51 explains how to define XML
objects in a DB2 for z/OS environment.

Chapter 5, “Validating XML data” on page 73 introduces the need for validating documents
and the techniques to do so.

Chapter 6, “DB2 SQL/XML programming” on page 87 gives the basis on SQL/XML
programming.

� Application development

We document the steps for the implementation of a simple but meaningful XML application
scenario. We have chosen to provide samples in COBOL and Java language. The
purpose being to provide an easy path to follow to integrate the XML data type for the
traditional COBOL/DB2 user or the more innovative Java developer.

Chapter 7, “Using XML with Java” on page 129 describes the Java implementation.

Chapter 8, “Using XML with COBOL” on page 155 describes the COBOL implementation.

� Database administration

We also add considerations for the data administrator and suggest best practices for ease
of use and better performance.

Chapter 9, “Utilities with XML” on page 181 revisits most of the DB2 utilities when used for
XML data type.

Chapter 10, “XML-related tasks for the DBA” on page 229 highlights differences in
administering XML data.
Chapter 1. Introduction 19

7915ch01.fm Draft Document for Review January 9, 2011 1:25 pm
Chapter 11, “Performance considerations” on page 243 provides a checklist of the major
performance considerations when deploying an application that uses pureXML.
20 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
Chapter 2. XML and DB2 for z/OS

In this chapter we provide a concise overview of the XML capabilities within DB2. The intent
of this chapter is to introduce the major elements of pureXML, and to explain how DB2’s
support for XML data makes it very easy to store and process XML data in an efficient and
productive way.

We also summarize the XML infrastructure within DB2 that is required to support these XML
capabilities. Most of the XML function is available “out of the box” after a standard DB2 10 for
z/OS installation, but some facilities (such as XML schema validation) require that optional
parts of the installation process are completed. We clarify these optional steps.

If you want a brief introduction to DB2 pureXML without excessive technical detail, you should
read this chapter. This chapter also acts as a level setter for those who want to understand
the technical details of pureXML which is covered in far more detail in the subsequent
chapters of this book.

This chapter contains the following sections:

� XML capabilities provided by DB2
� Supporting infrastructure
� Choice of tools

2

© Copyright IBM Corp. 2011. All rights reserved. 21

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
2.1 XML capabilities provided by DB2

DB2 allows XML documents to be stored, managed and accessed as first class objects within
a DB2 database. XML documents can contain large and flexible data structures. Not only can
these data structures be stored in DB2 (which many relational databases allow to some
extent), but additionally the nodes and elements within an XML document can be accessed
and indexed to the finest level of granularity.

It is the “native” support for XML that makes DB2 pureXML so powerful, because XML
documents and schemas can be used within DB2 with minimal administration work, as we will
show within the application scenario that is used by this book.

Some of the main capabilities provided by DB2 pureXML are:

� A native XML data type.

� SQL/XML language, providing XML functions within the SQL language to access XML
structures with the full power of XPath expressions.

� Hybrid data access, whereby relational and XML structures can be accessed together
using a single SQL/XML statement.

� Read and write access to XML documents and sub-documents.

� XML Indexes (based on XPath expressions), to provide efficient access paths.

� XML schema validation (against an XML schema registered in the Schema Repository)
including support for multiple versions of XML schemas.

Collectively, these capabilities allow you to use DB2 as a repository for both relational and
XML data structures. Starting with version 9, DB2 for z/OS is a hybrid database. You can
store both kinds of structures in a single database, write applications that use both kinds of
structures concurrently, and manage all your data with the same set of Database
Administration utilities.

The XML model of data is significantly different from the relational model of data. Java and
JDBC provide many powerful XML manipulation capabilities.

COBOL and PL/I have also added many XML manipulation capabilities, as described at:

http://www.ibm.com/support/docview.wss?uid=swg27004198&aid=1
http://www.ibm.com/software/awdtools/cobol/zos/

It is the range of XML capabilities provided by DB2, summarized above, that makes it very
easy to incorporate XML data into all DB2 databases and applications, including those written
in languages like COBOL and PL/I.

This section reviews the major XML capabilities of DB2, and explains why each of these
capabilities is important for building DB2 applications that contain XML data.

We examine the following topics:

� Native XML data type
� SQL/XML language
� Hybrid data access
� XML update
� XML indexes
� XML schema repository and schema validation
22 Extremely pureXML in DB2 10 for z/OS

http://www.ibm.com/software/awdtools/cobol/zos/
http://www.ibm.com/support/docview.wss?uid=swg27004198&aid=1

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
2.1.1 Native XML data type

All data types are equal, but some are more equal than others. To think of XML as a data
type, equivalent in scope and importance to an integer for example, is misleading. XML is
implemented as a data type within DB2, but it also encompasses an entire data model that
contains many other data types (including the aforementioned integer).

Given the proliferation of XML within modern systems, it is imperative that a database should
be able to store XML documents efficiently, and support efficient data access to any data
element within the XML documents (alongside all the other qualities of services that a
database must provide).

Some vendors have provided XML-only databases to do this. Other relational database
vendors have provided ways of storing XML documents, and “stripping” out important data
elements into relational structures (like DB2 V7 and V8 did).

The XML data type is part of the ANSI SQL standard. DB2 implements this standard, and
additionally provides constructs such as XML indexes to make it productive and performant.

What DB2 pureXML provides is the combination of native XML data support alongside its
established relational data support, in a fully integrated way. The XML data type (first
introduced in DB2 9) is the most fundamental component of DB2’s support for XML. It is very
different from storing XML as a string data type (as was done in DB2 V7 and V8).

Before the native XML data type existed
When XML was stored as a string (in DB2 V8 and earlier), DB2 had no inherent
understanding of the structure within the XML document. DB2 V7 provided a facility called the
XML Extender, which helped you to parse an XML document which was stored in DB2 as a
string, and optionally strip out XML elements of interest. However, you had to perform this
parsing every single time you wanted to access an XML document. If you wanted to process
the data within the stored XML documents, you had two choices:

� You could either read and parse the entire document in order to access the data elements
within the XML documents. (which could be very expensive, particularly if you were
processing many rows through a cursor operation).

� Or you could perform a lot of up-front database administration and development work to
strip out the data elements that might be used for searching and joining, and store them in
additional DB2 columns with traditional DB2 data types.

The first approach was not practically viable from a performance or cpu-cost point of view.
XML parsing is a CPU-intensive activity which you do not want to incur every single time you
access the XML data.

The second approach is practical, but is very unproductive. This approach requires a
significant development project to be undertaken to prepare the DB2 database before you
can start to develop the application that will use the XML data.

After the native XML data type was introduced
The native XML data type (provided by DB2 9 and further improved by DB2 10) allows XML
documents to be stored within DB2 in a very practical and productive way.

� Performance: The XML document is parsed once only, as it is inserted (or loaded) into
DB2. The internal structure of the XML document is then accessible (without being
re-parsed) by the SQL/XML functions provided by DB2.

� Productivity: No stripping of XML elements into separate DB2 columns is required
(although if you choose to store some XML data elements in DB2 columns for database
Chapter 2. XML and DB2 for z/OS 23

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
design reasons, it is very easy to do this). All the XML elements can be referenced and
indexed where they reside within the XML column.

XML documents are placed inside DB2 by inserting them into a column that has been defined
with the XML data type, as illustrated in Example 2-1.

Example 2-1 Defining and populating an XML column

CREATE TABLE XMLR3.XMLTEST_TAB (
TESTKEY BIGINT,
TESTXMLCOL XML)

IN XMLR3DB.TEST_TS ;

INSERT INTO XMLR3.XMLTEST_TAB (TESTKEY, TESTXMLCOL)
VALUES (1, '<customerinfo><name>Amir Malik</name>

<phone type="work">408-555-1358</phone></customerinfo>') ;

The next sections describe how XML data can be processed once it is inside a a DB2 table,
stored in a column of the XML data type.

2.1.2 SQL/XML language

Now that you can store XML as a native data type within DB2, you need a data access
language to work with it.

Plain old SQL is able to access tables with XML columns, but it does not have the direct
manipulation capabilities to do anything meaningful with the XML structure within the
retrieved XML document. That is why DB2 has implemented SQL/XML extensions to SQL, to
provide a range of functions that allow the contents of XML documents to be processed
directly. These functions can also be encapsulated in DB2 stored procedures and user
defined functions, so that ‘plain old SQL’ can be used against XML data with functions and
procedures that were developed using SQL/XML extensions.

SQL/XML is an extension to the SQL standard as defined by ISO/IEC 9075-14:2003. The
SQL/XML part of DB2 pureXML, being standards-based, is supported by many other
databases. It provides a range of XML related extensions to the SQL language, to allow XML
data to be accessed. The functions provided by SQL/XML can be categorized into three main
groups.

� XML publishing functions, which allow XML documents to be created from the contents of
relational data.

� XML handling functions which allow the user to embed XPath expressions in SQL
statements. XPath expressions are a subset of the XQuery standard.

� XML conversion functions, which support the interchange of data between relational and
XML models of data.

XML publishing functions
SQL/XML provides a range of “XML Publishing Functions” that allow XML documents to be
created from the contents of relational data. Example 2-2 shows a simple example of XML
Publishing Functions that conveys the concepts of what is possible. In this example we create
a normal relational table and populate it. Then we generate an XML document based on the
contents of the relational table.
24 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
Example 2-2 XML Publishing Functions of SQL/XML

Create Table Address (
CUSTNAME VARCHAR(70),
STRTNM VARCHAR(70),
BLDGNB VARCHAR(16),
PSTCD VARCHAR(16),
TWNNM VARCHAR(35)

) ;

Insert into Address
values ('John Smith', 'Bailey Avenue', '555', '95141', 'San Jose') ;

SELECT
XMLELEMENT(

NAME "MsgRcpt",
XMLELEMENT(NAME "Nm", CUSTNAME),
XMLELEMENT(NAME "PstlAdr",

XMLELEMENT(NAME "StrtNm", STRTNM),
XMLELEMENT(NAME "BldgNb", BLDGNB),
XMLELEMENT(NAME "PstCd", PSTCD),
XMLELEMENT(NAME "TwnNm", TWNNM)

)) from Address ;

-- yields result

<MsgRcpt>
<Nm>John Smith</Nm>
<PstlAdr>

<StrtNm>Bailey Avenue</StrtNm>
<BldgNb>555</BldgNb>
<PstCd>95141</PstCd>
<TwnNm>San Jose</TwnNm>

</PstlAdr>
</MsgRcpt>

XML Publishing Functions are very straightforward. They provide a range of string
concatenation steps that can be combined together to form an XML documents. They simplify
what you could already have done with the standard SQL CONCAT function.

XML handling functions
The XML handling functions are what enables SQL statements to access and manipulate the
contents of XML documents stored within XML documents held within DB2. They include
XMLQUERY, XMLTABLE and XMLEXISTS functions. Each of these functions makes use of
XPath expressions, which is a subset of XQuery.

Existing DB2 programmers only need to extend their skills to includ e XPath expressions, in
order to extend the relational programs that they already write, to incorporate XML data as
well. Their capabilities are best explained with some simple examples, based on a simple
table with two columns, illustrated in Example 2-3.

Example 2-3 Example table with XML column

Create Table XMLADDRESS (
XID INT,
Chapter 2. XML and DB2 for z/OS 25

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
XMLADDRESS XML) ;

Insert into XMLADDRESS (XID , XMLADDRESS)
values (1, '<MsgRcpt><Nm>John Smith</Nm><PstlAdr>

<StrtNm>Bailey Avenue</StrtNm><BldgNb>555</BldgNb>
<PstCd>95141</PstCd><TwnNm>San Jose</TwnNm></PstlAdr></MsgRcpt>') ;

Insert into XMLADDRESS (XID , XMLADDRESS)
values (2, '<MsgRcpt><Nm>John Doe</Nm><PstlAdr>

<StrtNm>Antelope Street</StrtNm><BldgNb>32</BldgNb>
<PstCd>87233</PstCd><TwnNm>San Diego</TwnNm></PstlAdr></MsgRcpt>') ;

XMLEXISTS
The XMLEXISTS function is used as a predicate to retrieve DB2 rows based on predicates
that are applied to the data within an XML column, as illustrated in Example 2-4. In this
example, each XML document is examined to see whether a data element <Nm> exists with a
value of “John Doe” at XPath location /MsgRcpt, and returns the rows where the predicate is
satisfied.

Example 2-4 Simple XMLEXISTS example

select c.xid, c.xmladdress
from xmladdress c
where xmlexists('$i/MsgRcpt[Nm = "John Doe"]'

passing c.xmladdress as "i");

--yields result

XID XMLADDRESS
--- ------------
 2 <MsgRcpt><Nm>John Doe</Nm><PstlAdr><StrtNm>Antelope...

Figure 2-1 may help to visualize the query.
26 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
Figure 2-1 SQL/XML query with XMLEXISTS predicate

Let us take a moment to examine the structure of the XMLEXISTS predicate as the first
example in this book of the SQL/XML extensions to the SQL language.

� The XMLEXISTS clause is the same as any other relational predicate, except that the
XMLEXISTS clause contains XML syntax expressions.

� If the Nm field had been a VARCHAR column, the expression would have been

where Nm = "John Doe"

� The XPath expression is applied to the XML column using the passing clause. In this way,
the XML document in each row that is accessed is passed as “i” to the XPath predicate for
evaluation

� The comparison that is made by the XMLEXISTS clause is identical to what would have
been done relationally. The contents of the XML location /MsgRcpt/Nm are compared to
the string value "John Doe".

� If the values match, the predicate is satisfied and the row qualifies

� If the values do not match, the row does not qualify

� If the data types do not match, the row does not qualify

Note that the SQL/XML statement does not know whether the contents at /MsgRcpt/Nm is a
string or a number or any other data type. It determines this at runtime. The data type of the
/MSgRcpt/Nm location may constrained to be a particular type if the document conforms to
an XML schema. XML schemas and validation of XML documents against XML schemas is
covered shortly in 2.1.6, “XML schema repository and schema validation” on page 36.

Also, be aware of namespaces. Normally XML document will have a declared namespace. A
namespace provides the ability to uniquely define a data element or attribute within an XML
document, so that when a tag like <phone> is used more than once in an XML document, the
precise context of that <phone> tag is understood.

……

<MsgRcpt><Nm>Janet Jones</Nm><PstlAdr><StrtNm>Bailey Avenue</StrtNm>…3

<MsgRcpt><Nm>John Doe</Nm><PstlAdr><StrtNm>Antelope Street</StrtNm>…2

<MsgRcpt><Nm>John Smith</Nm><PstlAdr><StrtNm>Bailey Avenue</StrtNm>…1

XMLADDRESSXID

select c.xid, c.xmladdress
from xmladdress c
where xmlexists('$i/MsgRcpt[Nm = "John Doe"]' passing c.xmladdress as "i");

SQL/XML Query

Result

2, '<MsgRcpt><Nm>John Doe</Nm><PstlAdr><StrtNm>Antelope Street</StrtNm>….'
Chapter 2. XML and DB2 for z/OS 27

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
If an XML document has a namespace declaration, then the query must also define the
namespace, in order to ensure that we are referencing the correct XML data. Example 2-5
shows how a namespace would be declared on the XMLEXISTS function, if a namespace
was required.

Example 2-5 XMLEXISTS example with namespace declaration

select c.xid, c.xmladdress
from xmladdress c
where xmlexists('

declare default element namespace “http:\\www.names.com";
$i/MsgRcpt[Nm = "John Doe"]'
passing c.xmladdress as "i");

If we were to code the statement:

select * from table where name = ‘John Doe’

the DBA or developer should be considering whether or not the name column should be
indexed in order to avoid a table space scan.

Exactly the same consideration applies to XML data. If we really wanted to code the
SQL/XML statement in Example 2-4, then we should be considering an XML index to provide
an efficient access path to the <Nm> elements in the XML documents. Otherwise we will end
up executing the XPath expression against every single XML document in the table.

Of course, the DB2 optimizer is able to choose an access path based on a combination of
XML and relational predicates. So relational and XML indexes are both available for access
path selection, and can both be used in the same access plan.

XMLTABLE
The XMLTABLE function is used to retrieve XML elements and attributes from an XML
document and map them to a relational table structure, to be used by programs exactly as if
the data had been retrieved from a wholly relational table, as illustrated in Example 2-6.

Example 2-6 Simple XMLTABLE example

SELECT X.NAME, X.STREET, X.STREETNUM, X.POSTCODE, X.TOWN
FROM XMLADDRESS C,
XMLTable('$cu/MsgRcpt/PstlAdr'

PASSING C.XMLADDRESS as "cu"
COLUMNS

"NAME" CHAR(18) PATH '../Nm',
"STREET" CHAR(18) PATH 'StrtNm',
"STREETNUM" CHAR(16) PATH 'BldgNb',
"POSTCODE" CHAR(16) PATH 'PstCd',
"TOWN" CHAR(18) PATH 'TwnNm'

) AS X

... yields

NAME STREET STREETNUM POSTCODE TOWN
---------- ------------------ ---------------- ---------------- ----------
John Smith Bailey Avenue 555 95141 San Jose
John Doe Antelope Street 32 87233 San Diego
28 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
The XMLTABLE in Example 2-6 shows how individual elements within an XML document can
be mapped to a relational structure, and retrieved alongside other relational columns from the
DB2 table which the XML column belongs to. Figure 2-2 provides a graphical representation
of the XMLTABLE function.

Figure 2-2 XMLTABLE function example

The mapping is based on an XPath expression which is used to navigate to a particular
anchor point in the XML document (/MsgRcpt/PstlAdr) and then using relative XPath
expressions (such as /StrtNm at the next level down, and ../Nm at the next level up from that
anchor point to access XML data elements that are mapped to relational fields (such as
STREET VARCHAR(18)).

Note that the example in Figure 2-2 has mapped data from Nm, StrtNm and TwnNm as
CHAR(18), whereas the original source of the data for all three fields was VARCHAR(70) in
Example 2-2 on page 25. The XMLTABLE function will perform a range of standard data type
casting, and will return an error if the casting is not possible. For example, if you attempted to
cast Nm as an integer, you would get SQL16061N. The value "John Smith" cannot be
constructed as, or cast (using an implicit or explicit cast) to the data type "xs:integer".

More details will be covered later in the book on managing the XML to relational mapping and
handling errors that might arise (for example, when casting an XML element to a specific
relational data type).

XMLQUERY
The XMLQUERY function is used to embed XPath expressions within an SQL/XML
statement. It always produces a column of type XML, and, as a scalar function, it returns a
sequence of items for each document (row). This is illustrated in Example 2-7.

……

<MsgRcpt>

<Nm>John Doe</Nm>

<PstlAdr>

<StrtNm>Antelope Street</StrtNm>

<BldgNb>32</BldgNb>

<PstCd>87233</PstCd>

<TwnNm>San Diego</TwnNm>

</PstlAdr>

</MsgRcpt>

2

<MsgRcpt>

<Nm>John Smith</Nm>

<PstlAdr>

<StrtNm>Bailey Avenue</StrtNm>

<BldgNb>555</BldgNb>

<PstCd>95141</PstCd>

<TwnNm>San Jose</TwnNm>

</PstlAdr>

</MsgRcpt>

1

XMLADDRESSXID

Result

NAME STREET STREETNUM POSTCODE TOWN
---------- --------------- --------- -------- ----------
John Smith Bailey Avenue 555 95141 San Jose
John Doe Antelope Street 32 87233 San Diego

SELECT
X.NAME, X.STREET,
X.STREETNUM, X.POSTCODE, X.TOWN
FROM XMLADDRESS C,
XMLTable('$cu/MsgRcpt/PstlAdr‘
PASSING C.XMLADDRESS as "cu"
COLUMNS
"NAME" CHAR(18) PATH '../Nm',
"STREET" CHAR(18) PATH 'StrtNm',
"STREETNUM" CHAR(16) PATH 'BldgNb',
"POSTCODE" CHAR(16) PATH 'PstCd',
"TOWN" CHAR(18) PATH 'TwnNm‘

) AS X

Query
Chapter 2. XML and DB2 for z/OS 29

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
Example 2-7 Simple XMLQUERY example

select
xmlquery('$i/MsgRcpt/Nm ' passing c.xmladdress as "i")
as Names
from xmladdress c;

-- yields

Names

<Nm>John Smith</Nm>
<Nm>John Doe</Nm>

The XMLQUERY in Example 2-7 shows how XPath expressions can be executed within an
SQL statement, with the resulting XML document (or subdocument) being returned as an
XML structure. This particular example retrieves the XML structure at node /MsgRcpt/Nm for
every single XML document within the XMLADDRESS table.

The XMLEXISTS and XMLTABLE functions are particularly attractive when using traditional
programming languages, because they return data in a relational format. XMLTABLE can also
return an XML column.

The XMLQUERY function is a little different because it returns a scalar value XML type, not
necessarily an XML document (usually it is not a document). This does not necessarily
introduce extra complexity to the traditional programmer, because the returned XML type can
be cast to a string data type, or moved on to another repository like WebSphere Message
Queue (MQ).

Collectively, the XMLEXISTS, XMLQUERY and XMLTABLE functions allow the traditional
mainframe programmer to access and manipulate XML documents with a minimal increase in
skills required (namely, the ability to write XQuery and XPath expressions, and embed them in
SQL statements). We examine the considerations for using each of these functions with index
access in Chapter 11, “Performance considerations” on page 243.

XML conversion functions
The XML conversion functions (XMLCAST, XMLPARSE and XMLSERIALIZE) support the
interchange of data between relational and XML models of data.

XMLCAST will cast the contents of an XML data element to a relational data type as shown in
Example 2-8.

Example 2-8 XMLCAST example casting a numeric data element to varchar or integer

select
xmlcast(xmlquery('$i/MsgRcpt/PstlAdr/BldgNb'

passing c.xmladdress as "i") as varchar(10))
as streetnumber from xmladdress c;

select
xmlcast(xmlquery('$i/MsgRcpt/PstlAdr/BldgNb'

passing c.xmladdress as "i") as integer)
as streetnumber from xmladdress c;

XMLPARSE parses a string of a well-formed XML document that conforms to XML 1.0 and
30 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
returns an XML type. IXMLPARSE can be used in isolation or as part of an SQL INSERT
operation as shown in Example 2-9. XMLPARSE also provides the option to strip whitespace,
for storage efficiency, or preserve it.

Example 2-9 XMLPARSE function and whitespace handling

INSERT INTO XMLDEMO1 VALUES(201,
XMLPARSE(DOCUMENT
'<emails><email emailUse="work"> fred_smith@uk.ibm.com </email>

</emails>'
PRESERVE WHITESPACE));

INSERT INTO XMLDEMO1 VALUES(202,
XMLPARSE(DOCUMENT
'<emails><email emailUse="work"> fred_smith@uk.ibm.com </email>

</emails>'
STRIP WHITESPACE));

XMLSERIALIZE will convert an XML document into a serialized string value. Example 2-10
converts an XML document into a CLOB in UTF-8. The resulting data type could also be
BLOB, DBCLOB, etc.

Example 2-10 XMLSERIALISZE example to convert an XML document to a UTF-8 CLOB

SELECT e.xid, XMLSERIALIZE(XMLADDRESS AS CLOB) AS "result"
from xmladdress e;

2.1.3 Hybrid data access

One of the big advantages of adding XML support to DB2 is that hybrid database applications
can be constructed, combining the relational model of data and the XML model of data.

A good example of a hybrid data application might be insurance quotes. When an internet
user fills in multiple html forms to get an insurance quote, the insurance company wants to
persist that information in a database, so that the internet user can come back at a later time
to purchase the policy that was quoted for.

XML would be an excellent data model for storing insurance quotes because the data will
typically contain a large number of data elements, and different quotes may be structured in
many different ways. For example, the html forms filled in for a single driver car insurance
policy for a small vehicle will differ significantly from the html forms filled in by a married
couple insuring a powerful sports utility vehicle, and adding their 18 year old son as a named
driver.

� If the quotation application was implemented in a relational structure, there may be 10 or
20 main tables, and multiple code tables.

� If the quotation application was implemented in an XML structure, a single XML document
can contain all the structure and constraints for the quotations.

However, it is likely that the existing Client and Policy systems will have been written many
years ago using the relational model of data. Hence, the new quotations application needs to
be able to bridge the gap between XML and relational data models.
Chapter 2. XML and DB2 for z/OS 31

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
DB2’s support for a hybrid data model makes it easy to develop a new internet quotes
application. It is possible for the internet quotes application to store the quote as an XML
document in a DB2 table. If the quote is subsequently taken up by the client, then the
information stored within the XML document containing the quotation details can be retrieved
using SQL/XML and re-used as input to the relational tables of the Client and Policy systems.

The XMLTABLE function provides the basis for a simple use case. The address details can be
read from an XML Document containing the quotation, and inserted into an address table
within the Policy system, as shown in Example 2-11.

Example 2-11 Hybrid data access example

INSERT INTO POLICY_SYSTEM.ADDRESS_TABLE (ADDR1, TOWN, POSTCODE)
SELECT X.ADDRESS, X.TOWN, X.POSTCODE
FROM

QUOTE_SYSTEM.XMLQUOTE_TABLE C,
XMLTable('$cu/quote/addresses/address'
PASSING C.CUSTCONTACTS as "cu"

COLUMNS
"ADDRESS" CHAR(20) PATH 'addressLine1',
"TOWN" CHAR(20) PATH 'addressPostTown',
"POSTCODE" CHAR(20) PATH 'addressPostCode'

) AS X
WHERE X.QUOTE_ID = 123456 ;

Clearly this simplistic example does not reflect the way that Insurance systems may be
architected, with error checking, input validation and so on. However, the example still serves
to illustrate that the DB2 hybrid data model does provide an integrated database platform
upon which it is easy to bridge the gap between relational and hierarchical models of data.

2.1.4 XML update

Full read and write access is provided for XML documents within DB2.

Inserting and updating XML data is supported with the XMLPARSE option, which will parse a
string value to return an XML document, and optionally strip or preserve whitespace. The
whitespace handling is illustrated in Example 2-9 on page 31.

Updating XML documents can be performed by either replacing the whole document, or
updating a part of it. A full replacement of an XML document is coded with a simple SQL
update statement, and an XMLPARSE function call if the source data is in string format. A
partial document update uses the XMLMODIFY function to change an existing XML
document.

The XMLMODIFY function depends on the underlying table space being a universal table
space, so that multiple XML versions are supported. XML versioning is implemented in DB2
10 to improve concurrency and reduce locking: A new version of the XML document is
created during an update, which allows SQL read operations (with the appropriate isolation
level) to access the old version of the XML document concurrently.

The XMLMODIFY function operates on a node within an XML document, and has three
usage variations: replace, insert or delete a node. We will show examples of all three
variations of XMLMODIFY, based on the initial table contents shown in Example 2-12.
32 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
Example 2-12 Initial contents of XMLADDRESS table

XID XMLADDRESS
--- -------------------------------------

2 <MsgRcpt>
<Nm>John Doe</Nm>
<PstlAdr>

<StrtNm>Antelope Street</StrtNm>
<BldgNb>32</BldgNb>
<PstCd>87233</PstCd>
<TwnNm>San Diego</TwnNm>

</PstlAdr>
</MsgRcpt>

XMLMODIFY to replace a node
The first example replaces the node /MsgRcpt/Nm with another XML fragment. The
replacement XML fragment is a literal string value, which is parsed using the XMLPARSE
function.

Example 2-13 XMLMODIFY to replace a node

UPDATE XMLR3.XMLADDRESS C
SET C.XMLADDRESS = XMLMODIFY(

'replace node /MsgRcpt/Nm with $x',
XMLPARSE('<Nm>Johnny Doe</Nm>') AS "x")

where C.XID = 2

-- changes the second row in the XMLADDRESS table to the following:

XID XMLADDRESS
--- -------------------------------------

2 <MsgRcpt>
<Nm>Johnny Doe</Nm>
<PstlAdr>

<StrtNm>Antelope Street</StrtNm>
<BldgNb>32</BldgNb>
<PstCd>87233</PstCd>
<TwnNm>San Diego</TwnNm>

</PstlAdr>
</MsgRcpt>

XMLMODIFY to delete a node
The second example deletes the <PstlAdr> node from the document.

Example 2-14 XMLMODIFY to delete a node

UPDATE XMLR3.XMLADDRESS C
SET C.XMLADDRESS = XMLMODIFY(

'delete node /MsgRcpt/PstlAdr')
WHERE C.XID = 2

-- changes the second row in the XMLADDRESS table to the following:

XID XMLADDRESS
--- -------------------------------------

2 <MsgRcpt>
Chapter 2. XML and DB2 for z/OS 33

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
<Nm>Johnny Doe</Nm>
</MsgRcpt>

XMLMODIFY to insert a node
The third example inserts the node <Notes> as the last child node at XPath location /MsgId.

Example 2-15 XMLMODIFY to insert a node

UPDATE XMLR3.XMLADDRESS C
SET C.XMLADDRESS = XMLMODIFY(

'insert node $x as last into /MsgRcpt',
XMLPARSE('<Notes>Testing</Notes>') AS "x")

where C.XID = 2

changes the second row in the XMLADDRESS table to the following:

XID XMLADDRESS
--- -------------------------------------

2 <MsgRcpt>
<Nm>Johnny Doe</Nm>
<Notes>Testing</Notes>

</MsgRcpt>

In all cases, the following XML schema validation considerations apply:

� If the table has an XML type modifier for the INFO column, then the resultant XML value
will be checked for well formedness and will also be checked for conformance to the
registered XML schema.

� If the table does not have an XML type modifier for the INFO column, then the resultant
XML value will be checked for well formedness only. XML schema validation could be
requested manually, by calling the DSN_XMLVALIDATE function.

Sub-document update becomes important for performance reasons if small changes need to
be made to large XML documents. For example, changing the details of one book in an XML
document that contains a book catalog would be a lot cheaper than replacing and revalidating
the whole document.

2.1.5 XML indexes

XML indexes are just as important to DB2 as relational indexes are. The best way to introduce
XML indexes is to start with the similarities to relational indexes, and then to identify the
differences.

The major reasons for defining relational indexes in DB2 are:

� Efficient access path to data (minimizing I/O and CPU resource consumption)
� Option to apply a unique constraint

These same reasons also apply to XML indexes. Their fundamental purposes are to facilitate
performance and to enforce uniqueness.

However, the nature of an XML index has several differences from a relational index. The
major differences are:

� Relational indexes may be defined on one or more relational columns. XML Indexes can
only be defined on one XML element or XML attribute (using an XML pattern expression)
34 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
� Relational indexes always have one index entry for every row in a table. However XML
indexes are much less prescriptive. XML indexes are based on an XML pattern. An XML
pattern may occur any number of times in an XML document. So, XML indexes may
contain 0, 1 or many entries for each row in the table.

� Relational indexes are always based on the data types of the column(s) that they are
defined on. The data types found at the locations of an XML pattern may be many and
varied unless an appropriate XML schema is enforced. Using XML schema validation
against a well defined XML schema will allow the data types of XML elements to be
controlled (as covered in 2.1.6, “XML schema repository and schema validation” on
page 36).

� Relational indexes can be used to support table clustering. XML indexes may not be used
for table clustering support.

XML indexes have a more complex set of physical design considerations than relational
indexes. A good understanding of XPath expressions and XML schemas and XML
namespaces is essential to designing XML indexes that are likely to be chosen by the DB2
optimizer.

Having sounded a caution that XML index design requires careful consideration of a number
of new factors, it is well worth citing how powerful and productive they are. Without XML
indexes, a database application would have to go through an extra development phase where
key data elements are stripped to relational tables, and indexed using traditional relational
indexes. With XML indexes, you can avoid this extra development phase and index your XML
data every bit as efficiently as you index your relational data, and realize the simplicity that
DB2’s hybrid data model provides.

Example 2-16 provides simple examples of how XML indexes are created in DB2.

Example 2-16 XML Index creation examples

CREATE INDEX XMLCITY ON XMLDEMO1(CUSTCONTACTS)
GENERATE KEY USING XMLPATTERN

'/employeeContacts/addresses/address/AddressPostCode'
AS SQL VARCHAR(30);

In this example the contents of XPath location
'/employeeContacts/addresses/address/AddressPostCode' are cast as a VARCHAR(30) data
type, and an XML index is built.

� If the data type casting is successful, an index entry will be created.

� If the XPath does not exist, no index entry will be created.

� If the data type casting is unsuccessful

– For numeric, date, and timestamp index data types, error-tolerance applies.

– For VARCHAR indexes, where the failure of casting is due to length, either CREATE
INDEX will fail or INSERT will fail.

An XML index could point to a small number of entries (or none) if the XML pattern of the
index does not fit the data.

XML index design requires the nature of XML indexes to be understood, and the matching
success of the index to be checked.

The DB2 optimizer can use XML indexes and traditional DB2 indexes together to produce the
most efficient access paths for hybrid data access. The way that XML and relational indexes
Chapter 2. XML and DB2 for z/OS 35

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
work together is one of the best illustrations of how DB2 makes hybrid data both valuable and
performant.

2.1.6 XML schema repository and schema validation

DB2 provides many features that allow the database administrator to implement and enforce
a relational data model. Unique indexes, primary and foreign keys, check constraints,
referential constraints etc.

DB2 also provides the ability to implement and enforce an XML data model, through its ability
to validate XML documents against a registered XML schema. XML data structures can be
defined via XML schemas. An XML Schema defines the structure of an XML document by
defining:

� The elements that can appear in a document
� The attributes that can appear in a document
� Which elements are child elements
� The order of child elements
� The number of child elements
� Whether an element is empty or can include text
� The data types for elements and attributes
� The default and fixed values for elements and attributes

A very simple XML schema example is shown in Example 2-17 which defines how email
information about an individual should be stored. The element <emails> can be a parent to
between 1 and 5 specific <email> elements. Each email element is required to have an
emailUse tag, which describes the nature of that particular email account (work, home etc...).

Example 2-17 Simple XML schema example

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="emails" maxOccurs="1" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="email" maxOccurs="5" minOccurs="1">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="emailUse" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="home"/>
 <xs:enumeration value="work"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>
36 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
The XML document in Example 2-18 conforms to the XML schema that is described in
Example 2-17.

Example 2-18 XML document that conforms to previous XML schema

<emails>
 <email emailUse="work">UK000003@uk.ibm.com</email>
 <email emailUse="home">julie.woollacot@isp.com</email>
</emails>

DB2 support for XML schema validation consists of

� An XML schema repository, where XML schemas can be stored within DB2.
� A schema validation function, which allows an XML data type to be validated against a

schema within the repository.
� A DDL option to define an XML column with a type modifier, so that schema validation is

enforced by DB2 automatically for that column.

The schema repository is populated by using the four XML schema repository stored
procedures that are provided by DB2. These stored procedures are invoked by commands
from z/OS UNIX® System Services or DB2 for z/OS1 and DB2 for Linux®, UNIX, and
Windows® Command Line Processor (CLP), as shown in the following examples. The script
shown in Example 2-19 shows a schema being registered to the DB2 XML schema
repository, and then being completed.

Example 2-19 XML schema registration

register xmlschema http://www.mymodel
from file://C:\SCHEMAPATH\myschema.xsd
as SYSXSR.MYXMLSCHEMA ;

complete xmlschema SYSXSR.MYXMLSCHEMA ;

The SQL statement in Example 2-20 shows the DSN_XMLVALIDATE function being invoked
manually, as part of an INSERT operation to a table (TABLE1).

Example 2-20 SYSXSR.DSN_XMLVALIDATE example

INSERT INTO TABLE1(XMLCOL1)
VALUES (SYSIBM.DSN_XMLVALIDATE(:xmldoc, 'SYSXSR.MYXMLSCHEMA')
);

The DDL statement in Example 2-21 shows another Table (TABLE2) being defined, where all
XML documents stored in the XML column of that table will be automatically validated.

Example 2-21 XML type modifier example

CREATE TABLE XMLR3.TABLE2 (
XMLCOL1 XML(XMLSCHEMA ID SYSXSR.MYXMLSCHEMA))
IN XMLR3DB.XMLR3TS ;

1 See DB2 for z/OS CLP at
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.apsg/db2z_runspfromclp.htm
Chapter 2. XML and DB2 for z/OS 37

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
The DB2 XML schema validation services are essential for enforcing the integrity of XML
documents against the rules that they should conform to. They are simple to use, and allow
very complex XML schemas to be incorporated easily, as shown by the ISO20022 examples
later in this book.

2.2 Supporting infrastructure

There is very little extra customization that must be done during a DB2 installation to take
advantage of the pureXML capability within DB2. The XML data type is a standard DB2 data
type that works out of the box with DB2.

XML validation is an optional facility requiring the XML Schema Repository (XSR). It is
possible that you might not want to use DB2’s XML schema validation for documents that
have already been validated outside of DB2. However, in general, you need to have access to
this facilty or an equivalent one when you use DB2 pureXML.

For the most current maintenance level, see info APAR II14426. It contains a summary and
pointers to all the XML support delivery APARs.

2.2.1 XSR installation steps

XSR has a pre-requisite that the following software is installed and configured.

� Workload Manager for z/OS (WLM)
� z/OS XML System Services
� Java 2 Technology Edition, V5 or later, 31-bit version
� IBM Data Server Driver for JDBC and SQLJ

XSR consists of four DB2-supplied stored procedures, one DB2 database, five table spaces,
8 tables and 13 indexes. Installation job DSNTIJRT is designed to create all DB-supplied
stored procedures including these objects.

The four stored procedures, with a brief description of their purpose, are:

� SYSPROC.XSR_REGISTER is a C stored procedure, which registers an XML schema as
a primary schema document in the DB2 XML schema repository.

� SYSPROC.XSR_ADDSCHEMADOC is a C stored procedure, which registers an
additional XML schema document to an XML schema in the DB2 XML schema repository.

� SYSPROC.XSR_COMPLETE is a Java stored procedure, which completes the
registration process of an XML schema.

� SYSPROC.XSR_REMOVE is a C stored procedure, which removes a registered XML
schema from the XML schema repository.

The installation steps of the XML Schema Repository and functions are:

1. Customize and run jobs DSNTIJRW and DSNTIJMV

Define the WLM environment and startup procedure for the C language XML schema
repository stored procedures. A dedicated WLM environment and startup procedure is
required for the XSR stored procedures written in C (XSR_ADDSCHEMADOC,
XSR_REGISTER, and XSR_REMOVE).

– Installation job DSNTIJRW installs and configures a WLM environment with the default
name of DSNWLM_XML which you can use it to run the XML schema repository
stored procedures.
38 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
– Installation job DSNTIJMV installs a WLM startup procedure named ssnmWLMX for
that WLM environment.

Define the WLM environment and startup procedure for the Java language XML schema
repository stored procedure. A dedicated WLM environment and startup procedure is
required for the XSR stored procedure written in Java (XSR_COMPLETE).

– Installation job DSNTIJRW installs and configures a WLM environment with the default
name of DSNWLM_JAVA which you can use it to run the XML schema repository
stored procedures.

– Installation job DSNTIJMV installs a WLM startup procedure named ssnmWLMJ for
that WLM environment.

2. Customize and run job DSNTIJRT

Run installation Job DSNTIJRT to create the XSR objects (database, table spaces, tables,
indexes, stored procedures) and bind the DB2 XSR packages for the stored procedures.

3. Bind the Universal JDBC Driver

Bind the packages for the IBM Data Server Driver for JDBC and SQLJ (on USS and/or
Windows)

2.2.2 XSR installation validation

DB2 installation job DSNTIJRV is designed as an installation verification program for all the
DB2-supplied procedures, including those used by the XSR. Run it to validate that all services
are operational. An abridged version of the output of DSNTIJRV is shown in Example 2-22,
which shows a report of the testing of the XSR procedures and the ODBC procedures.

Example 2-22 DSNTIJRV installation verification job output

DSNT040I 06.27.58 DSNTRVFY ROUTINE VALIDATION SUMMARY
 STATUS SCHEMA SPECIFIC NAME
 -- ------ ------ -------------
.....
 / PASSED SYSPROC XSR_ADDSCHEMADOC
 / PASSED SYSPROC XSR_COMPLETE
 / PASSED SYSPROC XSR_REGISTER
 / PASSED SYSPROC XSR_REMOVE
.....
 / PASSED SYSIBM SQLCOLUMNS
 / PASSED SYSIBM SQLCOLPRIVILEGES
 / PASSED SYSIBM SQLFOREIGNKEYS
 / PASSED SYSIBM SQLFUNCTIONCOLS
 / PASSED SYSIBM SQLFUNCTIONS
 / PASSED SYSIBM SQLGETTYPEINFO
 / PASSED SYSIBM SQLPRIMARYKEYS
 / PASSED SYSIBM SQLPROCEDURECOLS
 / PASSED SYSIBM SQLPROCEDURES
 / PASSED SYSIBM SQLSPECIALCOLUMNS
 / PASSED SYSIBM SQLSTATISTICS
 / PASSED SYSIBM SQLTABLEPRIVILEGES
 / PASSED SYSIBM SQLTABLES
 / PASSED SYSIBM SQLUDTS
.....

DSNT033I DSNTRVFY VALIDATION PROGRAM ENDED, RETURN CODE = 0
Chapter 2. XML and DB2 for z/OS 39

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
2.2.3 XSR setup troubleshooting

If you have difficulties using the XML schema repository, it may be helpful to check the
following list of potential setup issues.

Check that both the WLM application environments for XSR are started and available, as
shown in Example 2-23.

Example 2-23 z/OS console display WLM APPLENV status

D WLM,APPLENV=DSNWLMDB0B_XML

 RESPONSE=SC63
 IWM029I 14.43.07 WLM DISPLAY 072
 APPLICATION ENVIRONMENT NAME STATE STATE DATA
 DSNWLMDB0B_XML AVAILABLE
 ATTRIBUTES: PROC=DB0BWLMX SUBSYSTEM TYPE: DB2

D WLM,APPLENV=DSNWLMDB0B_JAVA

 RESPONSE=SC63
 IWM029I 14.43.39 WLM DISPLAY 074
 APPLICATION ENVIRONMENT NAME STATE STATE DATA
 DSNWLMDB0B_JAVA AVAILABLE
 ATTRIBUTES: PROC=DB0BWLMJ SUBSYSTEM TYPE: DB2

Check that the XSR tables are created with the SQL statement in Example 2-24.

Example 2-24 Check XSR tables exist

select name from sysibm.systables
where creator = 'SYSIBM' and name like 'XSR%'

XSRANNOTATIONINFO
XSRCOMPONENT
XSROBJECTCOMPONENTS
XSROBJECTGRAMMAR
XSROBJECTHIERARCHIES
XSROBJECTPROPERTY
XSROBJECTS
XSRPROPERTY

Check that the XSR schema validation routines are created with the SQL statement in
Example 2-25.

Example 2-25 Check XSR routines exist

select name from sysibm.sysroutine
where schema= 'SYSPROC' and name like 'XSR%'

XSR_ADDSCHEMADOC
XSR_COMPLETE
40 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
XSR_REGISTER
XSR_REMOVE

Check that the Java environment is correctly setup, by creating two Java user defined
functions that return the name and version number of the Java environment. Submit the
following DDL in Example 2-26 to create a couple of Java stored procedures.

Example 2-26 Creation of Java stored procedures

CREATE FUNCTION SYSADM.JAVDRVV ()
RETURNS VARCHAR(100)
FENCED NO SQL
LANGUAGE JAVA
SPECIFIC JAVDRVV
EXTERNAL NAME 'com.ibm.db2.jcc.DB2Version.getVersion'
WLM ENVIRONMENT WLMJAVA
NO EXTERNAL ACTION
NO FINAL CALL
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;

CREATE FUNCTION SYSADM.JAVDRVN ()
RETURNS VARCHAR(100)
FENCED NO SQL
LANGUAGE JAVA
SPECIFIC JAVDRVN
EXTERNAL NAME 'com.ibm.db2.jcc.DB2Version.getDriverName'
WLM ENVIRONMENT WLMJAVA
NO EXTERNAL ACTION
NO FINAL CALL
PROGRAM TYPE SUB
PARAMETER STYLE JAVA;
COMMIT;

SELECT SYSADM.JAVDRVN() FROM SYSIBM.SYSDUMMY1;

-- which returns “IBM Data Server Driver for JDBC and SQLJ”

SELECT SYSADM.JAVDRVV() FROM SYSIBM.SYSDUMMY1;

-- which returns 4.11.75 on the system used in this redbook.

If all the previous checks are OK, and you still have errors using the XSR routines, then you
must look at the specific error codes and address them individually. Potential errors could
include SQLCODE -805 package not found errors if you have not run the bind jobs, or Java
errors if the Java environment is not defined correctly in the JAVASP.JSPENV file.

We did experience problems using XSR_COMPLETE that we resolved by adding a non-APF
authorized data set to the STEPLIB concatenation in the WLM procedure used by
XSR_COMPLETE.
Chapter 2. XML and DB2 for z/OS 41

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
2.2.4 z/OS XML system services

DB2 10 pureXML uses the z/OS XML system services for XML schema validation and XML
parsing. These services are 100% eligible to be executed on a zIIP or zAAP processor.
Figure 2-3 shows the z/OS XML system services processing flow. If the zAAP on zIIP feature
is activated zAAP eligible z/OS XML system services workloads are eligible to be processed
on a zIIP processor.

Figure 2-3 z/OS XML system services and zAAP processing flow

DB2 for z/OS pureXML XML parsing
DB2 pureXML invokes the z/OS XML system services for XML parsing. As a result, the XML
parsing request becomes 100% zIIP or zAAP eligible, depending on whether the parsing or
schema validation request is driven by DRDA® through a database access thread (DBAT) or
through an allied DB2 thread.

Built in function DSN_XMLVALIDATE
In DB2 10, the SYSIBM.DSN_XMLVALIDATE function is provided inside the DB2 engine as a
built-in function and uses z/OS XML System Services for XML validation. Thus,
DSN_XMLVALIDATE invocations are 100% zIIP or zAAP eligible in DB2 10.

DB2 9 provided XML schema validation through the SYSFUN.DSN_XMLVALIDATE external
UDF. The DB2 9 DSN_XMLVALIDATE UDF was executed in task control block (TCB) mode
and did not use the z/OS XML system service for XML validation. Therefore,
DSN_XMLVALIDATE invocations were neither zIIP nor zAAP eligible.

APARs PK90032 and PK90040 have enabled SYSIBM.DSN_XMLVALIDATE in DB2 9 and
made that activity eligible for specialty engines..

For details on migrating to the new functions, see:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db
2z10.doc.xml/db2z_udfdsnxmlvalidatetobifdsnxmlvalidate.htm
42 Extremely pureXML in DB2 10 for z/OS

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.xml/db2z_udfdsnxmlvalidatetobifdsnxmlvalidate.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.xml/db2z_udfdsnxmlvalidatetobifdsnxmlvalidate.htm

Draft Document for Review January 9, 2011 1:25 pm 7915ch02.fm
2.3 Choice of tools

Without naming individuals, the team that wrote this book included both persuasions of the
user interface divide. At the half way point, the GUI2 fan was amazed to find that the 3270 fan
had deployed complex SQL/XML statements within SPUFI. The 3270 fan was bemused that
this was considered strange.

We recognise that experienced DB2 professionals will have their own preferences for user
interface, that will depend on the roles that they are trying to perform, the tasks that they are
trying to execute, and their personal experiences. The good news is that there are plenty of
tool choices on 3270 and on GUI.

2.3.1 3270 based tools

ISPF PDF, the DB2I panel, and SPUFI work just fine against DB2 tables with XML columns. If
you are experienced in these tools and the ISPF editor, then you are able to perform all the
DBA and development tasks that you need to.

You will frequently encounter the situation where your SQL and DDL statements contain an
XML expression that is greater than 80 bytes long. In such circumstances, you can split an
XPath expression over multiple lines and it will still run fine, as shown in Figure 2-4.

Figure 2-4 Splitting an XPath expression over multiple lines in 3270 SPUFI session

DB2 Administration Tool for z/OS provides database administration facilities for DB2 objects
containing XML columns. XML columns are just another data type that DB2 Administration
Tool caters for.

2.3.2 GUI based tools

IBM offers a range of graphical based tools, mostly based on the eclipse framework, which
support database administration and development activities with DB2 and pureXML.

Table 2-1 provides a summary of some of the tools which are most likely to be used with DB2
and pureXML.

2 GUI stands for graphical user interface.

 Menu Utilities Compilers Help
--
 BROWSE XMLR3.XMLR3.OUT Line 00000000 Col 001 080
 Command ===> Scroll ===> PAGE
********************************* Top of Data **********************************
---------+---------+---------+---------+---------+---------+---------+---------+
select xmlcast(xmlquery('declare default element namespace 00010003
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"; 00020003
$d/Document/BkToCstmrStmt 00030004
 /GrpHdr/MsgId' 00040003
passing BK_TO_CSTMR_STMT as "d") as varchar(35)) 00050003
from BK_TO_CSTMR_STMT 00060003
---------+---------+---------+---------+---------+---------+---------+---------+

---------+---------+---------+---------+---------+---------+---------+---------+
AAAASESS-FP-STAT001
...
Chapter 2. XML and DB2 for z/OS 43

7915ch02.fm Draft Document for Review January 9, 2011 1:25 pm
Table 2-1 IBM tools for DB2 administration and development with DB2 pureXML.

A comprehensive paper, “Tools and XML functionality for DB2 pureXML users” by Bryan
Patterson, is available on IBM developerworks, which lists a wider range of IBM tools, and
discusses the tasks that they support in the context of typical development and DBA roles.
This paper can be accessed at the following URL:

http://www.ibm.com/developerworks/data/library/techarticle/dm-1012xmltools/index.h
tml

Tool Overview of capabilities Comments

Data Studio IDE Data development (SQL, SQL/XML,
stored procedures, Data Web Services
etc...)

XML: XML/Schema editor, XML
mapper, Web services, Schema
registration etc...

This is a download included in the DB2 licence for
all platforms. It provides an eclipse-based
environment for a wide range of DB2 development
and administration activities, including XML.

Optim™ Development
Studio

This is based on Data Studio, and
includes extensions, such as

� pureQuery support
� XML validator
� XSD validator

This is a chargeable tool. It includes additional
facilities beyond Data Studio which are aimed more
at a development user than a DBA.

InfoSphere™ Data
Architect

Logical and physical data modeling -
design databases, discover, relate,
integrate and standardize diverse data
assets.

XML: Data Modeling, XML schema
transformations

This is a chargeable tool. aimed at data modelers
and architects. This tool provides logical and
physical data modelling and schema development
capabilities.

Rational® Developer
for System z

Provides System z developers with tools
for building traditional and composite
applications in an SOA and Web 2.0
environment

This is a chargeable tool aimed at system z
application developers.

Contains overlap of XML related tools with the
above products, and extended XML mapping and
integration tools for system Z applications.
44 Extremely pureXML in DB2 10 for z/OS

http://www.ibm.com/developerworks/data/library/techarticle/dm-1012xmltools/index.html

Draft Document for Review January 9, 2011 1:25 pm 7915ch03.fm
Chapter 3. Application scenario

In this chapter we introduce the application scenario which is based on requirement to
process XML messages for business purposes. The message received contains bank
statement information received from a financial institution. The scenario includes:

� Using an openly published XML standard as the basis for documents that we will be
storing and manipulating in DB2.

� Integration with other systems via WebSphere® MQ to receive XML messages that are
received by an organization's Enterprise Service Bus.

� Storing and processing the XML documents in DB2, using stored procedure, COBOL and
JAVA programs which process XML and relational data together.

� Indexing and searching the XML tables, using standard SQL based query tools, to enable
the business and audit requirements to be satisfied.

This chapter contains the following sections:

� Requirement for XML event logging and auditing
� Application scenario
� Application code samples

3

© Copyright IBM Corp. 2011. All rights reserved. 45

7915ch03.fm Draft Document for Review January 9, 2011 1:25 pm
3.1 Requirement for XML event logging and auditing

Event logging, often used for auditing purposes, is one of the simplest use cases for DB2
pureXML.

Financial services companies are growing their usage of messaging and workflow systems at
a phenomenal rate. Business processes are modelled and implemented, so that they may be
executed as efficiently as possible. Enterprise Service Bus technology is used to link together
all the systems that must be involved to complete these business processes. Messages are
sent over an organization's Enterprise Service Bus during the automated execution of these
business processes.

Whilst many different technologies and products may be used to implement these systems,
there is often a common glue that binds them all together: XML.

An audit trail of some or all of the XML messages sent and received over the Enterprise
Service Bus can be valuable for many reasons. For example

� An audit trail of messages describing high value financial transactions may provide a
valuable source of information for monitoring and dashboard systems.

� Compliance requirements for certain applications may require that a very detailed audit
trail be maintained.

� Technical problem resolution for messaging and workflow systems may be assisted by
being able to trace the flow of messages through the execution of a business process.

Whatever the reasons for choosing to log event data in a persistent datastore, it is only worth
logging the XML messages if you are subsequently able to read and analyze the XML
messages with easy-to-use query and reporting tools.

DB2 pureXML provides an excellent platform for such event logging systems, because

� XML messages can be written to DB2 with minimal application development effort. No
complex relational models need to be developed in order to log XML messages for
subsequent auditing processing.

� The content of XML messages that have been stored in DB2 can be subsequently
searched and accessed with ease using SQL/XML queries

� XML data elements used for searching and joining of data (such as userid, customerid,
time and date) can be indexed so that queries can be optimized to access only those XML
messages which are needed for the required task.

3.2 Application scenario

The application scenario (illustrated in Figure 3-1) in this book consists of the following
aspects:

� We use the Bank To Customer Statement V2 (one of the ISO 20022 Universal financial
industry message schemas) as the openly published XML standard for the XML
documents that we save in DB2. ISO 20022 or UNIFI is the ISO Standard for Financial
Services Messaging.

� We use the DB2 MQ Listener to receive XML messages from WebSphere MQ, and log
them to DB2 using a native SQL stored procedure.

� We retrieve, manipulate and re-save those XML documents in DB2, using stored
procedures, COBOL and JAVA programs. These programming examples show how the
46 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch03.fm
XML data bindings work in these languages, and use the SQL/XML functions available
within DB2.

� We create XML indexes for searching the XML audit tables, and show how normal SQL
query tools can search these documents to enable the auditing requirements to be
satisfied.

Figure 3-1 Application scenario

3.2.1 Using ISO 20022 with DB2 pureXML

A very common requirement when implementing XML data within DB2 is to work with an
existing standard for XML messages. In our example, we have chosen to work with ISO
20022 (Universal financial industry message scheme).

The ISO 20022 standard provides the financial industry with a common set of messages in a
standardized XML syntax.

� The current documentation for this standard is available at:

http://www.iso20022.org/

� The ISO 20022 document can be found at:

http://www.iso20022.org/catalogue_of_unifi_messages.page

� The description of the Bank To Customer Statement V2 can be downloaded from:

http://www.iso20022.org/documents/general/Payments_Maintenance_2009.zip

� The Schema of the Bank To Customer Statement V2 can be downloaded from:
http://www.iso2022.org/documents/messages/camt/schemas/camt.053.001.02.zip

Stream of XML messages (ISO20022)

DB2

WebSphere MQ

Enterprise Service Bus

MQ Listener
DB2 stored procedure

COBOL
Programs

Java
Programs

SQL/XML
QUERY

</xml> RDB

<xml><xml>

DB2

WebSphere Message Broker
Chapter 3. Application scenario 47

http://www.iso20022.org/catalogue_of_unifi_messages.page
http://www.iso20022.org/
http://www/iso20022.org/documents/general/Payments_Maintenance_2009.zip
http://www.iso2022.org/documents/messages/camt/schemas/camt.053.001.02.zip

7915ch03.fm Draft Document for Review January 9, 2011 1:25 pm
The programming scenarios in this book are focussed on just one message type from the
ISO20022 standard. (Bank To Customer Statement V2). We chose this message type
because every reader will be familiar with the concept of a bank statement. For the ISO
description of the message structure, you should download the description document
referenced above. Briefly however, the XML message structure contains the following
information.

� A group header, consisting of:

– A unique message id
– A message creation timestamp
– Message pagination control information

� The statement itself, consisting of:

– The statement id (duplicate of group header msgid element)
– The statement creation timestamp (duplicate of group header element)
– The period that the statement covers (from date and to date)
– The account identification details
– One or more account balances (multiple balance types exist)
– All the transaction entries during the period of the statement

With DB2 pureXML it is easy to import the XML schemas that define an XML standard into
the DB2 XML schema repository, so that all XML documents stored in DB2 can be
automatically (or manually) validated against different versions of the XML schema standards.

The availability of an openly available set of industry standard XML schemas is a
tremendously helpful productivity boost. Chapter 5, “Validating XML data” on page 73
provides worked examples of the ISO20022 standard schemas imported into DB2, so that the
messages can be written into DB2 with full schema validation.

3.3 Application code samples

This book includes a number of programming samples that can be downloaded from the IBM
Redbooks web site and are described in Appendix B, “Additional material” on page 273. The
samples are provided in three groups:

� DB2 routines (stored procedures, UDFs etc...)
� COBOL programs
� Java programs

The DDL and schema samples are common to all the programming samples. However, each
of the programming samples is independent of the other programming samples. So, if your
interest is COBOL, you will be able to download and use the COBOL samples, without
depending on Java or stored procedure samples.

The diagram in Figure 3-2 illustrates the flow between the various code samples presented in
this book. The flow is explained in the following sections.
48 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch03.fm
Figure 3-2 Four application code samples

3.3.1 DB2 SQL/XML programming pureXML

The amount of programming that happens within DB2 itself has been growing steadily as
facilities like DB2 native SQL stored procedures have become more powerful. Stored
procedures and user defined functions can be used in conjunction with external applications
like COBOL and Java, where they provide re-usable routines that are productive to develop
and perform exceptionally well within the DB2 engine.

A number of stored procedures are illustrated in Chapter 6, “DB2 SQL/XML programming” on
page 87 covering the following tasks

� Using XML documents as input and output parameters to stored procedures which
manipulate them (such as validating XML documents, shredding XML data elements into
relational columns, transforming XML documents or sub-documents).

� Retrieving an XML messages from WebSphere MQ

� Using the DB2 MQ Listener to receive XML messages from WebSphere MQ, and
automatically process them with a stored procedure

� Receiving XML messages from change data capture products, and using them to build
XML documents that contain a history of data changes.

In addition to the stored procedures, this chapter also contains a number of SQL/XML
examples that show how the SQL/XML language can be used to query the XML documents
for auditing and other purposes.

The examples in this chapter are based on programs contained in a zip file called
storedproceduresamples.zip as described in Appendix B, “Additional material” on page 273

Java Programs

1. Read MSG from table
2. Shred + save to DB2 tables
3. Transform and write to MQ
4. XSLT presentation

“Audit” queries

SQL/XML query examples
- Relational results
- XML results

BK_TO_CSTMR_STMT (XML)MSG_CRE_DT_TMMSG_ID

LUW_MQ_OUT

zOS_MQ_INPUT

“SHRED TABLES

MQ Listener
DB2 native SQL stored procedure

1. Receive MQ message
2. Validate XML message
3. Shred MSGID and D/TS
4. Insert into

BK_TO_CSTMR_STMT table

COBOL programs

1. Read MSG from file and save
to DB2

2. Read MSG from DB2 and
save to file

3. Query MSG
4. Update parts of MSG in DB2

zOS file system
Chapter 3. Application scenario 49

7915ch03.fm Draft Document for Review January 9, 2011 1:25 pm
and can be downloaded clicking on the additional material icon on the IBM Redbooks web
site.

3.3.2 Using Java with DB2 pureXML

Chapter 7, “Using XML with Java” on page 129 covers Java programming in conjunction with
DB2 pureXML. The examples in this chapter are based on programs are contained in a zip
file called javasamples.zip, which can be downloaded from the additional materials page on
the redbooks web site.

The functions of the Java programs are to

� Shred the previously saved XML message

� Query the message to produce a new XML document

� Output the new message to a WebSphere MQ queue

� Use the binary XML format to retrieve XML documents from DB2 to the IBM universal
driver for JDBC and SQLJ.

� Perform XSLT transformations on the XML documents.

3.3.3 Using COBOL with DB2 pureXML

Chapter 8, “Using XML with COBOL” on page 155 covers COBOL programming in
conjunction with DB2 pureXML. The examples in this chapter are based on programs
contained in a zip file called cobolsamples.zip, which can be downloaded from the additional
materials page on the redbooks web site.

A number of COBOL programs are presented in Chapter 8, “Using XML with COBOL” on
page 155, they perform the following tasks:

� Read an XML message from a file and save it in DB2
� Select an XML message from DB2 and save it to a file
� Extract information from XML documents in DB2
� Update an XML document on a sub-document level

In addition we demonstrate what impact a schema change would have on the COBOL
application and discuss how this compares to a relational implementation of the same
database schema.

Finally, we look at some of the XML functionality available in native COBOL as a complement
to the pureXML capabilities in DB2.
50 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
Chapter 4. Creating and adding XML data

In this chapter we describe how to work with XML data.

We show how to create a table with an XML column and the storage structures that are used
to handle the XML column. We also describe the multiversioning functions available with DB2
10.

We also shows how to retrieve information from the DB2 catalog tables for the base objects
and the related XML objects, and demonstrates how an SQL INSERT statement can be used
to move an XML document into an XML column.

We then include a brief overview of creating user indexes on an XML column.

This chapter contains the following sections:

� Creating and adding XML data
� Storage structure for XML data
� Multi-versioning concurrency control for XML
� Catalog queries to gather information
� Display database command
� Ingesting XML data
� XML indexes

4

© Copyright IBM Corp. 2011. All rights reserved. 51

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
4.1 Creation of tables with XML columns

To create tables with XML columns, you specify columns with the XML data type in the
CREATE TABLE statement. A table can have one or more XML columns.

You do not specify a length when you define an XML column. There is no architectural limit on
the size of an XML value in a database. However, textual XML data that is exchanged with a
DB2 database is limited to 2 GB-1, so the effective limit of an XML column is 2 GB-1.

Like a LOB column, an XML column holds only a descriptor of the column. The data is stored
separately.

Example 4-1 shows how you can define the BK_TO_CSTMR_STMT table referred to in 3.3,
“Application code samples” on page 48 for the application scenario.

Example 4-1 BK_TO_CSTMR_STMT table with XML column

CREATE TABLE BK_TO_CSTMR_STMT
 (MSG_ID VARCHAR(35),

MSG_CRE_DT_TM TIMESTAMP WITH TIMEZONE,
 BK_TO_CSTMR_STMT XML NOT NULL)

Since the IN clause is not specified, the table is created in an implicitly created
partition-by-growth universal table space with a value of 256 for MAXPARTITIONS. The
additional table space for the XML column is created using the default storage group
SYSDEFLT in an implicitly created database.

4.2 Storage structure for XML data

The storage structure for XML data is similar to the storage structure for LOB data.

As with LOB data, the table that contains an XML column (the base table) is in a different
table space from the table space which contains the XML data.

The storage structure depends on the type of table space that contains the base table.

We show the relationship between non-partitioned table space for base tables with XML
columns and the corresponding XML table spaces and tables.
52 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
A base table space can be segmented as shown in Figure 4-1.

Figure 4-1 XML objects for segmented base table space

A base table space can be partition-by-growth shown in Figure 4-2.

Figure 4-2 XML objects for partition-by-growth base table space

XML objects for segmented base table space

Segmented Base TS

Partition-by-growth TS for XMLCol2

XMLCol1 Table

NODEID
INDEX

XML
Index

Partition-by-growth TS for XMLCol1

Cols:
DOCID

MIN_NODEID
XMLDATA

BASE Table

DOCID
INDEX Cols:

DOCID
XMLCol1
XMLCol2

XMLCol2 Table

NODEID
INDEX

XML
Index

Cols:
DOCID

MIN_NODEID
XMLDATA

XML objects for partitioned-by-growth base table space

Partitioned-by- growth Base TS

Partition-by-growth TS for XMLCol2

XMLCol1 Table

NODEID
INDEX

XML
Index

Partition-by-growth TS for XMLCol1

Cols:
DOCID

MIN_NODEID
XMLDATA
START_TS

END_TS

BASE Table

DOCID
INDEX Cols:

DOCID
XMLCol1
XMLCol2

XMLCol2 Table

NODEID
INDEX

XML
Index

Cols:
DOCID

MIN_NODEID
XMLDATA
START_TS

END_TS
Chapter 4. Creating and adding XML data 53

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
In both cases the XML table space is partition-by-growth. When you issue the
CREATE TABLE statement which includes XML columns for a non-partitioned table or the
ALTER TABLE statement to add an XML column to a non-partitioned table, the following
objects are created implicitly by DB2 to support the XML columns:

� A column called DB2_GENERATED_DOCID_FOR_XML that is defined as NOT NULL.
We refer to this column as DOCID column. DOCID uniquely represents each row. This
column is hidden. For each table, DB2 only needs one DOCID column even if you would
add additional columns with data type XML. This DOCID is defined as generated always,
meaning that you cannot update the DOCID column.

� An XML indicator column in the base table for each XML column. The XML indicator
column is treated like varying length column. An XML indicator column is VARCHAR(6) if
the base table is segmented. It is stored in the base table in place of an XML column, and
indicates whether the XML value for the column is null or zero length. The XML indicator
column is VARCHAR(14) if the base table is in a partition-by growth universal table space.
The extra 8 bytes are used to support multiple versions of XML documents.

� A unique index on the DOCID column. This index is known as a DOCID index. The DOCID
index key is just the document ID itself pointing to the base table RID.

� An XML table space (partition-by-growth table space) per XML column which uses the
Unicode UTF-8 encoding scheme

� An XML table with columns DOCID BIGINT, MIN_NODEID VARBINARY(128), and
XMLDATA VARBINARY(15850) if the base table space is segmented. The XML table has
two more columns START_TS and END_TS (used to support multiple versions of XML
documents) if the base table space is partition-by-growth.

� An index on columns DOCID and XMLDATA in each XML table that DB2 uses to maintain
document order, and map logical node ids to physical record IDs. This index is known as a
NODEID index. The NODEID index is an extended, non partitioning index.

� DOCID and MIN_NODEID are used for row (XMLDATA) clustering and sort records in
document order so prefetch will work.

� An XML document can span more than one partition. The base table space and the XML
table space grow independently.

We show the relationship between partitioned table space for base tables with XML columns
and the corresponding XML table spaces and tables.

A partitioned base table space can be classic partitioned as shown in Figure 4-3.
54 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
Figure 4-3 XML objects for classic partitioned base table space

A partitioned table space can be range partitioned shown in Figure 4-4.

Figure 4-4 XML objects for range-partitioned base table space

XML objects for classic partitioned base table space

Cols:
DOCID

XMLCOL1
XMLCOL2

BASE Table
Part1

Classic partitioned base table
space with two partitions
(table-controlled partitioning)

XML
Index

Range-partitioned table space with partitions for XMLCol1

BASE Table
Part2

Part1 Part2

Range-partitioned table space with partitions for XMLCol2

DOCID
MIN_NODEID

XMLDATA

DOCID
MIN_NODEID

XMLDATA

Cols:
DOCID

XMLCOL1
XMLCOL2

DOCID
INDEX
(NPI)

NODEID
INDEX
(NPI)

XML
Index

Part1 Part2

DOCID
MIN_NODEID

XMLDATA

DOCID
MIN_NODEID

XMLDATA

NODEID
INDEX
(NPI)

XML objects for range-partitioned base table space

Cols:
DOCID

XMLCOL1
XMLCOL2

BASE Table
Part1

Range-partitioned base table
space with two partitions

XML
Index

Range-partitioned table space with partitions for XMLCol1

BASE Table
Part2

Part2

Range-partitioned table space with partitions for XMLCol2

DOCID
MIN_NODEID

XMLDATA
START_TS

END_TS

DOCID
MIN_NODEID

XMLDATA
START_TS

END_TS

Cols:
DOCID

XMLCOL1
XMLCOL2

DOCID
INDEX
(NPI)

NODEID
INDEX
(NPI)

XML
Index

Part1 Part2
DOCID

MIN_NODEID
XMLDATA
START_TS

END_TS

DOCID
MIN_NODEID

XMLDATA
START_TS

END_TS

NODEID
INDEX
(NPI)

Part1
Chapter 4. Creating and adding XML data 55

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
When you issue the CREATE TABLE statement which includes XML columns for a partitioned
table or the ALTER TABLE statement to add an XML column to a partitioned table, the
following objects are created implicitly by DB2 to support the XML columns:

� A column called DB2_GENERATED_DOCID_FOR_XML that is defined as NOT NULL.
We refer to this column as DOCID column. DOCID uniquely represents each row. This
column is hidden. For each table, DB2 only needs one DOCID column even if you would
add additional columns with data type XML. This DOCID is defined as generated always,
meaning that you cannot update the DOCID column.

� A unique index on the DOCID column. This index is known as a DOCID index. The DOCID
index key is just the document ID itself pointing to the base table RID. The DOCID index is
a non-partitioning index.

� An XML indicator column in the base table for each XML column. The XML indicator
column is treated like varying length column. An XML indicator column is VARCHAR(6). It
is stored in the base table in place of an XML column, and indicates whether the XML
value for the column is null or zero length. The XML indicator column is VARCHAR(14) if
the base table is in a range partitioned universal table space. The extra 8 bytes are used to
support multiple versions of XML documents.

� An XML table space (range-partitioned table space) per XML column which uses the
Unicode UTF-8 encoding scheme

� Each XML table space contains one table with the corresponding number of parts. The
XML table is partitioned only on the basis of the base row partition. Even though it is
partitioned, the XML table space does not have limit keys. The XML data resides in the
partition number that corresponds to the partition number of the base row. If a row
changes partition in the base table, the XML document moves as well.

� An XML table with columns DOCID BIGINT, MIN_NODEID VARBINARY(128), and
XMLDATA VARBINARY(15850) if the base table space is classic partitioned. The XML
table has two more columns START_TS and END_TS (used to support multiple versions
of XML documents) if the base table space is range-partitioned.

� An index on columns DOCID and XMLDATA in each XML table that DB2 uses to maintain
document order, and map logical node ids to physical record IDs. This index is known as a
NODEID index. The NODEID index is an extended, non-partitioning index.

� DOCID and MIN_NODEID are used for row (XMLDATA) clustering and sort records in
document order so prefetch will work.

Figure 4-5 shows the storage structure of XML data when XML versions are not defined.

Important: The implicitly created XML table space is always a universal table space, either
partition-by-growth or range-partitioned. If you want to have the ability to handle multiple
versions of XML document make sure the base table space is a universal table space.
56 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
Figure 4-5 XML basic storage scheme

The XML column tells DB2 which NODEID index to search.

NODEID index is made up of the DOCID and a NODEID.

Key of DOCID+NODEID in the index tells DB2 which RID to get from XML tables.

NODEID Index may contain multiple entries per XML data row depending on the nodes
grouped in the XML data row.

The NODEID index is created implicitly on the XML table for each XML column that is added
to the base table. The XML node id uniquely identifies a node within a document.

To locate the corresponding XML column, DB2 uses the document ID from the base row and
pairs that with an XML node id in the XML table, starting with the minimum node id, to search
the NODEID index for the XML data.

The catalog table SYSIBM.SYSXMLRELS contains one row for each XML table that is
created for an XML column to provide information about the relationship between XML
column and XML table.

MIN_NODEID column
The node id for a node is the concatenation of local node ids contained in each node along
the path from the root to the node. For each XML data record, there is a context node id that
contains node ids from the root to the parent node for the nodes inside the record. The
MIN_NODEID column of an XML table contains the minimum node id within the XMLDATA
record in that row, which is concatenation of the context node id and the first node id in the

XML basic storage scheme

Base Table

XMLPODocID …

B+treeB+tree

DOCID index

XML Table

B+treeB+tree

NODEID index

B+treeB+tree

XML index (user)

Each XMLDATA column is a VARBINARY, containing
a subtree or a sequence of subtrees, with context
path. Rows in XML table are freely movable, linked
with a NODEID index.

A table with an XML column has a
DOCID column, used to link from the
base table to the XML table.
A DOCID index is used for getting to
base table rows from XML indexes.

XMLDATADOCID MIN_NODEID

1

2

3

1

2

2

3

02

02

0208

02

SYSIBM.SYSXMLRELS describes the relationship
between the base table and the XML table
Chapter 4. Creating and adding XML data 57

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
record body. DOCID and MIN_NODEID are used for clustering the rows belonging to a same
document.

4.3 Multi-versioning concurrency control for XML

DB2 supports multiple versions of an XML document in an XML column if the base table
space for the table that contains the XML column is also a universal table space and created
in DB2 10 NFM.. All XML columns in the table support multiple versions.

With XML versions, when you insert an XML document into an XML column, DB2 assigns a
version number to the XML document. If the entire XML document is updated, DB2 creates a
new version of the document in the XML table. If a portion of the XML document is updated,
DB2 creates a new version of the updated portion. When DB2 uses XML versions, more data
set space is required than when versions are not used. However, DB2 periodically deletes
versions that are no longer needed. In addition, you can run the REORG utility against the
XML table space that contains the XML document to remove unneeded versions. DB2
removes versions of a document when update operations that require the versions are
committed, and when there are no readers that reference the unneeded versions.

4.3.1 Example of improved concurrency with XML versions

The following example demonstrates how multiple XML versions can improve concurrency
when the same XML documents are modified multiple times within the same transaction.

Suppose that table T1, which is in a universal table space, is defined like this:

CREATE TABLE T1(
INT1 INT,
XML1 XML,
XML2 XML);

Table 4-1 shows the data in table T1.

Table 4-1 Data in table T1

Note on XML indexes: XML indexes are user created indexes for achieving good
performance.

Support note: If the base table space is not a universal table space, it does not support
multiple XML versions. To convert the base table space from either segmented or
partitioned to universal table space, you need to drop it and re-create it. ALTER and
REORG are not sufficient in this case.

XML versions note: XML versions are different from table space versions or index
versions. The purpose of XML versions is to optimize concurrency and memory usage.
The purpose of table space and index versions is to maximize data availability.

INT1 XML1 XML2

350 <A1>111</A1> <A2>aaa</A2>

100 <A1>111</A1> <A2>aaa</A2>
58 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
An application performs SQL read operations that are represented by the following
pseudocode:

EXEC SQL
DECLARE CURSOR C1 FOR
SELECT INT1, XML1
FROM T1
ORDER BY INT1
FOR READ ONLY;

At the same time, another application performs SQL write operations that are represented by
the following pseudocode:

EXEC SQL UPDATE T1
SET XML1 = XMLPARSE(DOCUMENT '<B1>222</B1>');
EXEC SQL OPEN CURSOR C1; (Note: Cursor C1 is in another application as described)
EXEC SQL UPDATE T1
SET XML1 = XMLPARSE(DOCUMENT '<C1>333</C1>');
EXEC SQL FETCH FROM C1 INTO :HVINT1, :HVXML1;

With multiple versions, the reading application does not need to hold a lock. Thus, the
updating application can do its update operations without waiting for the reading application to
finish. The reading application reads the old versions of the XML values, which are consistent
data.

4.3.2 Example of improved storage usage with XML versions

The following example demonstrates how multiple XML versions can result in the use of less
real storage when an XML document is the object of a self-referencing update operation.

Assume the same table T1 and data rows.

An application performs SQL operations that are represented by the following pseudocode:
EXEC SQL
UPDATE T1
SET XML1 = XML2, 1
XML2 = XML1 2
WHERE INT1 = 100;
EXEC SQL
COMMIT 3 ;

The results of those operations are:

1. When column XML1 is updated, DB2 stores the updated document as a new version in
the XML table for column XML1. There are now two versions of the XML document for the
second row of column XML1:

– First version: <A1>111</A1>

– Second version: <A2>aaa</A2>

2. When column XML2 is updated, DB2 stores the updated document as a new version in
the XML table for column XML2. There are now two versions of each XML document for
the second row of column XML2:

250 <A1>111</A1> <A2>aaa</A2>

INT1 XML1 XML2
Chapter 4. Creating and adding XML data 59

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
– First version: <A2>aaa</A2>

– Second version: <A1>111</A1>

3. The update operations are committed. Thus, the old versions are no longer needed. DB2
deletes those versions from the XML tables for columns XML1 and XML2. (assuming no
other readers are interested in reading these values).

Without multiple XML versions, DB2 needs to copy the original versions of the updated
documents into memory, so that their values are not lost. For large XML documents, storage
shortages might result.

4.3.3 Storage structure for XML data with versions

Figure 4-6 shows the storage structure of XML data to support XML versions.

Figure 4-6 XML multi-versioning scheme

When you create a table with XML columns or ALTER a table to add XML columns, DB2
implicitly creates the following objects:

� A table space and table for each XML column. The data for an XML column is stored in the
corresponding table.

DB2 creates the XML table space and table in the same database as the table that
contains the XML column (the base table). The XML table space is in the Unicode UTF-8
encoding scheme.

If the base table contains XML columns that support XML versions, each XML table
contains two more columns than an XML table for an XML column that does not support
XML versions. Those columns are named START_TS and END_TS, and they have the
BINARY(8) data type. START_TS contains the RBA or LRSN of the logical creation of an
XML record. END_TS contains the RBA or LRSN of the logical deletion of an XML record.
START_TS and END_TS identify the rows in the XML table that make up a version of an
XML document.

XML multi-versioning scheme

Base Table

XMLColDOCID …

DocID index
NodeID index

XMLDATADOCID
MIN_
NODEID

V# update timestamp
(LRSN/ RBA) (14 bytes)

1

2

3

1

2

2

3

02

02

0208

02

2 0210

3 02

START_TS END_TS

FF…FFF

FF…FFF

FF…FFF

FF…FFF

00…100

00…200

00…200 00…500

00…500

00…650

00…300 00…650

(DB2_GENERATED_DOCID_FOR_XML)

XML index (user)

(DOCID, NODEID, END_TS, START_TS)
)

B*tree B*treeB*tree
60 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
Column START_TS represents the time when that row is created, and column END_TS
represents the time when the row is deleted or updated. Column END_TS contains
X’FFFFFFFFFFFFFFFF’ initially. To avoid compression causing update overflow, columns
up to column END_TS are not compressed in the reordered row format.

� If the base table space supports XML versions, the length of the XML indicator column is
eight bytes longer that the XML indicator column in a base table space that does not
support XML versions. That is, 14 bytes instead of six bytes.

� A document ID column in the base table, named DB2_GENERATED_DOCID_FOR_XML,
with data type BIGINT

We refer to this as DOCID column. The DOCID column holds a unique document identifier
for the XML columns in a row. One DOCID column is used for all XML columns.

The DOCID column has the GENERATED ALWAYS attribute. Therefore, a value in this
column cannot be NULL. However, It can be null for rows that existed before a table is
altered to add an XML column.

� An index on the DOCID column.

This index is known as a document ID (or DOCID) index.

� An index on each XML table that DB2 uses to maintain document order, and map logical
node ids to physical record IDs

This index is known as a NODEID index. The NODEID index is an extended,
non-partitioning index.

If the base table space supports XML versions, the index key for the NODEID index
contains two more columns than the index key for a node id index for a base table space
that does not support XML versions. These are START_TS and END_TS.

Figure 4-7 gives a general idea of how DB2 handles multi-versioning for XML data.

Figure 4-7 Multi-versioning for XML data

• Maintain the multiple versions of an XML document

– Readers do not need to lock XML.

– Sub-document versioning

t0 t2 t3 FF…F

t0

Time

FF…F

t1

Example: A document is inserted at time t0 and is stored as two records. At time t2, a
node is inserted into the 2nd record, a new version of the record is created at t2 and
the old version ended at t2. The old version is not deleted until garbage clean up.
Chapter 4. Creating and adding XML data 61

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
Each row in the XML auxiliary table is associated with two temporal attributes (start and end)
to represent the period when the row exists. Start represents the time when that row is
created, end represents the time when the row is deleted or expired.

For example, an XML document is stored as two rows in the XML auxiliary table at time t0, the
second row is modified at t2, DB2 set that row expired at t2, create a new row representing
the modified version with create time t2. The first row is not changed during this process.

A row in XML auxiliary table is never deleted until the garbage collector cleans it up.

When an XML document is deleted at time t2, all the records for that document are marked
expired at t2. When a row of an XML document is updated, all the records for that document
are marked expired at t2, the new document is inserted into XML auxiliary table with start time
set to t2.

When a part of an XML document is modified, only the existing record (s) to be modified
expire and a new version of those records is created.

Figure 4-8 shows the XML locking scheme in DB2 10.

Figure 4-8 XML Locking scheme with multi-versioning

Storage structure note: This storage structure is possible only in new-function mode and
for universal table spaces. Storage structure for multi-versioning is a prerequisite for
several other XML enhancements such as:

� Access of currently committed data
� “As Of” for time oriented data
� XML Update with XMLMODIFY
� Removing restrictions for SELECT FROM UPDATE//DELETE for XML

DB2 10 for z/OS

XML locking scheme with multi-versioning

s page/row lockSELECT RR,
SELECT RS

s page/row lock on rowset,
release on next fetch

SELECT UR,
SELECT CS-
CURRENT DATA NO,
SELECT CS-
CURRENT DATA YES
with Multirow fetch and
dynamic scrolling

s page/row lock, release on
next row fetch

SELECT CS-
CURRENT DATA YES
workfile

s page/row lock, release on
next row fetch

SELECT CS-
CURRENT DATA YES
no workfile

Conditional lockNoneSELECT UR,
SELECT CS-
CURRENT DATA NO

Page latch (and
optional P-Lock)

x lock, release at
commit

u->x, s->x, x stays xUPDATE/DELETE

Page latch (and
optional P-Lock)

x lock, release at
commit

x page/row lockINSERT

XML Table space
Page Lock

XML LockBase Page/Row Lock
(Business as usual)

SQL
62 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
4.4 Catalog queries to gather information

You can get hold of the implicitly created database and table space names for the table
BK_TO_CSTMR_STMT from the catalog table SYSIBM.SYSTABLES as shown in Query 1 in
Example 4-2.

Once you know the name of the implicitly created database, you can retrieve information
about the default storage group, default buffer pool used for data, and default buffer pool used
for indexes from the catalog table SYSIBM.SYSDATABASE as shown in Query 2 in
Example 4-2. The value ‘Y’ in column IMPLICIT indicates the database is implicitly created.

Once you know the name of the implicitly created database, you can retrieve information
about table spaces in this database from the catalog table SYSIBM.SYSTABLESPACE as
shown in Query 3 in Example 4-2.

There are two rows in this table:

� The first row is for the base table space BKRTORCS. The value ‘G’ in column TYPE
indicates this is a partition by growth universal table space, currently has one partition
(indicated by column PARTITIONS) and can grow to a maximum of 256 partitions
(indicated by column MAXPARTITIONS). The value ‘Y’ in column IMPLICIT indicates the
table is implicitly created. SEGSIZE used is 32. The maximum data set size is 4 GB,
indicated by column DSSIZE in kilobytes.

� The second row is for the XML table space XBKR0000. The value ‘P’ in column TYPE
indicates this is an implicit table space created for XML columns, currently has one
partition (indicated by column PARTITIONS) and can grow to a maximum of 256 partitions
(indicated by column MAXPARTITIONS). The value ‘Y’ in column IMPLICIT indicates the
table is implicitly created. SEGSIZE used is 32. The maximum data set size is 4 GB,
indicated by column DSSIZE in kilobytes.

Example 4-2 Catalog Queries (1 of 3)

-- Query 1

SELECT SUBSTR(NAME,1,20) AS NAME,
 SUBSTR(DBNAME,1,10) AS DBNAME,
 SUBSTR(TSNAME,1,10) AS TSNAME
FROM SYSIBM.SYSTABLES
WHERE NAME='BK_TO_CSTMR_STMT' AND CREATOR=USER;
---------+---------+---------+---------+---------+---------+---
NAME DBNAME TSNAME
---------+---------+---------+---------+---------+---------+---
BK_TO_CSTMR_STMT DSN00242 BKRTORCS
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---
-- Query 2

SELECT SUBSTR(NAME,1,10) AS NAME,
 SUBSTR(CREATOR,1,10) AS CREATOR,

Note: The name of the XML table space always starts with X and it is always a
universal table space. In this case it is partition-by-growth because the base table
space is partition-by-growth, and is created in the same database as the base table
space.
Chapter 4. Creating and adding XML data 63

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
 SUBSTR(STGROUP,1,10) AS STGROUP,
BPOOL,INDEXBP,IMPLICIT
FROM SYSIBM.SYSDATABASE
WHERE NAME='DSN00242' ;
---------+---------+---------+---------+---------+---------+----
NAME CREATOR STGROUP BPOOL INDEXBP IMPLICIT
---------+---------+---------+---------+---------+---------+----
DSN00242 SYSIBM SYSDEFLT BP0 BP0 Y
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+----
-- Query 3

SELECT SUBSTR(NAME,1,10) AS NAME,
 SUBSTR(CREATOR,1,10) AS CREATOR,
 SUBSTR(DBNAME,1,10) AS DBNAME,
 STATUS,TYPE,SEGSIZE,PARTITIONS,
 MAXPARTITIONS AS MAXP,
 DSSIZE,IMPLICIT
FROM SYSIBM.SYSTABLESPACE
WHERE DBNAME = 'DSN00242'

AND CREATOR = USER ;
---------+---------+---------+---------+---------+---------+---------+---------+-------
NAME CREATOR DBNAME STATUS TYPE SEGSIZE PARTITIONS MAXP DSSIZE IMPLICIT
---------+---------+---------+---------+---------+---------+---------+---------+-------
BKRTORCS XMLR4 DSN00242 A G 32 1 256 4194304 Y
XBKR0000 XMLR4 DSN00242 A P 32 1 256 4194304 Y
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

Once you know the name of the implicitly created database, you can retrieve information
about tables in this database from the catalog table SYSIBM.SYSTABLES as shown in
Query 4 in Example 4-3.

There are two rows in this table:

� The first row is for the base table BK_TO_CSTMTR_STMT (the value ‘T’ in column TYPE
indicates this). The blank value in column STATUS indicates that the table has no unique
constraint (primary key or unique key) and the definition of the table is complete. The blank
value in column TABLESTATUS indicates that the table definition is complete.

� The second row is for the XML table XBK_TO_CSTMTR_STMT. The value ‘P’ in column
TYPE indicates this is an Implicit table created for XML columns. The blank value in
column STATUS indicates that the table has no unique constraint (primary key or unique
key) and the definition of the table is complete. The blank value in column TABLESTATUS
indicates that the table definition is complete.

You can get information about the columns in both the base table and XML table from
SYSIBM.SYSCOLUMNS as shown in Query 5 in Example 4-3. The first three rows are for
the three columns defined in the base table. The fourth row is the DOCID column generated
by DB2. The next three rows are for columns defined in the XML table. The last two rows are
for the two extra columns defined in the XML table to support multiple versions for XML
documents and are present because the base table is in partition-by-growth universal table
space.

The name of the XML table always starts with X.
64 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
Example 4-3 Catalog Queries (2 of 3)

-- Query 4

SELECT SUBSTR(NAME,1,20) AS NAME,
 SUBSTR(CREATOR,1,10) AS CREATOR,
 TYPE,
 SUBSTR(DBNAME,1,10) AS DBNAME,
 SUBSTR(TSNAME,1,10) AS TSNAME,
 STATUS,TABLESTATUS
FROM SYSIBM.SYSTABLES
WHERE DBNAME = 'DSN00242'

AND CREATOR = USER ;
---------+---------+---------+---------+---------+---------+---------+--------+
NAME CREATOR TYPE DBNAME TSNAME STATUS TABLESTATUS
---------+---------+---------+---------+---------+---------+---------+--------+
BK_TO_CSTMR_STMT XMLR4 T DSN00242 BKRTORCS
XBK_TO_CSTMR_STMT XMLR4 P DSN00242 XBKR0000
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+--
-- Query 5

SELECT SUBSTR(NAME,1,30) AS NAME,
 SUBSTR(TBNAME,1,20) AS TBNAME,
 SUBSTR(TBCREATOR,1,10) AS TBCREATOR,
 SUBSTR(COLTYPE,1,8) AS COLTYPE,
 LENGTH,COLNO
FROM SYSIBM.SYSCOLUMNS
WHERE TBCREATOR = USER

AND TBNAME IN ('BK_TO_CSTMR_STMT',’XBK_TO_CSTMR_STMT’)
ORDER BY TBNAME,COLNO;
---------+---------+---------+---------+---------+---------+---------+----------+---------+
NAME TBNAME TBCREATOR COLTYPE LENGTH COLNO
---------+---------+---------+---------+---------+---------+---------+---------+---------+
MSG_ID BK_TO_CSTMR_STMT XMLR4 VARCHAR 35 1
MSG_CRE_DT_TM BK_TO_CSTMR_STMT XMLR4 TIMESTMP 12 2
BK_TO_CSTMR_STMT BK_TO_CSTMR_STMT XMLR4 XML 14 3
DB2_GENERATED_DOCID_FOR_XML BK_TO_CSTMR_STMT XMLR4 BIGINT 8 4
DOCID XBK_TO_CSTMR_STMT XMLR4 BIGINT 8 1
MIN_NODEID XBK_TO_CSTMR_STMT XMLR4 VARBIN 128 2
XMLDATA XBK_TO_CSTMR_STMT XMLR4 VARBIN 15850 3
START_TS XBK_TO_CSTMR_STMT XMLR4 BINARY 8 4
END_TS XBK_TO_CSTMR_STMT XMLR4 BINARY 8 5
DSNE610I NUMBER OF ROWS DISPLAYED IS 4
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+--

The relationship between the base table and XML table is described in the catalog table
SYSIBM.SYSXMLRELS and this information can be retrieved as shown in Query 6 in
Example 4-4. Column XMLRELOBID shows internal identifier of the relationship between the
base table and the XML table.

Information about the DOCID and NODEID indexes can be retrieved from the catalog table
SYSIBM.SYSINDEXES as shown in Query 7 in Example 4-4.
Chapter 4. Creating and adding XML data 65

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
Column IX_EXTENSION_TYPE shows ‘N” in the first row indicating this row is for the
NODEID index which is an extended index. Column IX_EXTENSION_TYPE has blanks in the
second row indicating this row is for the DOCID index which is a simple index.

Example 4-4 Catalog Queries (3 of 3)

-- Query 6

SELECT SUBSTR(TBOWNER,1,10) AS TBOWNER,
 SUBSTR(TBNAME,1,20) AS TBNAME,
 SUBSTR(COLNAME,1,20) AS COLNAME,
 SUBSTR(XMLTBOWNER,1,10) AS XMLTBOWNER,
 SUBSTR(XMLTBNAME,1,20) AS XMLTBNAME,
 XMLRELOBID
FROM SYSIBM.SYSXMLRELS
WHERE TBOWNER = USER

AND TBNAME = 'BK_TO_CSTMR_STMT';
---------+---------+---------+---------+---------+---------+---------+--------+--------+
TBOWNER TBNAME COLNAME XMLTBOWNER XMLTBNAME XMLRELOBID
---------+---------+---------+---------+---------+---------+---------+--------+--------+
XMLR4 BK_TO_CSTMR_STMT BK_TO_CSTMR_STMT XMLR4 XBK_TO_CSTMR_STMT 7
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
--Query 7

SELECT SUBSTR(NAME,1,30) AS NAME,
 SUBSTR(CREATOR,1,10) AS CREATOR,
 SUBSTR(TBNAME,1,20) AS TBNAME,
 SUBSTR(TBCREATOR,1,10) AS TBCREATOR,
 SUBSTR(DBNAME,1,10) AS DBNAME,
 SUBSTR(INDEXSPACE,1,20) AS INDEXSPACE,
 IX_EXTENSION_TYPE AS IXET
FROM SYSIBM.SYSINDEXES
WHERE DBNAME = 'DSN00242'

AND CREATOR = USER ;
---------+---------+---------+---------+---------+---------+---------+---------+---------+--
NAME CREATOR TBNAME TBCREATOR DBNAME INDEXSPACE IXET
---------+---------+---------+---------+---------+---------+---------+---------+---------+--
I_NODEIDXBK_TO_CSTMR_STMT XMLR4 XBK_TO_CSTMR_STMT XMLR4 DSN00242 IRNODEID N
I_DOCIDBK_TO_CSTMR_STMT XMLR4 BK_TO_CSTMR_STMT XMLR4 DSN00242 IRDOCIDB
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

4.5 Display database command

If you issue the DB2 -DISPLAY DATABASE command, you can see all the base objects and
the XML objects associated with the database as shown in Figure 4-9 on page 67.

TYPE is TS for a table space, IX for an index space, and XS for a XML table space.

PART is the partition number. Since we have one partition for the partition-by-growth table
space for both the base table and the XML table, PART shows 00001. Over time the table
space can grow to more partitions and that is why there are two lines for each of the base and
XML table spaces, at present with no value.
66 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
For non-partitioned indexes, it is the logical partition number preceded by the character L (for
example, L0001). This is the case for the DOCID and NODEID indexes.

Figure 4-9 -DISPLAY DATABASE command output

4.6 Ingesting XML data

You can use different techniques to ingest XML data. There are different forms of the INSERT
statement and the LOAD utility.

In this section, we show an example of the SQL INSERT statement using a string literal to
insert rows into a table that contains XML columns. This form of INSERT is suitable for small
documents. The host variable or file reference versions of INSERT are applicable for any
length.

Example 4-5 shows the successful insertion of the shorter version of the Message Received
XML document for our application scenario shown in Example A-2 on page 269.

Example 4-5 Using the SQL INSERT statement to insert XML document to an XML column

INSERT INTO XMLR4.BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
values('<?xml version="1.0" encoding="UTF-8" ?>
 <Document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02">
 <BkToCstmrStmt>
 <GrpHdr>
 <MsgId>AAAASESS-FP-STAT001</MsgId>
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 </GrpHdr>
 <Stmt>
 <Id>AAAASESS-FP-STAT001</Id>

-DISPLAY DB(DSN00242)

DSNT360I -DB0B ***********************************
DSNT361I -DB0B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB0B ***********************************
DSNT362I -DB0B DATABASE = DSN00242 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB0B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BKRTORCS TS 0001 RW
BKRTORCS TS RW
XBKR0000 XS 0001 RW
XBKR0000 XS RW
IRDOCIDB IX L0001 RW
IRDOCIDB IX L* RW
IRNODEID IX L0001 RW
IRNODEID IX L* RW
******* DISPLAY OF DATABASE DSN00242 ENDED **********************
DSN9022I -DB0B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Chapter 4. Creating and adding XML data 67

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 <FrToDt>
 <FrDtTm>2010-10-18T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-18T17:00:00+01:00</ToDtTm>
 </FrToDt>

<Acct>
 <Id>
 <Othr>
 <Id>50000000054910000003</Id>
 </Othr>
 </Id>
 <Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAA BANKEN</Nm>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>

<CdOrPrtry>
 <Cd>OPBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">500000</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>

<Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>CLBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435678.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Ntry>

<Amt Ccy="SEK">105678.50</Amt>
 <BookgDt>
 <DtTm>2010-10-18T13:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98765/01</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">200000</Amt>
 <BookgDt>
 <DtTm>2010-10-18T10:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-01</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">30000</Amt>

<BookgDt>
68 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
 <DtTm>2010-10-18T15:15:00+01:00</DtTm>
</BookgDt>

 <AcctSvcrRef>AAAASESS-FP-CONF-FX</AcctSvcrRef>
 </Ntry>
 </Stmt>
 <Stmt>
 <Id>AAAASESS-FP-STAT002</Id>
 <CreDtTm>2010-10-17T17:00:00+01:00</CreDtTm>
 <FrToDt>
 <FrDtTm>2010-10-17T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-17T17:00:00+01:00</ToDtTm>
 </FrToDt>
 <Acct>
 <Id>
 <Othr>
 <Id>50000000054910000004</Id>
 </Othr>
 </Id>

<Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAB BANKEN</Nm>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>OPAV</Cd>
 </CdOrPrtry>
 </Tp>

<Amt Ccy="SEK">500300</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>

</Bal>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>FWAV</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435478.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Ntry>
 <Amt Ccy="SEK">105378.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98764/01</AcctSvc

</Ntry>
 <Ntry>

<Amt Ccy="SEK">200100</Amt>
Chapter 4. Creating and adding XML data 69

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-02</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">30020</Amt>
 <BookgDt>
 <DtTm>2010-10-17T15:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-CONF-FY</AcctSvcrRef>
 </Ntry>
 </Stmt>
 </BkToCstmrStmt>

</Document>');

DSNE615I NUMBER OF ROWS AFFECTED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

This technique is quite cumbersome for large XML documents. We show how to use the
LOAD utility in such cases. LOAD utility is discussed in Chapter 9, “Utilities with XML” on
page 181.

4.7 XML indexes

An XML index can be used to improve the efficiency of queries on XML documents that are
stored in an XML column.

Just like you define relational indexes on selected columns of a relational table, you define
XML indexes on selected elements and attributes within a single XML column of a table. In
particular, XML indexes in DB2 do not automatically index all the values in an XML column,
but only the ones that you choose. Although you can choose to index all elements and
attributes, you should typically index just those elements and attributes that are frequently
used in predicates and join conditions.

Instead of providing access to the beginning of a document, index entries in an XML index
provide access to nodes within the document by creating index keys based on XML pattern
expressions. Because multiple parts of a XML document can satisfy an XML pattern, DB2
might generate multiple index keys when it inserts values for a single document into the index.

You create an XML index using the CREATE INDEX statement, and drop an XML index using
the DROP INDEX statement. The GENERATE KEY USING XMLPATTERN clause you
include with the CREATE INDEX statement specifies what you want to index.

Some of the keywords used with the CREATE INDEX statement for indexes on non-XML
columns do not apply to indexes over XML data.

Example 4-6 shows an example of creating an index on the sample XML document for the
application scenario.

Example 4-6 XML index on DtTm elements

CREATE INDEX IXMLNTRY
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT) 1
GENERATE KEY USING XMLPATTERN 2
70 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch04.fm
'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
/Document/BkToCstmrStmt/Stmt/Ntry/BookgDt/DtTm'
AS SQL TIMESTAMP 3

Note the following in Example 4-6:

1. The XML index is defined on the BK_TO_CSTMR_STMT column of the
BK_TO_CSTMR_STMT table. BK_TO_CSTMR_STMT must be of the XML data type.

2. The GENERATE KEY USING XMLPATTERN clause provides information about what you
want to index. This clause is called an XML index specification. The XML index
specification contains an XML pattern clause. The XML pattern clause in this example
indicates that you want to index the values of the DtTm element.The namespace
declaration is necessary because the XML documents have a namespace declaration.

3. AS SQL TIMESTAMP indicates that indexed values are stored as TIMESTAMP values.

Only one index specification clause is allowed in a CREATE INDEX statement. However, you
can create multiple XML indexes on an XML column.

Every XML pattern expression that you specify in a CREATE INDEX statement must be
associated with a data type. The data type must be VARCHAR, DECFLOAT, DATE, or
TIMESTAMP.

You can interpret the result of pattern expression as multiple data types. For example, the
value 123 has a character representation, but it can also be interpreted as the number 123.
You can create different indexes on the same pattern expression with different data types, so
that the data can be indexed, regardless of its data type.

If you validate your XML documents against an XML schema, ensure that the data type
specifications in the XML schema match the data types that you use for your indexes.

The UNIQUE keyword in XML index definitions has a similar but slightly different meaning
than it does for relational index definitions.

� For relational indexes, the UNIQUE keyword in the CREATE INDEX statement enforces
uniqueness across all rows in a table.

� For indexes over XML data, the UNIQUE keyword enforces uniqueness across all
documents in an XML column.

For an XML index, DB2 enforces uniqueness for:

� The data type of the index.

� The XML path to a node.

� The value of the node after the XML value has been cast to the SQL data type that is
specified for the index.

Because rounding can occur during conversion of an index key value to the specified data
type for the index, multiple values that appear to be unique in the XML document might rarely
result in duplicate key errors.
Chapter 4. Creating and adding XML data 71

7915ch04.fm Draft Document for Review January 9, 2011 1:25 pm
72 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
Chapter 5. Validating XML data

In this chapter we discuss details of user-controlled and automatic validation of XML
documents. The sections are:

� XML schema validation
� XML type modifier
� Automatic validation
� User-controlled validation
� Determining whether an XML document has been validated

5

© Copyright IBM Corp. 2011. All rights reserved. 73

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
5.1 XML schema validation

XML schema validation is the process of determining whether the structure, content, and data
types of an XML document are valid according to an XML schema.

In addition, XML schema validation strips ignorable whitespace from the input document.

There are two ways that you can validate an XML document in DB2 10:

� Automatically, by including an XML type modifier in the XML column definition in a
CREATE TABLE or ALTER TABLE statement. When a column has an XML type modifier,
DB2 implicitly validates documents that are inserted into the column or when documents
in the column are updated.

� User-controlled, by executing the DSN_XMLVALIDATE built-in function when you insert a
document into an XML column or update a document in an XML column or before
selecting back (not necessarily into a table).

Validation is optional when you insert data into an XML column with no XML type modifier.
Validation is mandatory when you insert data into an XML column with an XML type modifier.

We examine both methods in this section. Before we discuss automatic validation, let us
discuss XML type modifier.

5.2 XML type modifier

Automatic validation requires XML type modifier.

The XML data type can accept any well-formed XML documents. However, in many cases,
users want to store in one XML column documents that have similar structures or conform to
the same XML schema. DB2 10 introduces the XML type modifier which qualifies the XML
data type with a set of one or more XML schemas. The value of an XML column with an XML
type modifier must conform to at least one XML schema specified in the type modifier.

When you define an XML column, you can add an XML type modifier. An XML type modifier
associates a set of one or more XML schemas with the XML data type. You can use an XML
type modifier to cause all XML documents that are stored in an XML column to be validated
according to one of the XML schemas that is specified in the type modifier.

The XML type modifier can identify more than one XML schema. You might want to associate
more than one XML schema with an XML type modifier for the following reasons:

� The requirements for an XML schema evolve over time.

An XML column might contain documents that describe only one type of information, but
some fields in newer documents might need to be different from fields in the older
documents. As new document versions are required, you can add new XML schemas to
the XML type modifier.

� A single XML column contains XML documents of different kinds.

An XML column might contain documents that have several different formats. In this case,
each type of document needs its own XML schema.

Alternatively, you might want to associate a single XML schema with multiple type modifiers.
An XML schema can define many different documents. You might need to separate the XML
74 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
documents into different columns, but specify the same XML schema in a type modifier for
each column.

For example, a sales department might have one XML schema that defines purchase orders
and billing statements. You can store purchase orders in one XML column, and billing
statements in another XML column. Both XML columns have an XML type modifier that points
to the same XML schema, but each column restricts documents with different root elements
in the XML schema.

You define an XML type modifier in a CREATE TABLE or ALTER TABLE statement as part of
an XML column definition.

Not all XML schemas that the XML type modifier identifies need to be registered before you
execute the CREATE or ALTER statement. If the XML type modifier specifies a target
namespace, only the XML schemas in that target namespace that exist when the CREATE or
ALTER statement is executed are associated with the XML type modifier.

If altered-data-type is XML, the old data type of the altered column must also be XML:

� If the old data type has no XML type modifier and the new data type does, you should
ensure that all values in the XML column are valid according to the XML schema that is
specified in the type modifier. The XML table space for the column that is being changed is
left in CHECK-pending status.

� If the old data type has the XML type modifier but the new data type has no type modifier,
the existing values do not need to be re-validated. The state of the table space is not
changed.

� If the XML schemas that are specified in the old XML type modifier are a subset of the
XML schemas that are specified in the new XML type modifier, the existing values do not
need to be re-validated. The state of the XML table space is not changed.

� If the XML schemas that are specified in the old XML type modifier are NOT a subset of
the XML schemas that are specified in the new XML type modifier, the XML table space for
the column that is being changed is left in the CHECK-pending status.

Changing an XML column to use a different type modifier does not result in the invalidation of
dependent plans, packages, or statements in the dynamic statement cache. Also, changing
an XML column to use a different type modifier will not generate a new version of the table.
Chapter 5. Validating XML data 75

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 5-1 shows the XML schemas the following examples refer to for defining an XML type
modifier.

Figure 5-1 XML schemas

Example 5-1 shows how to specify an XML type modifier for an XML column at create time

Example 5-1 Specify an XML type modifier for an XML column at create time

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML(XMLSCHEMA ID SYSXSR.PO1))

A table for purchase orders contains an XML column named CONTENT. The documents in
the XML column need to be validated according to XML schema SYSXSR.PO1, which has
already been registered.

To alter an existing XML column to include an XML type modifier or remove an XML type
modifier, use ALTER TABLE.

Example 5-2 shows the table definition without XML type modifier specified.

Example 5-2 Table definition without XML type modifier

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML)

The table contains several XML documents. The documents in the XML column need to be
validated according to XML schema SYSXSR.PO1, which has already been registered. Alter
the XML column to add an XML type modifier that specifies SYSXSR.PO1 as shown in
Example 5-3.

Example 5-3 Specify XML type modifier for XML column at alter time

ALTER TABLE PURCHASEORDERS
 ALTER CONTENT
 SET DATA TYPE XML(XMLSCHEMA ID SYSXSR.PO1)

You can add an XML schema to the XML type modifier.

Note: The table space that contains the XML documents for the CONTENT column is put
in CHECK-pending status.

http://www.example.com/PO4.xsd

http://www.example.com/PO3.xsd

http://www.example.com/PO2.xsd

http://www.example.com/PO1.xsd

Schema Location

2010-02-23
08:00:00.000

http://www.example.com/PO2PO4

2010-01-30
10:00:00.0000

NO NAMESPACEPO3

2010-01-01
10:00:00.0000

http://www.example.com/PO2PO2

2009-01-01
10:00:00.0000

http://www.example.com/PO1PO1

Registration
Timestamp

Target NamespaceXML
schema
name
76 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
Example 5-4 shows an example. Suppose PO2 is a new version of the purchase order
schema. You can use the ALTER TABLE statement to reset the XML type modifier of the
CONTENT column to include both PO1 and PO2.

Example 5-4 Add an XML schema to the XML type modifier

ALTER TABLE PURCHASEORDERS
ALTER CONTENT
SET DATA TYPE XML(XMLSCHEMA ID SYSXSR.PO1, ID SYSXSR.PO2)

You can also reset the data type of CONTENT to XML without type modifier.

Example 5-5 shows how to reset XML type modifier for an XML column at alter time.

Example 5-5 Reset XML type modifier for XML column at alter time

ALTER TABLE PURCHASEORDERS
ALTER CONTENT
SET DATA TYPE XML

Validation is automatically performed for INSERT and UPDATE SQL statements and the
LOAD utility if the XML column is defined with the XML type modifier.

Catalog table support for XML type modifiers:

� SYSIBM.SYSXMLTYPMOD contains rows for the XML type modifiers

� SYSIBM.SYSXMLTYPMSCHEMA contains a row for each XML schema specification for
one XML type modifier.

Instead of specifying the schema name directly as shown in all the examples, it is possible to
specify the URI and LOCATION keywords, so the schema name can be derived.

Example 5-6 shows how to specify the schema location hint. Both PO2 and PO4 have the
same target namespace http://www.example.com/PO2. If you want to use PO2, you can add
LOCATION ‘http://www.example.com/PO2.xsd’ after the URI ‘http://www.example.com/PO2’
clause.

Example 5-6 Identify an XML schema by target namespace and schema location

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML(XMLSCHEMA URI ‘http://www.example.com/PO2’

LOCATION ‘http://www.example.com/PO2.xsd’))

Example 5-7 shows XML type modifier uses only the URI keyword to identify the XML
schema.

XML schema note: Because the XML schema specified in the old type modifier is a
subset of the new type modifier, the existing values of the CONTENT column do not need
to be validated again. Thus, the state of the XML table space for the CONTENT column
stays unchanged. If the XML schema specified in the old XML type modifier is not a subset
of the XML schema specified in the new XML type modifier, the XML table space for the
column that is being changed is left in the CHECK-pending status.

The CONTENT column in this example: The existing values of the CONTENT column do
not need to be validated again.
Chapter 5. Validating XML data 77

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
Example 5-7 Identify an XML schema by target namespace

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML(XMLSCHEMA URI ‘http://www.example.com/PO2’))

If an XML schema does not contain the targetNamespace attribute in its schema document, it
can be referenced in the XML type modifier by “NO NAMESPACE”.

In Example 5-8, DB2 chooses PO3 as the XML type modifier.

Example 5-8 No namespace

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML(XMLSCHEMA NO NAMESPACE

LOCATION ‘http://www.example.com/PO3.xsd’))

If an XML schema has more than one global element declaration and you want to validate the
XML value against one of them, you can specify the ELEMENT clause. Assume the purchase
order schema has declared two global elements: purchaseOrder and comment. Hence, a
document whose root element is either purchaseOrder or comment could be valid according
to PO1 and can be stored in the PURCHASEORDERS table. However, this might not be
desirable. If you only want to store purchase order documents in the CONTENT column, you
can specify the ELEMENT “purchaseOrder” in the XML type modifier for CONTENT.
Example 5-9 shows how you can do this.

Example 5-9 Specifying global element name

CREATE TABLE PURCHASEORDERS(
ID INT NOT NULL,
CONTENT XML(XMLSCHEMA ID SYSXSR.PO1

ELEMENT “purchaseOrder”))

5.3 Automatic validation

You can automate XML schema validation by adding an XML type modifier to an XML column
definition. Before schema validation through an XML type modifier can occur, all schema
documents that make up an XML schema must be registered in the built-in XML schema
repository (XSR).

Figure 5-2 shows the table definition and the entries in the XSR for the schemas used as XML
type modifiers in the table definition.

Using the URI keyword: If you execute the CREATE TABLE statement before PO4 is
registered, only PO2 is added to the type modifier in SYSIBM.SYSXMLTYPMSCHEMA.
When PO4 is registered later, the XML type modifier for the CONTENT column remains
unchanged. If you execute the CREATE TABLE statement after PO4 is registered, an SQL
error occurs because the XML type modifier uses the URI keyword to identify two XML
schemas PO2 and PO4. The URI keyword must identify only one XML schema.
78 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
Figure 5-2 XML Schemas in XML Schema Repository

Figure 5-3 shows how DB2 chooses an XML schema when the XML type modifier specifies
multiple schemas.

Figure 5-3 Schema determination

You can include more than one XML schema in an XML type modifier. When you insert into or
update an XML column, DB2 chooses one XML schema to do validation.

XML schemas in XML schema repository

http://www.example.com/PO4.xsd

http://www.example.com/PO3.xsd

http://www.example.com/PO2.xsd

http://www.example.com/PO1.xsd

Schema Location

2010-02-23
08:00:00.000

http://www.example.com/PO2PO4

2010-01-30
10:00:00.0000

NO NAMESPACEPO3

2010-01-01
10:00:00.0000

http://www.example.com/PO2PO2

2009-01-01
10:00:00.0000

http://www.example.com/PO1PO1

Registration
Timestamp

Target NamespaceXML
schema
name

Table definition:

CREATE TABLE PURCHASE_ORDERS(
ID INT NOT NULL
CONTENT XML (XMLSCHEMA ID SYSXSR.PO1, ID SYSXSR.PO2,

ID SYSXSR.PO3, ID SYSXSR.PO4)
)

DB2 10 for z/OS

Schema determination

– DB2 determines the XML schema to use upon INSERT, UPDATE or LOAD.

TNS* TargetNamespaces NS* Namespace

Do TNS* of
schemas match

with the NS* of the
root in the doc?

NO
Error

YES

Only 1 match?

NO

YES
Take this one!

Schema
Location in

doc?

NO

YES Schemas
match with the

Schema location?

YES
Take this one!

Take the XML schema with latest
registration timestamp

NO
Chapter 5. Validating XML data 79

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
DB2 uses the following process to determine which XML schema to use.

� If the operation is an update operation, and an XML schema that is specified by the XML
type modifier has already been used to validate the original document, DB2 uses the
same XML schema to validate the updated document.

� If there is only one XML schema whose target namespace matches the namespace name
of the root element node in the document that is being validated (the XML instance
document), DB2 chooses that XML schema to validate the XML document.

� If there is more than one XML schema with a target namespace that matches the
namespace name of the root element, DB2 chooses an XML schema by using the schema
location hint. The root element node of an XML instance document can contain an
xsi:schemaLocation attribute. That attribute consists of one or more pairs of URI
references, separated by white space. The first member of each pair is a namespace
name, and the second member of the pair is a URI that describes where to find an
appropriate schema document for that namespace. The second member of each pair is
the schema location hint for the namespace name that is specified in the first member.

For example, this is a schema location attribute:

xsi:schemaLocation="http://www.example.com/PO2 http://www.example.com/PO4.xsd"

The first member of the pair, http://www.example.com/PO2, is the namespace name. The
second member of the pair, http://www.example.com/PO4.xsd, is the URI that provides the
schema location hint.

DB2 uses the schema location hint to choose an XML schema in the following way:

� If the root element node contains an xsi:schemaLocation attribute, DB2 searches the
attribute value for a schema location hint with a corresponding namespace name that
matches the namespace name in the root element node.

� If DB2 finds a schema location hint, DB2 uses the hint to identify an XML schema whose
schema location URI is identical to the schema location hint. DB2 validates the input
document against that schema.

� If the root element does not contain an xsi:schemaLocation attribute, or the
xsi:schemaLocation attribute does not contain a schema location hint with a
corresponding namespace name that matches the namespace name in the root element
node, DB2 uses the XML schema with the same target namespace and the latest
registration timestamp.

Some examples on how DB2 determines the schema to be used for validation from an XML
type modifier are listed here.

In Example 5-10 DB2 chooses XML schema PO1.

Example 5-10 Schema selection for validation from an XML type modifier - Example 1

INSERT INTO PURCHASE_ORDERS VALUES(1,
‘<po:purchaseOrder xmlns:po="http://www.example.com/PO1">
...
</po:purchaseOrder>‘);

The namespace name in the root element of the instance document is
http://www.example.com/PO1. This name matches only the target namespace for XML
schema PO1.

In Example 5-11 DB2 chooses XML schemas PO2 and PO4 in this order.
80 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
Example 5-11 Schema selection for validation from an XML type modifier - Example 2

INSERT INTO PURCHASE_ORDERS VALUES(2,
‘<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/PO2
http://www.example.com/PO2.xsd">
...
</po:purchaseOrder>‘);

The namespace name in the root element in the instance document is http://
www.example.com/PO2. which matches the target namespace of XML schemas PO2 and
PO4. The root element of the instance document also contains an xsi:schemaLocation
attribute whose value provides the schema location hint http:// www.example.com/PO2.xsd.
The schema location hint matches the schema location for XML schema PO2. Therefore DB2
chooses PO2 to validate the instance document. If validation with PO2 fails, DB2 uses PO4.

In Example 5-12 DB2 chooses XML schemas PO4 and PO2 in this order.

Example 5-12 Schema selection for validation from an XML type modifier - Example 3

INSERT INTO PURCHASE_ORDERS VALUES(3,
‘<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/PO2
http://www.example.com/PO4.xsd">
...
</po:purchaseOrder>‘);

The namespace name in the root element in the instance document is http://
www.example.com/PO2. which matches the target namespace of XML schemas PO2 and
PO4. The root element of the instance document also contains an xsi:schemaLocation
attribute whose value provides the schema location hint http:// www.example.com/PO4.xsd.
The schema location hint matches the schema location for XML schema PO4. Therefore DB2
chooses PO4 to validate the instance document. If validation with PO4 fails, DB2 uses PO2.

In Example 5-13 DB2 chooses XML schema PO3.

Example 5-13 Schema selection for validation from an XML type modifier - Example 4

INSERT INTO PURCHASE_ORDERS VALUES(4,
‘<purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.example.com/PO3.xsd">
...
</purchaseOrder>‘);

The root element of the instance document has no namespace name. XML schema PO3 has
no target namespace. Therefore, DB2 uses PO3 for validation.

Note that, after you update an XML document in a column that has an XML type modifier,
DB2 validates again all or part of the document.

� If the XML type modifier includes several XML schemas, DB2 uses the same XML schema
for validation that is used for the original validation.

� If you update an entire document, DB2 validates the entire document. However, if you use
the XMLMODIFY1 function to update only a portion of the document, DB2 might need to
validate only the updated portion.
Chapter 5. Validating XML data 81

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
5.4 User-controlled validation

One other way to do XML schema validation is by executing the
SYSIBM.DSN_XMLVALIDATE built-in function. Before you can invoke DSN_XMLVALIDATE,
all schema documents that make up an XML schema must be registered in the XML schema
repository and successfully compiled.

You can use DSN_XMLVALIDATE with a type modifier. This can be used to override a
schema picked by DB2. DB2 checks if the schema used in DSN_XMLVALIDATE is one of the
schemas in the type modifier, and skips double validation. There are a number of forms of
DSN_XMLVALIDATE:

DSN_XMLVALIDATE(string-expression)
DSN_XMLVALIDATE(xml-expression)
DSN_XMLVALIDATE(string-expression, varchar-expression)
DSN_XMLVALIDATE(xml-expression, varchar-expression)
DSN_XMLVALIDATE(string-expression1, string-expression2, string-expression3)
DSN_XMLVALIDATE(xml-expression1, string-expression2, string-expression3)

For all forms, the first parameter contains the document that you want to validate.

For forms with one parameter, the target namespace and optional schema location of the
XML schema must be in the root element of the instance document that you want to validate.

For forms with two parameters, the second parameter is the name of the schema object to
use for validation of the document. That object must be registered in the XML schema
repository.

For forms with three parameters, the second and third parameter contain the names of a
namespace URI and a schema location hint that identify the XML schema object to use for
validation of the document. That object must be registered in the XML schema repository

XML schemas used for validation are the same as shown in Figure 5-2 on page 79. However,
the following CREATE TABLE statement is used to create the table:

CREATE TABLE PURCHASE_ORDERS(
ID INT NOT NULL
CONTENT XML)

Examples of the criteria how DB2 chooses XML schema for DSN_XMLVALIDATE are listed
here.

In Example 5-14 DB2 chooses XML schema PO1.

Example 5-14 Schema selection for validation for DSN_XMLVALIDATE - Example 1

INSERT INTO PURCHASE_ORDERS VALUES(1,
DSN_XMLVALIDATE(‘<po:purchaseOrder xmlns:po="http://www.example.com/PO1">
...
</po:purchaseOrder>‘));

The DSN_XMLVALIDATE invocation does not specify an XML schema or target namespace
and schema location hint, so DB2 uses the information in the instance document.

1 The XMLMODIFY function returns an XML value that might have been modified by the evaluation of an XPath
updating expression and XPath variables that are specified as input arguments.
82 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
The namespace name in the root element of the instance document is
http://www.example.com/PO1. This name matches only the target namespace for XML
schema PO1.

In Example 5-15 DB2 chooses XML schema PO2.

Example 5-15 Schema selection for validation for DSN_XMLVALIDATE - Example 2

INSERT INTO PURCHASE_ORDERS VALUES(2,
DSN_XMLVALIDATE(‘<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/PO2
http://www.example.com/PO2.xsd">
...
</po:purchaseOrder>‘,’SYSXSR.PO2’));

The DSN_XMLVALIDATE invocation specifies XML schema SYSXSR.PO2.

In Example 5-16 DB2 chooses XML schema PO4.

Example 5-16 Schema selection for validation for DSN_XMLVALIDATE - Example 3

INSERT INTO PURCHASE_ORDERS VALUES(3,
DSN_XMLVALIDATE(‘<po:purchaseOrder xmlns:po="http://www.example.com/PO2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/PO2
http://www.example.com/PO4.xsd">
...
</po:purchaseOrder>‘,’http://www.example.com/PO2’));

The DSN_XMLVALIDATE invocation specifies namespace http://www.example.com/PO2. Two
XML schemas, PO2 and PO4, have that target namespace. DB2 uses PO4, because it has
the later timestamp.

In Example 5-17 DB2 chooses PO3.

Example 5-17 Schema selection for validation for DSN_XMLVALIDATE - Example 4

INSERT INTO PURCHASE_ORDERS VALUES(4,
DSN_XMLVALIDATE(‘<purchaseOrder
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.example.com/PO3.xsd">
...
</purchaseOrder>‘));

The DSN_XMLVALIDATE invocation does not specify an XML schema or target namespace
and schema location hint, so DB2 uses the information in the instance document. The root
element node in the instance document contains an xsi:noNamespaceSchemaLocation
attribute with value http://www.example.com/PO3.xsd, so DB2 uses XML schema PO3, which
has no target namespace, and the schema location http://www.example.com/PO3.xsd.

There have been two versions of DSN_XMLVALIDATE:

� A user-defined function
� A built-in function
Chapter 5. Validating XML data 83

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
The user-defined function is deprecated. Now DB2 uses the built-in function instead even in
DB2 9.

To move from the DSN_XMLVALIDATE user-defined function to the DSN_XMLVALIDATE
built-in function:

� For applications that invoke DSN_XMLVALIDATE using the qualified name
SYSFUN.DSN_XMLVALIDATE:

a. Change the name to SYSIBM.DSN_XMLVALIDATE.

This change is optional. DB2 drops SYSFUN.DSN_XMLVALIDATE and invalidates
packages during migration. Automatic rebinds pick up SYSIBM.DSN_XMLVALIDATE.

b. Prepare the applications again.

� For applications that invoke DSN_XMLVALIDATE without using the qualified name, you do
not need to modify the applications. DB2 uses the SYSIBM.DSN_XMLVALIDATE built-in
function automatically.

� Optional: Remove the XMLPARSE function that surrounds DSN_XMLVALIDATE.

The SYSFUN.DSN_XMLVALIDATE user-defined function must be invoked from within the
XMLPARSE function. The SYSIBM.DSN_XMLVALIDATE built-in function does not need to
be invoked from within the XMLPARSE function.

5.5 Determining whether an XML document has been validated

You can use the SQL XMLXSROBJECTID scalar function to determine whether an XML
document that is stored in a table has undergone XML validation, and which XML schema
was used to validate that document.

XMLXSROBJECTID returns the XSR object identifier of the XML schema that was used to
validate the input XML document. The XSR object identifier corresponds to the
XSROBJECTID column in the SYSIBM.XSROBJECTS “catalog” table. After you call
XMLXSROBJECTID, you can use the returned value to query SYSIBM.XSROBJECTS for the
XML schema information. If the XML document has not been validated, XMLXSROBJECTID
returns 0.

The SQL statement in Example 5-18 calls XMLXSROBJECTID to determine which XML
documents in the INFO column of the CUSTOMER table have not been validated. The
statement then calls DSN_XMLVALIDATE to validate those documents against XML schema
SYSXSR.P01.

Example 5-18 Search for documents not validated

UPDATE CUSTOMER
SET INFO = DSN_XMLVALIDATE(INFO, 'SYSXSR.PO1')
WHERE XMLXSROBJECTID(INFO)=0

The SQL statement in Example 5-19 retrieves the XML schema names and target
namespaces for the XML schemas that were used to validate XML documents in the INFO
column of the CUSTOMER table.

Deprecated function: The SYSFUN.DSN_XMLVALIDATE user-defined function is
deprecated. Use the SYSIBM.DSN_XMLVALIDATE built-in function instead. Even if you
explicitly call SYSFUN.DSN_XMLVALIDATE, DB2 runs SYSIBM.DSN_XMLVALIDATE.
84 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch05.fm
Example 5-19 Retrieve target namespaces and XML schema names used for validation

SELECT DISTINCT S.XSROBJECTNAME, S.TARGETNAMESPACE
FROM CUSTOMER C, SYSIBM.XSROBJECTS S
WHERE XMLXSROBJECTID(INFO) = S.XSROBJECTID
Chapter 5. Validating XML data 85

7915ch05.fm Draft Document for Review January 9, 2011 1:25 pm
86 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
Chapter 6. DB2 SQL/XML programming

In this chapter, we provide a wide range of DB2 programming examples for pureXML. Over
recent years the amount of programming that is deployed inside DB2 has been growing with
the adoption of facilities like stored procedures, user defined functions, triggers and
WebSphere MQ integration.

The adoption of pureXML is likely to increase this trend. The ease of handling XML
documents in native SQL procedures, compared to external language environments like
COBOL, means that development productivity will be enhanced by encapsulating XML logic
within DB2 procedures and functions, so that external programs only have to deal with
traditional SQL-based functions.

This chapter addresses the following DB2 programming topics:

� Native SQL stored procedures and XML
� Receiving XML messages from MQ
� Audit queries (against logged XML messages)
� SQL/XML query techniques
� User defined functions with XML
� Triggers with XML
� XML joins
� XML with change data capture tools

6

© Copyright IBM Corp. 2011. All rights reserved. 87

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
6.1 Native SQL stored procedures and XML

The book application scenario, XML message logging and auditing, described in Chapter 3,
“Application scenario” on page 45, represents a common situation, where XML messages are
flowing over a WebSphere MQ enterprise service bus, and you would like to capture some of
this messages and store them in DB2 pureXML for auditing purposes.

Native stored procedures are an excellent vehicle for capturing XML messages from
messaging infrastructure (like WebSphere MQ and DataPower®) because they are:

� Productive: they allow you to encapsulate multi-step processes into a single DB2 callable
routine, which supports the XML data type explicitly.

� Well suited to handling XML: they can use XML documents as input and output
parameters, and manipulate XML without necessarily having to persist it to a DB2 table.

� Efficient: they can parse the incoming XML document once, and re-use it as an XML data
type without re-parsing

� Well connected: they integrate well with MQ

Native stored procedures become more powerful as a result of their support for XML. Prior to
DB2 10, a DB2 stored procedure could only be passed individual data elements as
parameters. Now, it is possible to pass them arrays of data within an XML input parameter,
making it much more practical to implement large scale processing work within the DB2
subsystem, where it is most efficient.

This section shows examples of XML handling with native SQL stored procedures, and then
adds integration with WebSphere MQ.

We use the table definitions shown in Example 6-1 for the initial examples. The sample stored
procedures show techniques to validate the data manually, as well as automatically, which is
why we have two versions of the audit logging table.

Example 6-1 Tables used for following examples.

-- create base table for storing ISO20022 XML documents, with validation

CREATE TABLE BK_TO_CSTMR_STMT (
MSG_ID VARCHAR(35) ,
MSG_CRE_DT_TM TIMESTAMP,
BK_TO_CSTMR_STMT XML(XMLSCHEMA ID SYSXSR.SG247915_01) NOT NULL)

IN XMLR3DB.TSAUDIT1 ;

-- create alternate base table for ISO20022 XML documents, without validation

CREATE TABLE BK_TO_CSTMR_STMT_MANUALVALIDATE (
MSG_ID VARCHAR(35) ,
MSG_CRE_DT_TM TIMESTAMP,
BK_TO_CSTMR_STMT XML NOT NULL)

IN XMLR3DB.TSAUDIT2 ;

-- create iso20022 currency lookup table

CREATE TABLE CURRENCY (
ENTITY VARCHAR(50),
CURRENCY VARCHAR(50),
ALPHABETIC_CODE CHAR(3),
88 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
NUMERIC_CODE SMALLINT)
IN XMLR3DB.TSAUDIT3 ;

-- create table for error handling logic to store invalid documents

CREATE TABLE XMLR3.INVALID_DOCS (
INSERT_TIME TIMESTAMP,
INSERT_DOC XML,
ERROR_MESSAGE VARCHAR(1000))

We are also using the ISO20022 bank-to-customer-statement schema, which we have taken
directly from the ISO20022 web site without any alteration. We have downloaded the schema
to D:\XMLRES\WEEK3\REDXMPL\camt.053.001.02.xsd and registered the schema with
name SYSXSR.SG247915_01 in the DB2 XSR, using the commands in Example 6-2. Note
that the commands to register schemas in the XSR are available in two environments: z/OS
UNIX System Services, and DB2 for Linux, UNIX and Windows Command Line Processor
(CLP). They are explained in more detail in 2.1.6, “XML schema repository and schema
validation” on page 36.

Example 6-2 Registering the ISO20022 Bnk_To_Cst_Stmt XML schema

register xmlschema 'redbook_bankstmt.xsd' from
file://D:\SG247915\camt.053.001.02.xsd as SYSXSR.SG247915_01 ;

DB20000I The REGISTER XMLSCHEMA command completed successfully.

complete xmlschema SYSXSR.SG247915_01 ;

DB20000I The COMPLETE XMLSCHEMA command completed successfully.

Alternatively, in Example 6-2, the register xmlschema command can have the complete
clause at the end to complete the registration in the same command.

6.1.1 Native SQL stored procedure example

Let us first show an example of how XML can used with a native SQL stored procedure. The
sample procedure in Example 6-3 has been written to:

1. Receive an XML document as an input parameter

2. Validate the incoming XML document against the schema in DB2 XSR

3. Use various XML functions to extract elements from the incoming XML document

4. Store the document (and extracted fields) in the DB2 audit logging table

5. Use XML publishing functions to generate a new XML document

6. Return the generated XML document as an output parameter

Example 6-3 Simple stored procedure for registering the ISO20022 Bnk_To_Cst_Stmt XML schema

CREATE PROCEDURE STOREXML1 (
IN V_BANKSTMT XML,
OUT V_MSG_ID VARCHAR(35),
OUT V_CREDTTM TIMESTAMP,
Chapter 6. DB2 SQL/XML programming 89

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
OUT V_MINISTMT XML) 1
LANGUAGE SQL
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN

DECLARE VALIDXML XML ;
DECLARE SQLCODE INTEGER ;

SET VALIDXML = DSN_XMLVALIDATE(V_BANKSTMT, 'SYSXSR.SG247915_01') ; 2

SET V_MSG_ID = (
xmlcast(xmlquery(

'declare default element
namespace"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/MsgId'
passing VALIDXML as "d")

as varchar(35))); 3

SET V_CREDTTM = (
xmlcast(xmlquery(

'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/CreDtTm'
passing VALIDXML as "d")

as timestamp)); 4

SET V_MINISTMT = (
xmlquery('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/Stmt'
passing VALIDXML as "d")) ; 5

INSERT INTO BK_TO_CSTMR_STMT_MANUALVALIDATE (
MSG_ID , MSG_CRE_DT_TM, BK_TO_CSTMR_STMT)
values (V_MSG_ID, V_CREDTTM, VALIDXML) ; 6

END !

The following notes explain each of the annotated points in the source code for the stored
procedure.

1. The parameter list includes one input parameter (data type XML) and three output
parameters (data types VARCHAR(35), Timestamp, and XML). The ability to support XML
as parameters to a callable routine is new in DB2 10.

2. This statement uses the system-provided DSN_XMLVALIDATE function to validate the
input XML document against a schema that is defined in the DB2 XSR, WITHOUT storing
the XML document in a DB2 table. (Most use cases show schema validation as part of an
SQL insert or update).

3. This statement shows the use of the XMLQUERY function to strip a string data element
from the XML document, and then cast it to a relational data type using XMLCAST.
90 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
4. This statement shows another example of the XMLQUERY function to strip a different field
with data type timestamp from the XML document. (DB2 10 supports both timestamp and
timestamp with timezone data types in both relational and XML structures).

5. This statement uses an XMLQUERY function to generate a new XML document from the
received XML document, and to include the generated XML document as an output
parameter from the stored procedure.

6. This statement stores the received XML document, alongside two stripped data elements
in a DB2 table.

One of the strengths of the native SQL stored procedure is the ability to operate on an XML
document in memory, without storing it in a DB2 table (as performed in steps 2, 3, 4 and 5).
This ability makes the stored procedure efficient because it saves making unnecessary
WRITE and READ operations to a DB2 table.

This stored procedure contains XML data types which make it difficult to test from many of the
tools which you may be using, because they do not have an easy way to pass XML types to &
from the procedure (such as: SPUFI, DB2 Command Line Processor etc...). A Java program
was used as a test driver to call the stored procedure from a windows db2 client: it calls the
stored procedure with an XML input parameter, and receives the output parameters, and
writes them to an output file. This program is called Teststorexml1.java, and is included in the
additional materials of this book.

This stored procedure example could be improved in several ways, which we develop in this
chapter. For example:

� No error handling logic is included within the stored procedure.
� The three XMLQUERY operations could be replaced by a single XMLTABLE operation

6.1.2 XML error handling in native SQL procedures

The principles of error handling for XML processing is no different from normal native SQL
stored procedures. There are many SQLCODES and SQLSTATES that provide diagnostic
information in the event of an error relating to the various XML related functions and
procedures in DB2. These error conditions can be handled in the same way as relational
errors. You just need to be aware of new situations where errors might arise, and code for
them.

The basic approach to error handling in native stored procedures is to:

1. Anticipate which error conditions are likely to be encountered during normal use of the
system you are building. For example, if you are receiving XML documents from external
sources, you must consider that some may be badly formed or fail XML schema validation.

2. Define error conditions that are likely to arise

3. Define error handling routines that take the appropriate action for an anticipated
circumstance (and a catch-all routine for any other error). For example, if a received XML
document fails validation, you may want to store it as a CLOB in a separate table for
inspection.

The previous SQL stored procedure in Example 6-3 has been modified to include an
XMLTABLE function (to replace the two separate XMLQUERY functions) and to include some
basic error handling. The modified procedure is listed in Example 6-4.

Example 6-4 Stored procedure with error handling logic

CREATE PROCEDURE STOREXML2 (
IN V_BANKSTMT XML,
Chapter 6. DB2 SQL/XML programming 91

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
OUT V_MSG_ID VARCHAR(35),
OUT V_CREDTTM TIMESTAMP,
OUT V_MINISTMT XML,
OUT ERROR_MESSAGE VARCHAR(1000))

LANGUAGE SQL
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN

DECLARE v_sql VARCHAR(2048) ;
DECLARE VALIDXML XML ;
DECLARE SQLCODE INTEGER ;
DECLARE SQLSTATE CHAR(5) ;
DECLARE SQLERRMC VARCHAR(70) ;
DECLARE ERROR_MESSAGE VARCHAR(250) ;
DECLARE INVALID_DOCUMENT CONDITION FOR SQLSTATE '2200M'; 1

DECLARE c1 CURSOR with return to caller FOR stmt;

DECLARE EXIT HANDLER FOR INVALID_DOCUMENT
BEGIN
set ERROR_MESSAGE = 'DB2 DIAGNOSTICS - SQLCODE= '

concat CHAR(SQLCODE)
concat ' SQLSTATE= '
concat SQLSTATE
concat ' SQLERRMC= '
concat SQLERRMC ;

insert into INVALID_DOCS (INSERT_TIME, INSERT_DOC, ERROR_MESSAGE)
values (current timestamp, V_BANKSTMT, ERROR_MESSAGE) ;

 END ; 2

SET VALIDXML = (
DSN_XMLVALIDATE(V_BANKSTMT, 'SYSXSR.SG247915_01')) ; 3

SELECT X.MSG_ID, X.CRE_DT_TM, X_MINISTMT
INTO V_MSG_ID, V_CREDTTM, V_MINISTMT

FROM XMLTable(XMLNAMESPACES(
DEFAULT 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),
'$d/Document/BkToCstmrStmt' PASSING VALIDXML as "d"
COLUMNS

"MSG_ID" VARCHAR(35) PATH './GrpHdr/MsgId',
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm',
"X_MINISTMT" XML PATH './Stmt') AS X ; 4

INSERT INTO BK_TO_CSTMR_STMT_MANUALVALIDATE
(MSG_ID , MSG_CRE_DT_TM, BK_TO_CSTMR_STMT)
values (V_MSG_ID, V_CREDTTM, VALIDXML) ;

END !

The following notes explain each of the annotated points in the source code for the stored
procedure.
92 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
1. This statement declares an anticipated error condition for the validation of the received
XML document.

2. This statement defines the processing logic when the declared error conditions are
encountered.

3. This call to the DSN_XMLVALIDATE function is the call that is likely to generate the error
condition that the error handling routine is setup for.

4. This statement is an XMLTABLE operation, which is more efficient than multiple
XMLQUERY operations when you want to strip multiple elements from the XML
document.

Another Java program (Teststorexml2) is included in the additional materials of this book to
act as a test driver for the stored procedure.

6.1.3 Stored procedures development tools

The focus of this book is the XML capabilities of DB2 for z/OS. However, it is important to be
also aware of the development tools that are available for building native stored procedures
with XML.

Simple native SQL procedures, like the ones above, can easily be coded and tested with a
text editor. More complex stored procedures will benefit from the stored procedure
development and debug capabilities of IBM Data Studio.

Data Studio can be downloaded, free of charge, from

http://www.ibm.com/developerworks/downloads/im/data/

Data Studio provides a wide range of support for developers and DBA. Specifically, with
regard to SQL stored procedures, Data Studio

� Supports the build, test, optimization and deployment of SQL stored procedures with an
interactive routine debugger.

� Provides drag and drop query builders with editors for SQL and SQL/XML.
� Supports XML data type too.

For detailed documentation on using Data Studio for stored procedure development refer to
Part 6. “Cool tools for an easier life” of DB2 9 for z/OS Stored Procedures: Through the CALL
and Beyond, SG24-7604.

6.2 Receiving XML messages from MQ

The application scenario in Chapter 3, “Application scenario” on page 45 describes the
increasingly common environment where organizations make extensive use of event driven,
messaging and workload systems. It is very common that such systems will send XML
messages over their Enterprise Service Bus.

In enterprises that use z/OS mainframes, it is very common that WebSphere MQ is the
transport for XML messages. DB2 provides a range of DB2 scalar functions and table
functions for working with WebSphere MQ. DB2 also provides the MQ listener, which receives
messages from a message queue and calls a DB2 stored procedure with the contents of the
message.

This section provides worked examples of how the ISO20022 Bank-To-Customer-Statement
message can be received from WebSphere MQ, and ingested by DB2.
Chapter 6. DB2 SQL/XML programming 93

http://www.ibm.com/developerworks/downloads/im/data/

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
6.2.1 WebSphere MQ functions

DB2 provides a range of built in functions for integrating with WebSphere MQ. These
functions have been updated in DB2 10, so that they are based on the newer MQI interface to
WebSphere MQ, rather than the older AMI interface which was used in DB2 8.

� Installation job DSNTIJRT should have been run to install the DB2 MQ functions.

� Installation job DSNTEJMQ verifies the MQ environment setup.

The MQ functions in DB2 10 reside in schema DB2MQ and run in WLM environment
DSNWLM_MQSERIES.

In order to use the DB2 MQ functions within SQL statements, the MQ functions must be
defined as services to DB2. These service definitions are used to encapsulate the MQ
programming properties that MQ requires, so that the DB2 programmer can use a range of
relatively simple functions to access WebSphere MQ. All the programmer has to do is use a
system provided MQ function (such as MQSEND), in conjunction with an MQ service name.

The MQ services and policies must be defined in the following tables:

� SYSIBM.MQSERVICE_TABLE

– It contains a list of "MQ services" available within a DB2 subsystem.

– An MQ service is a definition of a Queue, it's Queue Manager, and codepage
properties of that queue.

� SYSIBM.MQPOLICY_TABLE

– It contains a list of "MQ service policies" that can be used.

– An MQ service policy defines MQ properties, such as message priorities, retries,
exception handling that are to be used by DB2 when accessing a message queue.

We have defined an MQ service using the SQL insert in Example 6-5. We have not explicitly
defined an MQ service policy, which means that we can call the DB2 MQ functions without
specifying an MQ service policy, and we implicitly accept the default MQ service policy that
was defined by the installation jobs.

Example 6-5 Populating the MQSERVICE-TABLE

INSERT INTO SYSIBM.MQSERVICE_TABLE (
SERVICENAME, QUEUEMANAGER, INPUTQUEUE, CODEDCHARSETID, ENCODING, DESCRIPTION)
VALUES ('XMLS1', 'MQBA', 'MQL.INPUT01', DEFAULT, DEFAULT, DEFAULT)

Actually, it is more efficient to receive an XML document from an external source as a
VARCHAR or a CLOB if you are going to validate the document against an XML schema.

The MQ scalar functions provided by DB2 are summarized in Table 6-1.

Table 6-1 MQ scalar functions provided by DB2 10.

DB2 MQ function Invocation parameters Description

MQREAD receive-service, service-policy It reads a message as a VARCHAR (32704 bytes max) from
a specified queue, using a specified policy, and leaves the
message at the head of the queue. (empty queue returns
null).
94 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
DB2 provides additional MQ table functions and MQ publishing functionsas listed in the DB2
10 for z/OS Installation and Migration Guide, GC219-2974.

Examples of the MQREAD and MQSEND functions that can be executed from SPUFI (or any
other SQL editor) are shown in Example 6-6. Note that some of the invocation parameters are
optional.

Example 6-6 Sample MQREAD and MQSEND function calls

select db2mq.mqread('XMLS1')
from sysibm.sysdummy1

-- this SQL statement returns the contents of the first message on the queue
-- referenced by the XMLS1 MQ service as a string.

select db2mq.mqsend('XMLS1','<testxml><tag1>newvalue</tag1></testxml>')
from sysibm.sysdummy1

-- this SQL statement puts the simple XML string onto the queue referenced by the
-- XMLS1 MQ service as a string.

There are no DB2 MQ functions that directly use XML data type parameters. When using
functions like MQSEND and MQREAD to send and receive XML documents to and from MQ,
the XML document must be passed as a string data type, and then converted to XML.

XML schema validation (where automatic or using DSN_XMLVALIDATE) only accepts input in
string format. If you use XML type, DB2 must parse the XML document into internal format
during the parameter passing phase, then implicitly serialize it back to string before validation,
which would be slower.

6.2.2 DB2 stored procedure reading from MQ

Having understood the MQ scalar functions that are available, it is now possible to write a
native stored procedure that reads an XML message from a message queue (as a string),
and stores it in a DB2 table (as an XML data type), and performs any other useful processing

MQREADCLOB receive-service, service-policy It reads a message as a CLOB (2 MB max) from a specified
queue, using a specified policy, and leaves the message at
the head of the queue. (empty queue returns null.

MQRECEIVE receive-service, service-policy,
correlation-id

It reads a message (with matching correlation-id, if
specified) as a VARCHAR (32704 byets max) from a
specified queue, using a specified policy, and removes the
message from the head of the queue. (empty queue returns
null).

MQRECEIVECLOB receive-service, service-policy,
correlation-id

It reads a message (with matching correlation-id, if
specified) as a CLOB (2 MB max) from a specified queue,
using a specified policy, and removes the message from the
head of the queue. (empty queue returns null).

MQSEND send-service, service-policy,
msg-data, correlation-id

It writes a mesage (with correlation-id, if specified) as a
VARCHAR (32707 bytes max) or CLOB (2 MB max) to a
specified queue, using a specified policy.

DB2 MQ function Invocation parameters Description
Chapter 6. DB2 SQL/XML programming 95

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
against the parsed XML document whilst it is in memory. The stored procedure in
Example 6-7 performs the following steps:

1. Reads XML document as a string from WebSphere MQ.

2. Parses the string into an XML data type (an automatically validates that it is well formed).

3. Performs schema validation against a stored XML schema in the XML schema repository

4. Extracts specific fields from the XML document, which we want to store in relational
columns in the message logging table.

5. Writes the XML document, and stripped relational fields to the message logging table.

Example 6-7 Stored procedure to read XML message from MQ

CREATE PROCEDURE STOREXML3 (
OUT V_MSG_ID VARCHAR(35),
OUT V_CREDTTM TIMESTAMP,
OUT MYOUTPUT VARCHAR(1))

LANGUAGE SQL
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN
DECLARE OUTPUTMQ CLOB ;
DECLARE VALIDXML XML ;
DECLARE MQSVC CHAR(5) ;
DECLARE SQLCODE INTEGER ;
SET MQSVC = 'XMLS1' ;

SET OUTPUTMQ = (select db2mq.mqread(MQSVC) from sysibm.sysdummy1) ; 1

SET VALIDXML = (
SELECT DSN_XMLVALIDATE(OUTPUTMQ, 'SYSXSR.SG247915_01')
FROM SYSIBM.SYSDUMMY1) ; 2

SELECT X.MSG_ID, X.CRE_DT_TM
INTO V_MSG_ID, V_CREDTTM
FROM XMLTable(XMLNAMESPACES(

DEFAULT 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),
'$d/Document/BkToCstmrStmt' PASSING VALIDXML as "d"
COLUMNS

"MSG_ID" VARCHAR(35) PATH './GrpHdr/MsgId',
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm') AS X ; 3

INSERT INTO BK_TO_CSTMR_STMT_MANUALVALIDATE (
MSG_ID , MSG_CRE_DT_TM, BK_TO_CSTMR_STMT)
values (V_MSG_ID, V_CREDTTM, VALIDXML) ; 4

END !

The numbered highlighted steps in the stored procedure are:

1. This statement reads the XML message from MQ, and assigns it to variable OUTPUTMQ,
which is defined as a CLOB.

2. This statement validates the CLOB that was read from WebSphere MQ against a the
ISO20022 schema that was registered in DB2 XSR.
96 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
3. This statements strips selected data elements from the XML document

4. This statement inserts the XML document and stripped elements into a relational table.

The stored procedure illustrated above is written to read the first message only from the
message queue, and process it. In practice you would modify the stored procedure to call the
DB2MQ.MQRECEIVE function, so as to receive the message from the queue, and remove it
within the unit of work controlled by the DB2 stored procedure.

6.2.3 DB2 MQ Listener automation

The stored procedure in the previous section could be extended to drain the queue of all input
messages with a simple programming loop, and the procedure could be scheduled by some
application environment to execute periodically. However, a simpler approach would be to use
the MQ listener, which will take care of all the application programming and scheduling effort
for you. The MQ listener provides the capability to listen to a message queue for messages
when they arrive, and automatically call a stored procedure when they do. It saves you writing
and scheduling an application to poll MQ for messages and process them when they do
arrive.

The MQ Listener is a standard component of DB2, which is installed with job
SDSNSAMP(DSNTIJML). The listener runs under USS (unix system services) in z/OS. It can
be invoked using USS commands, as shown in the examples that follow. There is a JCL
sample to invoke these uss commands, found in SDSNSAMP(DSNTEJML)

Once the MQ Listener has been installed, it must be configured and started. The USS
command to configure the MQ Listener to listen on an input queue, is shown in Example 6-8.
In this example, we are defining a 2-phase commit MQ Listener process (db2mqln2 command
implies this) in DB2 subsystem DB0B to listen to the queue MQL.INPUT01 in Queue
Manager MQBA and to call procedure XMLR3.STOREXML4 when a message is received.
The configuration is stored under the label XML1.

Example 6-8 Command to configure MQ listener

db2mqln2 add
-ssID DB0B
-config XML1
-queueManager MQBA
-inputQueue MQL.INPUT01
-procName STOREXML4
-procSchema XMLR3
-numInstances 1

The configuration can be verified with the show command as shown in Example 6-9.

Example 6-9 Command to show MQ listener configuration

db2mqln2 show -ssID DB0B -config all

returns:

configurationName: XML1
queueManager: MQBA
inputQueue: MQL.INPUT01
procSchema: XMLR3
procName: STOREXML4
Chapter 6. DB2 SQL/XML programming 97

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
numInstances: 1
mqCoordinated: T

The underlying DB2 table that stores the MQ Listener configuration data is
SYSMQL.LISTENERS, whose contents are shown in Example 6-10.

Example 6-10 Contents of SYSMQL.LISTENERS

SYSMQL.LISTENERS

CONFIGURATIONNAME = XML1
QUEUEMANAGER = MQBA
INPUTQUEUE = MQL.INPUT01
PROCNODE =
PROCSCHEMA = XMLR3
PROCNAME = STOREXML4
PROCTYPE = 1
NUMINSTANCES = 1
WAITMILLIS = 50
MINQUEUEDEPTH = 1

In order for a stored procedure to work with the MQ Listener, it must be coded with INPUT
and OUTPUT characters that may only be VARCHAR, VARBINARY, BLOB or CLOB. The
stored procedure to read an XML message from a message queue listed in Example 6-7 on
page 96 can be modified to work with the MQ Listener by making a few small edits as shown
in Example 6-11.

Example 6-11 Stored procedure modified for MQ listener integration

CREATE PROCEDURE STOREXML3 (
OUT V_MSG_ID VARCHAR(35),
OUT V_CREDTTM TIMESTAMP,
OUT MYOUTPUT VARCHAR(1))

LANGUAGE SQL
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN
DECLARE OUTPUTMQ CLOB ;
DECLARE VALIDXML XML ;
DECLARE MQSVC CHAR(5) ;
DECLARE SQLCODE INTEGER ;

SET MQSVC = 'XMLS1' ;

SET OUTPUTMQ = (select db2mq.mqread(MQSVC) from sysibm.sysdummy1) ;

SET VALIDXML = (SELECT DSN_XMLVALIDATE(OUTPUTMQ, 'SYSXSR.SG247915_01')
FROM SYSIBM.SYSDUMMY1) ;

SELECT X.MSG_ID, X.CRE_DT_TM INTO V_MSG_ID, V_CREDTTM
FROM XMLTable(XMLNAMESPACES(DEFAULT

'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),
 '$d/Document/BkToCstmrStmt' PASSING VALIDXML as "d"
COLUMNS
98 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
"MSG_ID" VARCHAR(35) PATH './GrpHdr/MsgId',
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm') AS X ;

INSERT INTO BK_TO_CSTMR_STMT_MANUALVALIDATE (
MSG_ID , MSG_CRE_DT_TM, BK_TO_CSTMR_STMT)
values (V_MSG_ID, V_CREDTTM, VALIDXML) ;

END !

The listener can be operated with the commands as shown in Example 6-12.

Example 6-12 Commands to operate MQ listener

db2mqln2 run
-ssID DB0B
-config XML1
-adminQueue MQL.ADMIN
- adminQMgr MQBA

db2mqln2 admin
-adminQueue MQL.INPUT01
-adminQMgr MQBA
-adminCommand shutdown

These examples have show how native stored procedures can be integrated with WebSphere
MQ to receive XML messages, process them and log them to DB2.

6.3 Audit queries (against logged XML messages)

Now that we have received a stream of XML messages from WebSphere MQ, and stored
them in DB2, we have the ability to query them.

One of the first things to note is that you don't necessarily need any special "XML-enabled"
query tools to develop and run audit queries, because the SQL/XML language provides a
range of functions to search within the XML documents for data of interest, without
materializing XML structures that the query tool has to handle.

If you do have an XML-enabled query tool, then SQL/XML can of course return the results of
queries as XML documents. The examples that follow will include a mixture of both.

The first few examples in this section will include screen shots from Optim Development
Studio. This is one of the tool choices outlined in 2.3.2, “GUI based tools” on page 43, and it
should provide a flavour for the interface style of the ODS tool.

6.3.1 Simple SQL/XML search examples

The SQL/XML queries in this section will focus on the very simple case of our
BK_TO_CSTMR_STMT table with 5 rows populated in it. The 5 rows represent 5 account
statements from January 2010 through to May 2010.

First, let us look at the entire table. Figure 6-1 shows the Optim Development Studio being
used to execute the“SELECT * FROM BK_TO_CSTMR_STMT” statement.
Chapter 6. DB2 SQL/XML programming 99

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 6-1 SQL Query - SELECT * FROM BK_TO_CSTMR_STMT

The query was executed through Optim Development Studio.

The contents of the various panes are:

� The top left pane is the project explorer, where we save our source code like SQL
statements and stored procedure.

� The bottom left pane shows our database connection - to DB0B.
� The middle top pane shows the SQL statement, which we can “run” from the action bar
� The bottom right pane shows the results of the SQL statement.

The table contains the XML documents that we received from MQ, and the two fields that we
stripped out using XMLQUERY and XMLTABLE functions in the stored procedure examples

If we wanted to view the hidden DOCID column too, we would need to explicitly select
DB2_GENERATED_DOCID_FOR_XML column, along with MSG_ID, MSG_CRE_DT_TM
and BK_TO_CSTMR_STMT columns.

Optim Development Studio also provides an XML document viewer. If we click on any of the
BK_TO_CSTMR_STMT XML documents in the results pane, we can browse the contents of
the XML document, and drill down to look at specific element and attribute values at any level
within the XML document. The contents of the first XML document (MSG_ID
AAAASESS-FP-STAT001) are illustrated in Figure 6-2.
100 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
Figure 6-2 Optim Development Studio XML document viewer - Design view

The screen shot in Figure 6-2 shows that we have expanded the values of some data
elements in the GrpHdr node. It also shows that the statement node this particular message
has four Ntry elements, each representing a credit or debit transaction on the account, during
the period covered by this statement. We could use this viewer to drill down and examine
every single element in the XML document.

We could also click on the ‘Source’ tab at the bottom of the pane, and view’Source’ and
‘Format’ to ensure that the source view is formatted for easy viewing.
Chapter 6. DB2 SQL/XML programming 101

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 6-3 Optim Development Studio XML document viewer - Source view

Conceptually, the information contained in this XML document is exactly the same as what
you see in your monthly current account statement from your own bank, but it looks very
different in XML format. So, how easy would it be to use SQL/XML to query the Document
and provide a more commonly recognizable view of the data?

The XMLTABLE function is designed for transforming elements from an XML document into a
tabular view, similar to your monthly bank statement. The SQL/XML query in Example 6-13
retrieves all the debit and credit transactions from the XML document in a tabular format that
looks much more like a traditional bank statement.

Example 6-13 SQL/XML Query to yield a “traditional” style bank statement

SELECT C.MSG_ID, C.MSG_CRE_DT_TM, X.BOOKED_DT_TM, X.AMT, X.CRDDBTIND 1
FROM xmlr3.BK_TO_CSTMR_STMT as C,
XMLTable(XMLNAMESPACES(

DEFAULT 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),2
'$d/Document/BkToCstmrStmt/Stmt/Ntry' PASSING C.BK_TO_CSTMR_STMT as "d"

COLUMNS 3
"MSG_ID" VARCHAR(35) PATH '../../GrpHdr/MsgId',
"CRE_DT_TM" TIMESTAMP PATH '../../GrpHdr/CreDtTm' ,
102 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
"BOOKED_DT_TM" TIMESTAMP PATH './BookgDt/DtTm' ,
"AMT" VARCHAR(50) PATH './Amt/text()' ,
"CRDDBTIND" VARCHAR(50) PATH './CdtDbtInd/text()') AS X

where C.MSG_ID = 'AAAASESS-FP-STAT001' 4
order by X.BOOKED_DT_TM asc ; 5

The highlighted numbered points of the SQL/XML query in Example 6-13 are explained as
follows:

1. We are selecting three data elements from the XML document, which are the transaction
timestamp, transaction amount and credit/debit indicator of each of the transactional
entries in the BK_TO_CSTMR_STMT XML document. Additionally, we are taking the
statement message_id and statement date from the base table.

2. As always, we must specify the correct namespaces in the XQuery expression.

3. Important: we must specify the node within the XML document where the XMLTABLE
function is operating on. Usually this will be at the node where we wish to extract the
detailed information. In this case, we base it on the “Ntry” node, because we wish to
retrieve a separate row in the result set for each transactional entry in the XML document.

4. Since we are focussing this query on a single XML document, we use a predicate on the
base table column to return data from only the document with MSG_ID of
AAAASESS-FP-STAT0001.

5. Finally, we can order the result set using either a relational column, or an XML data
element. In this case we wish to order the result set by the booked transaction date of
each “Ntry” node in the XML document.

The results are displayed in Figure 6-4. Note that all rows returned contain the same values
for columns from the base table (relating to the bank statement XML document) but unique
values for the columns relating to individual entries from with the document.

Figure 6-4 Tabular result set of bank statement entries

The contents of XML data from multiple different documents can be returned in a single
relational result set, as show by the SQL/XML statement in Example 6-14, which retrieves all
5 bank statements (January to May) and produces a consolidated bank statement for the
entire period.

Example 6-14 SQL/XML query spanning multiple XML documents

SELECT C.MSG_ID, X.BOOKED_DT_TM, X.AMT, X.CRDDBTIND
FROM xmlr3.BK_TO_CSTMR_STMT as C,
XMLTable(XMLNAMESPACES(

DEFAULT 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),
Chapter 6. DB2 SQL/XML programming 103

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
'$d/Document/BkToCstmrStmt/Stmt/Ntry' PASSING C.BK_TO_CSTMR_STMT as "d"
COLUMNS

"MSG_ID" VARCHAR(35) PATH '../../GrpHdr/MsgId' ,
"CRE_DT_TM" TIMESTAMP PATH '../../GrpHdr/CreDtTm' ,
"BOOKED_DT_TM" TIMESTAMP PATH './BookgDt/DtTm' ,
"AMT" VARCHAR(50) PATH './Amt' ,
"CRDDBTIND" VARCHAR(50) PATH './CdtDbtInd'

) AS X
order by X.BOOKED_DT_TM asc ;

The results of the query in Example 6-14 are shown in Figure 6-5.

Figure 6-5 Relational result set spanning data elements from multiple XML documents

A wider range of SQL/XML query techniques using all the DB2 XML functions will be
illustrated in Section 7.4 SQL/XML Query techniques.

6.3.2 Choosing XML indexes

With the grand total of 5 rows in our table, indexes are not necessary. However, if we were
storing a large number of XML documents in our XML auditing system, it would be essential
to create XML indexes to support efficient searching within the XML documents.

As the XML audit database grows in size, the need for XML indexes will be clear. Each of the
SQL/XML queries in 6.3.1, “Simple SQL/XML search examples” on page 99 will be
104 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
considered, and candidate XML indexes will be identified. Chapter 11, “Performance
considerations” on page 243 covers XML index design in detail.

Let us consider XML index design for the specific purpose of enabling efficient search with an
audit database of bank statements.

Let us assume that one of the primary purposes of the audit database will be to analyze data
at the individual banking transaction level. That means that the focus of many queries will be
the “Ntry” nodes in these XML documents. The typical data elements within an “Ntry” node
are shown in Figure 6-6.

Figure 6-6 Typical “Ntry” node within a Bk_To_Cstmr_Stmt document

Let us assume that it was decided that many audit queries were to be focussed on the
AccountServicerReference. We would check the ISO20022 documentation to understand the
constraints on this data element, which are as follows:

� AccountServicerReference
� XPath = /Document/BkToCstmrStmt/Stmt/Ntry/AcctSvcrRef
� Presence: [0..1]
� Definition: Unique reference as assigned by the account servicing institution to

unambiguously identify the entry.
� Data Type: Max35Text
� Format: maxLength: 35
Chapter 6. DB2 SQL/XML programming 105

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
� minLength: 1

There may be many occurrences of AcctSvcrRef in each Bk_To_Cstmr_Stmt document. An
XML index on /Document/BkToCstmrStmt/Stmt/Ntry/AcctSvcrRef will therefore have multiple
entries per Document. A candidate index definition is shown in Example 6-15.

Example 6-15 Candidate XML index definitions

Create index AcctSvcrRef_IX
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
Generate Key using XMLPATTERN 'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

/Document/BkToCstmrStmt/Stmt/Ntry/AcctSvcrRef'
as SQL VARCHAR(35) ;

6.3.3 Verifying XML index usage

Accurate data typing is critical for index eligibility. If the actual contents of the indexed data
element in the document does not match the data type specified in the xmlpattern of the
create index statement, then the index will not contain an entry for that data element.

The corollary of the previous statement is that it is very important for XML schemas to place
data type constraints on fields that may be indexed, and the XML documents are validated
against their schema definition. This is the best way of ensuring that effective indexes can be
defined on XML columns.

The simplest way of checking that an Index is going to be effective is to run RUNSTATS and
check the values of FIRSTKEYCARDF and FULLKEYCARDF in SYSIBM.SYSINDEXES. If
you know the number of rows in the table, and you have a reasonable expectation of the
average number of XML index hits per XML document, then you should have a rough idea of
what the value of FULLKEYCARDF should be. For example, if you have 1 million rows in the
BK_TO_CSTMR_STMT table, and an average of 20 “Ntry” nodes per XML document, then
you might be expecting FULLKEYCARDF to be about 20 million. Of course it may be less if
the same values of AcctSvcrRef crop up many times, but at least you can make a judgement
on whether the Index has found approximately the right number of data elements to index.

If an XML index has cardinality of 0, then you should be asking yourself why the index did not
find any matching data elements to index. The most likely reasons would be a typographical
error in the xmlpattern, or the namespace definition, or a data type mismatch.

Once you have determined that the index has got approximately the correct number of entries
in it, then you must test your application SQL to see whether the optimizer will use the XML
index. This is a simple case of using your favorite explain tool, and checking whether or not
the XML index(es) are being used in the access path for the query.

6.4 SQL/XML query techniques

Before considering more query techniques, let’s review the productivity that pureXML is
providing.

The extent of the work that we have done so far is:

1. Download a publicly-available XML schema and register it in DB2.
106 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
2. Create a very simple DB2 table (with automatic schema validation) to store the
corresponding XML documents that we receive.

3. “Load” the XML documents into the table (using the term “load” very loosely, to cover
many possible ways to ingest the XML documents).

4. Start writing SQL/XML queries against a very rich XML data model
5. Create an iXML index to support those queries

We did not need to extract XML data elements from the XML documents to build relational
searching columns. The only reason we chose to use the DB2 XML functions to extract
selected data elements was to show how easy it was to move data between XML and
relational.

The only difficult things we have had to do is to understand the concepts of the XML model of
data, and the SQL/XML extensions to the SQL language.

This section provides some sample SQL/XML audit queries to illustrate the various functions
and techniques for querying XML data and how to combine them.

6.4.1 Manipulating XML data with XPath functions

DB2 offers a wide range of functions for use in XPath expressions, these are a subset of the
XPath 2.0 standard. They allow you to work directly on the data within the XPath expression
instead of first having to extract the data from the document, and then manipulate or query it
afterwards.

The functions include:

� Accessory functions, e.g. fn:data
� Functions on numeric values, e.g. fn:abs
� Functions on strings, e.g. fn:substring
� Functions on boolean values, e.g. fn:not
� Functions on durations, dates and times, e.g. fn:month-from-date
� Functions on sequences, e.g. fn:distinct-values
� Aggregate functions, e.g. fn:avg
� Context functions, e.g. fn:position

These functions all belong to the namespace http://www.w3.org/2005/xpath-functions and
have the default namespace prefix of fn.

Additionally, constructor functions for each XPath data type are available. Examples of these
are xs:string and xs:date. The namespace for these functions is
http://www.w3.org/2001/XMLSchema and the prefix is xs.

For more information on the XPath functions available, refer to:
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xm
l/db2z_xpxqfunctionreference.htm

Imagine that we want to calculate the sum of all the entries in a bank statement. This could be
done by using the function fn:sum as shown in Example 6-16.

Example 6-16 Calculating the sum of the entries in a BankToCustomerStatement

SELECT
XMLCAST (XMLQUERY (
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
fn:sum(/Document/BkToCstmrStmt/Stmt/Ntry/Amt)'
Chapter 6. DB2 SQL/XML programming 107

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xml/db2z_xpxqfunctionreference.htm

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
PASSING BK_TO_CSTMR_STMT
) AS DECIMAL(12,2)
FROM BK_TO_CSTMR_STMT

The result of the XMLQUERY call is cast as DECIMAL(12,2) using the XMLCAST function.
Otherwise the result of the query would have had type XML, despite the fact that we know
that the content is really numeric. In case we want to process the data further using arithmetic
functions, comparisons or just return it as a numeric value, we need to perform this
conversion.

The use of the XMLCAST function requires that the input is a sequence of one item. If the
result of the XMLQUERY expression is a longer sequence or an empty sequence, the
XMLCAST function returns an error, SQL code -16003. In this example we know that the
sequence has exactly one element, because the fn:sum function is applied to all the Amt
elements so it can’t be longer than one, and the result of applying fn:sum to an empty
sequence is 0 so it always returns a result.

The XMLCAST function can also used to strip any element tags if the result is a simple
element.

As another example of applying XPath functions, let us consider some of the date functions
available. Date and time functionality has been included in DB2 XPath with version 10 as this
is an important aspect of most business applications.

Imagine that we wanted to select all the entries from a BankToCustomerStatement that were
made in the last month. To create an XPath expression that does that, we shall use the
subtraction function for datetime which is written as ‘-’, and the two constructor functions
xs:dateTime and xs:yearMonthDuration. The result is shown in Example 6-17.

Example 6-17 Using time and date functions in an XPath expression

SELECT
 XMLQUERY (
 'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

Document/BkToCstmrStmt/Stmt/Ntry
 [BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
 PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)
FROM BK_TO_CSTMR_STMT

The predicate says that the DtTm element must be greater than current timestamp minus one
month, where the current timestamp is given as a parameter in the passing clause, and where
both this parameter and the 1 month constant is created using constructor functions. The
predicate is applied to each Ntry element in the document, and when evaluated to true, the
Ntry element will be included in the result. This is because even though we reference the
elements BookgDt and DtTm, these are only part of the predicate and not of the path that we
have selected.

6.4.2 Filtering the rows returned with XMLEXISTS

The query shown in Example 6-17 returns one row per original table row, regardless of
whether any entries in the BankToCustomerStatement qualified or not. For those
BankToCustomerStatements that did not contain an entry less than a month old, the result of
the query is the empty sequence. This is because predicates used in an XMLQUERY
108 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
expression are used to filter the data returned from the expression, not to determine whether
data is returned at all.

In order to return only the rows that actually has some contents, we can apply the same
filtering predicate in the where clause through the function XMLEXISTS. This function returns
false for an empty sequence and true for everything else. It has the same syntax as
XMLQUERY.

The resulting query is shown in Example 6-18.

Example 6-18 Avoiding empty sequences in result by using XMLEXISTS

SELECT
 XMLQUERY (
 'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

Document/BkToCstmrStmt/Stmt/Ntry
 [BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
 PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)
FROM BK_TO_CSTMR_STMT
WHERE XMLEXISTS (
 'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

Document/BkToCstmrStmt/Stmt/Ntry
 [BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
 PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)

XMLEXISTS predicates are candidates for index access if the XPath expression matches the
pattern of an XML index.

6.4.3 Creating documents with publishing functions

In Example 6-18 the result is a sequence of Ntry elements for each resulting row rather than
an XML document. If we want to create an XML document from the result, we can use the
XML publishing functions XMLELEMENT and XMLDOCUMENT.

This is shown in Example 6-19 XMLELEMENT is used to create an outermost element with
name Result, and XMLDOCUMENT to create a document from this element.

Example 6-19 Combining XMLQUERY with publishing functions

SELECT
XMLDOCUMENT(XMLELEMENT(NAME "results",
 XMLQUERY (
 'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

Document/BkToCstmrStmt/Stmt/Ntry
 [BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'

Note: A predicate should always be in square brackets. If the brackets are omitted, the
result of the XPath expression is either true or false.

Both true and false are non-empty sequences and would cause the XMLEXISTS
expression to evaluate to true, thus returning all rows in the table.
Chapter 6. DB2 SQL/XML programming 109

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
 PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)
))
FROM BK_TO_CSTMR_STMT
WHERE XMLEXISTS (
 'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

Document/BkToCstmrStmt/Stmt/Ntry
 [BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
 PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)

The result from this query is an XML document for each BankToCustomerStatement that had
any entries the last month, containing these entries.

For more information on the use of publishing functions, refer to the following:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc
.xml/db2z_publishfuncs.htm
http://www.ibm.com/developerworks/data/library/techarticle/dm-0511melnyk/

6.4.4 Aggregating documents with XMLAGG

Now assume that instead of having individual XML documents for each
BankToCustomerStatement with entries from the last month, we would like all these entries
collected in one XML document regardless of their origin.

In this case we need to be able to create new XML elements across existing XML documents,
and that is exactly what is offered by the publishing function XMLAGG. This function will take
any number of XML values and create a sequence from them. It is an aggregate function in
the same manner as the SQL functions AVG and MIN, so it is applied to all values from all
rows in the select statement.

Example 6-20 shows how to combine Example 6-19 on page 109 with the XMLAGG function
to collect all the entries in one XML document.

Example 6-20 Using XMLAGG to consolidate all entries into one document

SELECT
XMLDOCUMENT(
XMLAGG (
XMLELEMENT(NAME "results",
XMLQUERY (
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
Document/BkToCstmrStmt/Stmt/Ntry
[BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)
)))
FROM BK_TO_CSTMR_STMT
WHERE XMLEXISTS (
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
Document/BkToCstmrStmt/Stmt/Ntry
[BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
110 Extremely pureXML in DB2 10 for z/OS

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xml/db2z_publishfuncs.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xml/db2z_publishfuncs.htm
http://www.ibm.com/developerworks/data/library/techarticle/dm-0511melnyk/
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xml/db2z_publishfuncs.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.xml/db2z_publishfuncs.htm
http://www.ibm.com/developerworks/data/library/techarticle/dm-0511melnyk/

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
PASSING BK_TO_CSTMR_STMT, CURRENT TIMESTAMP AS "tm"
)

Note, that although we no longer get any rows containing empty sequences because all the
Ntry elements are collected into one document, we still include the XMLEXISTS predicate to
allow for index access.

6.4.5 Enumerating all occurrences using XMLTABLE

Now imagine that instead of creating one XML document with all the newest entries, we
would instead like one XML document per entry. The function XMLTABLE can help us provide
this.

The XMLTABLE function takes the following input:

� An optional namespace declaration

� A row XPath expression

� A number of column XPath expressions

� Optionally one or more input arguments as XPath variables

The row XPath expression returns a sequence of items, each of these produce a row in the
result table of the XMLTABLE function. If the row XPath expression points to an element, the
number of elements within a document with that particular XPath, determines the number of
resulting rows. This is what allows us to create one row per Ntry element.

Using the row XPath expression as a starting point, one or more column XPath expressions
define the contents of the columns returned from the XMLTABLE function. With each of these
is associated a data type and a name which can be used in the surrounding select statement.

In Example 6-21 we show how to use XMLTABLE to extract all the entries no more than a
month old, returning one row per entry. We use only one XPath column expression, namely ‘.’
which effectively returns the contents of the row XPath expression. This is an Ntry element; it
is returned with data type XML and subsequently made into an XML document using the
publishing function XMLDOCUMENT.

Example 6-21 Extracting one entry per row using XMLTABLE

SELECT XMLDOCUMENT (X.NTRY)
FROM BK_TO_CSTMR_STMT S,
XMLTABLE (XMLNAMESPACES(DEFAULT
 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',

'/Document/BkToCstmrStmt/Stmt/Ntry
[BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
PASSING S.BK_TO_CSTMR_STMT, current timestamp as "tm"
COLUMNS
"NTRY" XML PATH '.'
) X

Note, that we have now abandoned the XMLEXISTS predicate in the where clause. The row
XPath expressions of an XMLTABLE function is a candidate for index access, so the
XMLEXISTS predicate would yield exactly the same result and is no longer needed.

For more information and examples of the use of the XMLTABLE function, refer to

http://www.ibm.com/developerworks/data/library/techarticle/dm-0708nicola/
Chapter 6. DB2 SQL/XML programming 111

http://www.ibm.com/developerworks/data/library/techarticle/dm-0708nicola/

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
6.4.6 Grouping data with XMLTABLE

Finally, let us consider a case where we want to return all the entries ordered into documents
according to the currency in which the entry was made. So we want one document with all the
entries made in USD, one with all the entries made in SEK, and so on.

For each of the resulting documents we need entries from several of the original documents,
but assuming that it is possible to make entries in different currencies to the same account,
we cannot be sure that all entries from one account or indeed one
BankToCustomerStatement will go into the same result document.

This can be obtained by combining the XMLTABLE function from Example 6-21 on page 111
with column grouping, XMLAGG and publishing functions XMLELEMENT and
XMLDOCUMENT. The query is shown in Example 6-22.

We have added another column XPath expression to obtain the currency from the entry, and
the result is grouped according to this currency. We then apply the XMLAGG function to the
resulting entries, and wrap these in an element name Result. This in turn is then given as
input to the XMLDOCUMENT function to produce an XML document.

Example 6-22 Grouping entries obtained from XMLTABLE according to currency

SELECT XMLDOCUMENT (
XMLELEMENT(NAME "Result",
XMLAGG(X.NTRY)))
FROM BK_TO_CSTMR_STMT S,
XMLTABLE (XMLNAMESPACES(DEFAULT
 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',
'/Document/BkToCstmrStmt/Stmt/Ntry
[BookgDt/DtTm>xs:dateTime($tm)-xs:yearMonthDuration("P1M")]'
PASSING S.BK_TO_CSTMR_STMT, current timestamp as "tm"
COLUMNS
"CCY" VARCHAR(20) PATH 'Amt/@Ccy' ,
"NTRY" XML PATH '.'
) X
GROUP BY X.CCY

6.5 User defined functions with XML

User defined functions are a great way of encapsulating complex logic or expressions in
function that is very easy for anybody to use. The first stored procedure in this chapter (which
received an XML document, extracted a number of relational and XML objects from the
received XML document, and stored the results in a DB2 table) contained some XQuery
expressions which would be quite challenging for an SQL programmer to use if that
programmer had not been exposed to XML.

6.5.1 UDFs for reading from XML documents

We could dramatically simplify that stored procedure by providing three user defined functions
to perform the XML tasks. In Example 6-23 we provide the DDL necessary to create the three
UDFs that would really help the traditional SQL programmer.
112 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
Example 6-23 Creating three user defined functions

CREATE FUNCTION GETMSGID(doc XML) RETURNS VARCHAR(35)
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
DISABLE DEBUG MODE

BEGIN
RETURN xmlcast(xmlquery(

'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/MsgId' passing doc as "d")

as varchar(35)) ;
END !

CREATE FUNCTION GETCREDTTM(doc XML) RETURNS TIMESTAMP
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
DISABLE DEBUG MODE

BEGIN
RETURN xmlcast(xmlquery(

'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/CreDtTm' passing doc as "d")

as timestamp) ;
END !

CREATE FUNCTION GETMINISTMT(doc XML) RETURNS XML
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
DISABLE DEBUG MODE

BEGIN
RETURN xmlquery(

'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/Stmt' passing doc as "d") ;

END !

Each of these three UDFs encapsulates XQuery functions to return a different data type to
the SQL programmer. Example 6-24 shows how these functions can be used in standard
SQL.

Example 6-24 Usage of UDFs

select
getmsgid(BK_TO_CSTMR_STMT) as MSGID,
getcredttm(BK_TO_CSTMR_STMT) as CRE_DT_TM,
getministmt(BK_TO_CSTMR_STMT) as MINISTMT
from BK_TO_CSTMR_STMT
Chapter 6. DB2 SQL/XML programming 113

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
The results of the UDF-based query in Example 6-24 are shown in Figure 6-7.

Figure 6-7 SQL Results using UDFs on XML documents

So, if we rewrite the stored first stored procedure to use these functions (as shown in
Example 6-25) we find that there is it now looks much simpler. In fact, the traditional SQL
programmer does not need to know a shred of XQuery, provided that they have a range of
system provided and user defined functions to operate on XML data.

Example 6-25 Modified stored procedure using UDFs instead of XQuery expressions

CREATE PROCEDURE STOREXML5 (
IN V_BANKSTMT XML,
OUT V_MSG_ID VARCHAR(35),
OUT V_CREDTTM TIMESTAMP,
OUT V_MINISTMT XML)

LANGUAGE SQL
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN

DECLARE VALIDXML XML ;
DECLARE SQLCODE INTEGER ;

SET VALIDXML = (
SELECT DSN_XMLVALIDATE(V_BANKSTMT, 'SYSXSR.CAMT_053_001_02');

SELECT
getmsgid(BK_TO_CSTMR_STMT),
getcredttm(BK_TO_CSTMR_STMT),
getministmt(BK_TO_CSTMR_STMT)
into V_MSG_ID, V_CREDTTM, V_MINISTMT from BK_TO_CSTMR_STMT;

INSERT INTO BK_TO_CSTMR_STMT_MANUALVALIDATE (
MSG_ID , MSG_CRE_DT_TM, BK_TO_CSTMR_STMT)
values (V_MSG_ID, V_CREDTTM, VALIDXML) ;

END !
114 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
UDFs for XML are a great way to take advantage of DB2’s pureXML capabilities, without
necessarily exposing the SQL programmers to the full complexity of XQuery expressions.

6.5.2 UDFs for writing updates to XML documents

The UDF examples we have shown so far have been based around retrieving data from XML
documents, and transforming them to traditional relational objects. UDFs can also be used for
other purposes, such as writing sub-document updates.

Example 6-26 illustrates a user defined function that inserts a new XML node into an XML
document.

Example 6-26 UDF for XML sub-document update

CREATE FUNCTION UPDATE_ADDR(NEW_ADDR CLOB)
RETURNS integer
LANGUAGE SQL
MODIFIES SQL DATA
DETERMINISTIC
DISABLE DEBUG MODE

BEGIN
UPDATE CUSTOMER_TABLE

SET CUSTOMER_ADDRESS = XMLMODIFY(
'insert node $new as last into /Customer/addresses',
XMLPARSE(NEW_ADDR) as "new") ;

return SQLCODE;
END !

-- This UDF could be called using the following SQL statement -

SELECT UPDATE_ADDR(V_ADDR) INTO UDF_RETURN1
FROM CUSTOMER_TABLE
where CUSTID = ‘VALUE’ ;

6.6 Triggers with XML

Triggers are a popular way of implementing database dependencies. Triggers can be defined
to perform procedural work as a direct result of an SQL write (insert, update or delete) to the
table that the trigger is defined on. Triggers can use “transition variables” to reference the new
or old values of DB2 columns, which allows the trigger routine body to work with the data
values that have just been written.

Triggers can be used on tables with XML columns. However, the new and old values of XML
columns are not available as transition variables to the trigger routine body.

In summary, you can continue to write triggers with tables that have XML columns, but if you
want to reference the contents of an XML column you will need to re-read the XML data using
one of the relational columns that are available as a transition variable.
Chapter 6. DB2 SQL/XML programming 115

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
6.7 XML joins

We examine XML to relational join and XML to XML join.

6.7.1 XML to relational join

Joining XML data with relational data is no different in principle to wholly relational joins. The
data types of the join must be compatible, and indexes should be used to make the join
perform well.

The ISO20022 sample XML messages that we are using all relate to an account called
‘FINPETROL’. The account name is stored at the XPath location:

/Document/BkToCstmrStmt/Stmt/Acct/Ownr/Nm

We can perform a join based on the Account Name within the XML document, against a
relational table of addresses, illustrated in Example 6-27.

Example 6-27 Contents of relational address table

CUSTNAME STRTNM BLDGNB PSTCD TWNNM
----------- -------------- ------- ------- ---------
FINPETROL Bailey Avenue 555 95141 San Jose
WINGPETROL Bond Street 23 98282 New York
TAILPETROL Southfork 1 99999 Dallas

There are many ways to perform an XML to relational join in SQL/XML. One approach is to
use the XMLEXISTS function (which is indexable). A very simple join statement is illustrated
in Example 6-28. The join is achieved by passing the relational column for the join
(a.custname) to the XMLEXISTS function as a variable which is then used as an XML
predicate.

Example 6-28 XML to Relational Join example using XMLEXISTS

select c.msg_id, c.msg_cre_dt_tm, a.strtnm, a.bldgnb, a.pstcd, a.twnnm
from BK_TO_CSTMR_STMT c, ADDRESS a

where xmlexists('declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$i/Document/BkToCstmrStmt/Stmt/Acct/Ownr[Nm=$acctname]'
passing

c.BK_TO_CSTMR_STMT as "i",
a.custname as "acctname");

--yields

MSG_ID MSG_CRE_DT_TM STRTNM BLDGNB PSTCD TWNNM
------------------- ---------------------- ------------- ------ ----- --------
AAAASESS-FP-STAT001 2010-01-15-17.00.00... Bailey Avenue 555 95141 San Jose

Another method of performing an XML to relational join is using the XMLTABLE function,
which is indexable if coded with a predicate, as shown in figure. Example 6-29 shows normal
relational join being coded between the result of an XMLTABLE function and a relational table.
In Example 6-29 there is no predicate on the XMLTABLE function, so this particular query
would not be indexable.
116 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
Example 6-29 XML to relational join example using XMLTABLE

SELECT X.ACCT_NM, X.SVCR_NM, a.strtnm, a.bldgnb, a.pstcd, a.twnnm
FROM

BK_TO_CSTMR_STMT as C,
ADDRESS as a,
XMLTable(XMLNAMESPACES(

DEFAULT'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'),
'$d/Document/BkToCstmrStmt/Stmt/Acct'

PASSING c.BK_TO_CSTMR_STMT as "d"
COLUMNS "ACCT_NM" VARCHAR(35) PATH './Ownr/Nm',
"SVCR_NM" VARCHAR(35) PATH './Svcr/FinInstnId/Nm') AS X

where x.ACCT_NM = a.CUSTNAME ;

-- yields

ACCT_NM SCVR_NM STRTNM BLDGNB PSTCD TWNNM
--------- ----------- ------------- ------ ----- --------
FINPETROL AAAA BANKEN Bailey Avenue 555 95141 San Jose

6.7.2 XML to XML join

The techniques required to perform XML to XML join are a little different. In order to provide a
test case we will convert the relational address table (used in the XML to relational join
examples in 6.7.1, “XML to relational join” on page 116) to an XML format. This allows us to
perform the same logical joins, except that both sources are XML.

The relational address table is converted to XML using the script in Example 6-30.

Example 6-30 Script to convert the relational address table to XML

create table xmladdress (CUSTADDR XML) ;

INSERT INTO XMLADDRESS (CUSTADDR)
SELECT XMLSERIALIZE(XMLDOCUMENT(

XMLELEMENT(NAME "MsgRcpt",
XMLELEMENT(NAME "Nm", CUSTNAME),
XMLELEMENT(NAME "PstlAdr",

XMLELEMENT(NAME "StrtNm", STRTNM),
XMLELEMENT(NAME "BldgNb", BLDGNB),
XMLELEMENT(NAME "PstCd", PSTCD),
XMLELEMENT(NAME "TwnNm", TWNNM)))) AS CLOB)

from Address ;

select * from xmladdress ;

-- yields

CUSTADDR
--
<MsgRcpt><Nm>FINPETROL</Nm><PstlAdr><StrtNm>Bailey
Avenue</StrtNm><BldgNb>555</BldgNb><PstCd>95141</PstCd><TwnNm>San
Jose</TwnNm></PstlAdr></MsgRcpt>
Chapter 6. DB2 SQL/XML programming 117

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
<MsgRcpt><Nm>WINGPETROL</Nm><PstlAdr><StrtNm>Bond
Street</StrtNm><BldgNb>23</BldgNb><PstCd>98282</PstCd><TwnNm>New
York</TwnNm></PstlAdr></MsgRcpt>

<MsgRcpt><Nm>TAILPETROL</Nm><PstlAdr><StrtNm>Southfork</StrtNm><BldgNb>1</BldgNb><
PstCd>99999</PstCd><TwnNm>Dallas</TwnNm></PstlAdr></MsgRcpt>

Having converted the address table to XML, we can now code XML to XML joins.
Example 6-31 shows the use of an XMLEXISTS function to join the two tables. In this
example we need to pass both XML documents (“i” and “j”) into the XMLEXISTS function to
perform the comparison.

The XML string function is used with the current location to signify that we wish to perform a
string comparison to join the current contents of one location in one document with the
current contents of another location in the other document. The specification of the data type
being used in the join comparison is very important because

� Unlike relational columns, the XML fields do not have types defined
� Index eligibility is dependent on the data type

Example 6-31 XML to XML join using XMLEXISTS

select * from BK_TO_CSTMR_STMT c, XMLADDRESS a
where xmlexists('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$i/Document/BkToCstmrStmt/Stmt/Acct/Ownr[

Nm/fn:string(.) = $j/MsgRcpt[Nm/fn:string(.)]]'
passing

c.BK_TO_CSTMR_STMT as "i",
a.CUSTADDR as "j");

Example 6-31 was coded in order to illustrate the mechanics of an XML to XML join as clearly
as possible. This query does not contain any filter predicate that is indexable. However, the
join predicate is eligible for index access because it has been expressed with the string()
function, which is indexable.

Similarly, if you have XML to XML join on a numeric field, you should use xs:double so that an
XML DECFLOAT index can be used for the join predicate.

6.8 XML with change data capture tools

The primary application scenario for this book is the ISO20022 standard for banking
messages.

Another common source of XML messages is the range of replication and event publishing
tools that are used to capture changes from existing database, and publish change data
capture (CDC) messages. The published messages would sometimes be used to replicate
changes to another database (such as a data warehouse). It is becoming increasingly
common that CDC messages (change data capture messages) are being used in event driven
systems. Changes to source data, that meets certain criteria (say, bank transfers that exceed
a threshold value) could be routed to a workflow system (such as WebSphere Message
Broker) where the CDC event would be examined using workflows that implement business
processes, and initiate automated actions.
118 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
This section considers some ways in which CDC messages could be handled by DB2
pureXML.

6.8.1 Change data capture tools background

Change data capture tools tend to follow an architecture along the following lines:

1. A capture process is used to read the database log of a source database, looking for
changes which have been requested by a subscription definition.

2. When qualifying changes are found in the log, they are packaged up (typically into unit of
work boundaries) and transmitted over a network infrastructure to the target systems that
have subscribed to them.

3. The target systems receive the changes an do something with them (such as update a
database, invoke an application process, publish an CDC message in XML or some other
format, and so on).

IBM’s replication and event publishing tools that publish XML change data capture messages
include the tools listed in Table 6-2.

Table 6-2 IBM change data capture tools that publish XML messages.

The purpose of this section is to focus on the XML messages that are published from these
tools, and examine how they can be used with DB2 pureXML.

InfoSphere Data Event Publisher and InfoSphere Classic Data Event Publisher both share a
common schema and generate messages like the one shown in Example 6-32.

Example 6-32 Sample XML CDC message format for DB2 and Classic Data Event Publishers

<?xml version="1.0" ?>
<msg xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mqcap.xsd"
version="1.0.0" dbName="$IMS "
seqNum="IMS000003B4009FF00AIMSY _8"> 1
<rowOp authID="USER0000"

planName="USER0000"
cmitLSN="IMS000003B4009FF00AIMSY "
cmitTime="2010-11-12:14:22:02.374839"> 2

<insertRow subName="CLASSIC" srcOwner="IMSP" srcName="CLASSIC1"> 3

Tool Main data sources
supported for CDC

Comments

InfoSphere Data
Event Publisher

� DB2 for z/OS
� DB2 for LUW
� Oracle

� Asynchronous log reader services
� Writes CDC messages as XML (and other formats)
� Publishes messages directly to WebSphere MQ
� z/OS and LUW versions

InfoSphere Classic
Data Event Publisher

� IMS
� VSAM
� IDMS
� Adabas

� Asynchronous log reader services
� Writes CDC messages as XML (and other formats)
� Publishes messages directly to WebSphere MQ or zFS files
� z/OS only

InfoSphere Change
Data Capture

� DB2 for z/OS
� DB2 for LUW
� DB2 for iSeries®
� Oracle
� Sybase
� SQL Server

� Asynchronous log reader services
� Writes CDC messages as XML (and other formats)
� Source server writes CDC data over tcpip to a target server.
� Target server writes messages to a range of targets, including

WebSphere MQ and files
� z/OS and LUW versions
Chapter 6. DB2 SQL/XML programming 119

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
<col name="STRTNM" isKey="0"> 4
<char>Bailey Avenue</char>

</col>
<col name="BLDGNB" isKey="0">

<char>555</char>
</col>
<col name="PSTCD" isKey="0">

<char>95149</char>
</col>
<col name="TWNNM" isKey="0">

<char>San Jose</char>
</col>

</insertRow>
</rowOp>

</msg>

The XML message is quite easy to understand by reviewing it. The annotated points in the
figure are:

1. The XML schema is mqcap.xsd is available to be defined in the pureXML XSR. the
document root also contains information about the database source.

2. Change data capture messages can be generated based either as row operations (like
this one) or as transactions. A transaction message inserts<trans> tags around one or
more <rowOp> tags. log sequence numbers and timestamps are included as attributes,
and reflect the information that is available for a particular data source.

3. Individual row operations may be <InsertRow>, <UpdateRow> or <DeleteRow>

4. The before and after images of the column values are published. The administration tools
has options to ignore before images, and make other customization to the published data.

InfoSphere CDC offers the choice of a range of XML schemas for publishing change data
messages. Example 6-33 is an SQL update example of a simple InfoSphere CDC XML
message.

Example 6-33 Sample XML CDC message format for InfoSphere CDC

<?xml version="1.0" encoding="UTF-8"?>
<CUST_CHANGE>

<TimeStamp AfterImage="2010-10-22T14.22.38.000"
BeforeImage="2009-05-16T10.09.22.000"/>

<SourceLogSeqNumber AfterImage="20101022142238000000"
BeforeImage="20090516100922000000"/>

<STRTNM AfterImage=" Nice Street " BeforeImage=" Bailey Avenue "/>
<BLDGNB AfterImage=" 100 " BeforeImage=" 555 "/>
<PSTCD AfterImage=" 98282 " BeforeImage=" 95141 "/>
<TWNNM AfterImage=" San Diego " BeforeImage=" San Jose "/>

</CUST_CHANGE>

Based on the XML examples we have worked on so far in this chapter, these CDC XML
messages look fairly straightforward to handle.

6.8.2 Using DB2 pureXML to receive CDC messages

Change data capture event messages are useful for many different reasons, such as
120 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
� updating a data warehouse with a stream of change data messages, so that it can be kept
up to date with very low latency compared to other techniques such as extracts and loads.

� notifying workflow or event driven systems about important changes to operational data,
that require rapid and/or automated business processes to be executed

Another potential use for CDC messages is to maintain a historical record of changes to
operational data. We expand this idea in 6.8.3, “XML history objects” on page 125.

For now, let us examine how we would consume a stream of XML CDC messages with DB2
pureXML. We could use a mixture of all the programming constructs that we have illustrated
in this chapter so far to receive CDC XML messages into DB2 pureXML storage, as illustrated
in Figure 6-8.

Figure 6-8 Scenario to receive XML CDC messages into DB2 pureXML via MQ

We have already discussed the mechanics of receiving XML messages from WebSphere MQ
earlier in this chapter. The requirements will be more complex if we wish to update a historical
audit record.

Figure 6-9 shows the contents of the XML historical record before the CDC record is applied.
Customer John Doe, with customer number ‘CUST1’ has a record of two nominated email
addresses (one expired, one active) and only one postal address (which is active). If we
receive a CDC message containing a change of address then we will want to set an end date
in the node for the current postal address, and add a new node for the new address.

Stored Procedure:

Set v_empid = get_empid(cdcdoc) ;

Update CUST_HISTORY_TABLE
Set CUST_HISTORY = update(cdcdoc)
Where CUST_ID = v_empid ;

CUST_HISTORY (XML)CUST_ID (INT)

Change Data Capture /
Event PublishingTool

MQ Listener

cdcmsg (xml)
Chapter 6. DB2 SQL/XML programming 121

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 6-9 Initial CUST_HISTORY table contents for ‘CUST1’

If we receive the CDC message in Example 6-33 we need to write a procedure to do the
following:

1. Examine the contents of the XML CDC record to find the customer identifier key.
2. Use the customer identifier key to retrieve the XML document that stores the historical

record of customer address changes.
3. Update the XML node in the document that stored the current address details, to set an

end data for that address.
4. Insert a new node in the XML document to reflect the new address details

The stored procedure in Example 6-34 receives the XML CDC message from MQ (in the
format of the InfoSphere CDC example), and updates the historical record of changes in DB2.
This stored procedure actually picks up the CDC message from a test table, but the MQ
examples earlier in the chapter show you how you would adapt it to work with WebSphere
MQ.

Example 6-34 Stored Procedure to receive and apply CDC message

CREATE PROCEDURE XMLR3.RECEIVE_CDC(IN CDCDOC XML) 1
LANGUAGE SQL

<?xml version="1.0" encoding="UTF-8"?>
<CustomerHistory>
 <DB2CustomerDB>
 <customer_identification>
 <customer_id>CUST1</customer_id>
 <customer_name>John Doe</customer_name>
 <emails>
 <email>
 <email_effective_from>2008-07-18T00:00:00+01:00</email_effective_from>
 <email_effective_to>2009-10-18T00:00:00+01:00</email_effective_to>
 <email_addr>john_doe@isp.com</email_addr>
 </email>
 <email>
 <email_effective_from>2008-07-18T00:00:00+01:00</email_effective_from>
 <email_effective_to> </email_effective_to>
 <email_addr>jon@newisp.com</email_addr>
 </email>
 </emails>
 <addresses>
 <address>
 <address_effective_from>2008-07-18T00:00:00+01:00</address_effective_from>
 <address_effective_to> </address_effective_to>
 <PstlAdr>
 <StrtNm> Bailey Avenue </StrtNm>
 <BldgNb> 555 </BldgNb>
 <PstCd> 95141 </PstCd>
 <TwnNm> San Jose </TwnNm>
 </PstlAdr>
 </address>
 </addresses>
 </customer_identification>
 </DB2CustomerDB>
</CustomerHistory>
122 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
MODIFIES SQL DATA
DISABLE DEBUG MODE

BEGIN

DECLARE CDC_CUSTID CHAR(5) ;
DECLARE CDC_STRTNM VARCHAR(70) ;
DECLARE CDC_BLDGNB VARCHAR(16) ;
DECLARE CDC_PSTCD VARCHAR(16) ;
DECLARE CDC_TWNNM VARCHAR(35) ;
DECLARE V_ADDR_FROM TIMESTAMP WITH TIMEZONE ;
DECLARE V_STRTNM VARCHAR(70) ;
DECLARE V_BLDGNB VARCHAR(16) ;
DECLARE V_PSTCD VARCHAR(16) ;
DECLARE V_TWNNM VARCHAR(35) ;
DECLARE PREV_MAX_ADDR XML ;
DECLARE NEXT_MAX_ADDR XML ;
DECLARE UDF_RETURN1 INT ;
DECLARE UDF_RETURN2 INT ;

SELECT X.CUSTID, X.STRTNM, X.BLDGNB, X.PSTCD, X.TWNNM
INTO CDC_CUSTID, CDC_STRTNM, CDC_BLDGNB, CDC_PSTCD, CDC_TWNNM
FROM XMLTable('$d/CUST_CHANGE' PASSING CDCDOC as "d"

COLUMNS
"CUSTID" CHAR(5) PATH 'CUSTID/@AfterImage',
"STRTNM" VARCHAR(70) PATH 'STRTNM/@AfterImage',
"BLDGNB" VARCHAR(16) PATH 'BLDGNB/@AfterImage',
"PSTCD" VARCHAR(16) PATH 'PSTCD/@AfterImage',
"TWNNM" VARCHAR(35) PATH 'TWNNM/@AfterImage'

) AS X ; 2

SELECT X.ADDR_FROM, X.STRTNM, X.BLDGNB, X.PSTCD, X.TWNNM
INTO V_ADDR_FROM, V_STRTNM, V_BLDGNB, V_PSTCD, V_TWNNM
FROM CUST_HISTORY C,
XMLTable(
'$cu/CustomerHistory/DB2CustomerDB/customer_identification/addresses/address'
PASSING C.CUST_HISTORY_OBJECT as "cu"

COLUMNS
"ADDR_FROM" TIMESTAMP WITH TIMEZONE PATH 'address_effective_from',
"STRTNM" VARCHAR(50) PATH 'PstlAdr/StrtNm',
"BLDGNB" VARCHAR(50) PATH 'PstlAdr/BldgNb',
"PSTCD" VARCHAR(50) PATH 'PstlAdr/PstCd',
"TWNNM" VARCHAR(50) PATH 'PstlAdr/TwnNm'

) AS X
WHERE CUSTID = CDC_CUSTID
order by X.ADDR_FROM desc

fetch first row only ; 3

SET PREV_MAX_ADDR = XMLELEMENT(NAME "address",
 XMLELEMENT(NAME "address_effective_from", V_ADDR_FROM),
 XMLELEMENT(NAME "address_effective_to", current timestamp with timezone),
 XMLELEMENT(NAME "PstlAdr",
 XMLELEMENT(NAME "StrtNm", V_STRTNM),
 XMLELEMENT(NAME "BldgNb", V_BLDGNB),
 XMLELEMENT(NAME "PstCd", V_PSTCD),
Chapter 6. DB2 SQL/XML programming 123

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
 XMLELEMENT(NAME "TwnNm", V_TWNNM))) ; 4

SET NEXT_MAX_ADDR = XMLELEMENT(NAME "address",
 XMLELEMENT(NAME "address_effective_from", current timestamp with timezone),
 XMLELEMENT(NAME "address_effective_to", ''),
 XMLELEMENT(NAME "PstlAdr",
 XMLELEMENT(NAME "StrtNm", CDC_STRTNM),
 XMLELEMENT(NAME "BldgNb", CDC_BLDGNB),
 XMLELEMENT(NAME "PstCd", CDC_PSTCD),
 XMLELEMENT(NAME "TwnNm", CDC_TWNNM))) ; 5

UPDATE CUST_HISTORY X
SET X.CUST_HISTORY_OBJECT = XMLMODIFY(

'replace node
/CustomerHistory/DB2CustomerDB/customer_identification/addresses/address[
address_effective_from=$t]

with $V',
PREV_MAX_ADDR AS "V",
V_ADDR_FROM as "t")

where CUSTID = 'CUST1' ; 6

UPDATE CUST_HISTORY X

SET X.CUST_HISTORY_OBJECT = XMLMODIFY(
'insert node $new as last into

/CustomerHistory/DB2CustomerDB/customer_identification/addresses',
NEXT_MAX_ADDR as "new")

where CUSTID = 'CUST1' ; 7

END !

The logic of the stored procedure is explained as follows with the annotated points from
Example 6-34.

1. The stored procedure accepts the cdc message as an XML document in INPUT
parameter CDCDOC.

2. The data elements of the incoming cdc message are stripped with a single XMLTABLE
function

3. Using the customer id (‘CUST1’) from the cdc document, the current address node is
retrieved from the CUSTOMER_HISTORY table.

4. A replacement XML node is derived for the current address node, using XML Publishing
functions

5. A new XML node is derived from the incoming CDCDOC

6. The existing XML node storing the current address is replaced using an XMLMODIFY
function.

7. The new XML node is inserted using a further XMLMODIFY function.

PREV_MAX_ADDR and NEXT_MAX_ADDR are kept as XML type as they are going to be
used in XMLMODIFY later, therefore avoiding an XMLPARSE().

The resultant contents of the addresses nodes in the customer history table is shown in
Figure 6-10.
124 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
Figure 6-10 Updated CUST_HISTORY table contents for ‘CUST1’

If you use the InfoSphere Data Event Publisher or Classic Data Event Publisher products, the
XML schema is different, but the technique is the same. All you need to do is replace the
XMLTABLE operation on the incoming XML CDC document with a different XMLTABLE
operation shown in Example 6-35, to work with the incoming schema.

Example 6-35 XMLTABLE function for Event Publisher XML schemas

SELECT X.CUSTID, X.STRTNM, X.BLDGNB, X.PSTCD, X.TWNNM
INTO CDC_CUSTID, CDC_STRTNM, CDC_BLDGNB, CDC_PSTCD, CDC_TWNNM

FROM XMLTable('$d/msg/rowOp/updateRow' PASSING CDCDOC as "d"
COLUMNS

"CUSTID" CHAR(5) PATH 'col[@name=”CUSTID”]/char/afterVal',
"STRTNM" VARCHAR(70) PATH 'col[@name=”STRTNM”]/varchar/afterVal',
"BLDGNB" VARCHAR(16) PATH 'col[@name=”BLDGNB”]/varchar/afterVal',
"PSTCD" VARCHAR(16) PATH 'col[@name=”PSTCD”]/varchar/afterVal',
"TWNNM" VARCHAR(35) PATH 'col[@name=”TWNNM”]/varchar/afterVal'

) AS X ;

6.8.3 XML history objects

This section explores the use of pureXML to store historical data, and support temporal
queries against that data. We consider an option to create and maintain pureXML data
objects (representing a customer, for example) that contain a growing historical record of all
the changes that have been applied to that object in the source systems.

<addresses>
 <address>
 <address_effective_from>2008-07-18T00:00:00.000000+01:00</address_effective_from>
 <address_effective_to>2010-11-08T17:31:03.602776-05:00</address_effective_to>
 <PstlAdr>
 <StrtNm> Bailey Avenue </StrtNm>
 <BldgNb> 555 </BldgNb>
 <PstCd> 95141 </PstCd>
 <TwnNm> San Jose </TwnNm>
 </PstlAdr>
 </address>
 <address>
 <address_effective_from>2010-11-08T17:31:03.602935-05:00</address_effective_from>
 <address_effective_to/>
 <PstlAdr>
 <StrtNm> Nice Street </StrtNm>
 <BldgNb> 100 </BldgNb>
 <PstCd> 98282 </PstCd>
 <TwnNm> San Diego </TwnNm>
 </PstlAdr>
 </address>
</addresses>

Note: Apply the PTF for APAR PM28385 (currently open) for the latest maintenance
related to XMLTABLE function.
Chapter 6. DB2 SQL/XML programming 125

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
Bitemporal data
Before proceeding to discuss XML support for temporal data, let us take note of another DB2
10 capability that supports the storage of historical data and the execution of temporal
queries against that data: bitemporal data.

The concept of bitemporal data is that 4 additional columns (timestamp data type) are added
to tabular data, reflecting the start and end points of ‘system time’ and ‘business time’.

� System time is an auditable history of what the data looked like in the system at any point
in history.

� Business time is an auditable history of the data, which reflects business corrections.

Bitemporal data support is a productivity feature of DB2 which can be used to maintain an
auditable history of changes over time. Whenever a change is made to a table with bitemporal
data support, the system time and the business time are both automatically tracked to
maintain that auditable history.

Bitemporal data is not explained in any more detail in this book, because it is covered in other
DB2 10 publications. For new DB2 systems, particularly for the relational data model,
bitemporal data will probably the most productive way of supporting temporal data, because
the data structures and programming interface has all been built into DB2. Also, the use of
bitemporal data in conjunction with XML is fully supported.

Temporal data with XML
XML also provides excellent support for temporal data.

The value of XML for historical data is broadly acknowledged as powerful and efficient. The
paper "XML-Based Support for Database Histories and Document Versions" by Fusheng
Wang, in 2004 describes an XML model for storing historical data, and supporting temporal
queries. It is available at:

http://wis.cs.ucla.edu/~wangfsh/publications/thesis.pdf

Building XML History Objects from change data capture data streams
Most legacy data sources have been defined without system-provided temporal data support
because bitemporal data is new in DB210 for z/OS.

Many transactional database systems are focussed almost exclusively on the current state of
the data that they store, and may not have much support for historical data. This is a common
scenario, which often leads to a decision to deploy a data warehouse (which is derived from
the data in the transactional system) for the purpose of storing historical data and performing
trend analysis to see how data has changed over time.

Change data capture and replication products are often used as a vehicle to feed changes to
data warehouses. The change data capture data streams contain details of what the data
changes were, and precisely when they happened, usually as a commit timestamp from the
log record on the source system. This temporal reference data can be used by the ETL
processes that maintain the data warehouse, in order to build a record of historical changes in
the target data warehouse.

DB2 pureXML should be considered as a data type in the data warehouse for recording a
history of changes to source data objects. pureXML would not be a good choice for data
warehouse that seek to deliver OLAP-style structures. However, pureXML would be a good
choice for other scenarios where the state of data at different points in the past is of interest.
The following characteristics would tend to make pureXML attractive for historical data
126 Extremely pureXML in DB2 10 for z/OS

http://wis.cs.ucla.edu/~wangfsh/publications/thesis.pdf

Draft Document for Review January 9, 2011 1:25 pm 7915ch06.fm
� Large and sparse data structures could require extensive and costly relational database
structures, but can be implemented with simplicity within an XML schema

� sub-document update allows changes replicated from source systems to be merged into a
singe XML document, combining all historical changes into a single XML document (as
shown in Example 6-34 on page 122)

� SQL/XML provides powerful temporal query capabilities (provided the XML schema is
designed to be friendly for temporal queries)

� XML and relational storage can co-exist in DB2’s hybrid database environment, supporting
queries with a mixture of SQL and XML expressions, and a mixture of relational and XML
storage.

DB2 pureXML could act as a repository for historical data, with temporal query support as in
Figure 6-11.

Figure 6-11 DB2 PureXML as historical repository

IMS DB2 Oracle

Ingest Process for cdc messages

VSAM

“cdc”
XML

“cdc”
XML

“cdc”
XML

“cdc”
XML

DB2

IMS Accounts VSAM Terms DB2 Cust Oracle WebCust

Temporal Queries
Chapter 6. DB2 SQL/XML programming 127

7915ch06.fm Draft Document for Review January 9, 2011 1:25 pm
128 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
Chapter 7. Using XML with Java

In Java applications, you can store XML data in DB2 databases or retrieve XML data from
DB2 databases by using JDBC or SQLJ interface. Java also provides powerful APIs for XML
processing, such as DOM, SAX and StAX.

In this chapter we show how JDBC applications handle XML data in DB2 for z/OS based on a
scenario using the ISO20022 BankToCustomerStatement message.

This chapter contains the following:

� XML in Java

� The BankStmt application in Java

– Setting up the environment

– Insertion of rows with XML column values

– Updates of XML columns

– Retrieving XML data

– Call stored procedure in Java

– XSLT to transform XML document

– Java interface to MQ

The description of the application scenario can be found in Chapter 3, “Application scenario”
on page 45.

All Java examples are available for download as additional material as described in
Appendix B, “Additional material” on page 273.

7

© Copyright IBM Corp. 2011. All rights reserved. 129

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
7.1 XML in Java

In DB2 tables, the XML built-in data type is used to store XML data in a column as a
structured set of nodes in a tree format. You can write applications to store XML data in DB2
tables and retrieve XML data from tables.

The Java programming language and its database interface JDBC are very popular choices
for XML application development. DB2 for z/OS provides a universal driver that supports both
the JDBC and the SQLJ interface of the Java language. This driver is the IBM Data Server
Driver for JDBC and SQLJ, also known as JCC (Java Common Client). It supports JDBC type
2 and type 4 driver and can connect to the DB2 family of products and Informix® Dynamic
Server (IDS) database systems.

Two versions of the IBM Data Server Driver for JDBC and SQLJ are available.

� IBM Data Server Driver for JDBC and SQLJ version 3.x, JDBC 3.0-compliant.

� IBM Data Server Driver for JDBC and SQLJ version 4.x, JDBC 4.0-compliant.

We summarize the Java interfaces for XML data type support in Table 7-1.

Table 7-1 XML data type support in JCC3 and JCC4

You control the level of JDBC support by specifying the appropriate set of files in the
CLASSPATH. For example, if you want to use the JCC 4.x driver, include lib_dir/db2jcc4.jar
and lib_dir/sqlj4.jar in your CLASSPATH.

In JDBC applications, you can:

� Register and remove XML schemas using Java methods.

� Create XML documents from application data using XML APIs.

� Store an entire XML document in an XML column using setXXX methods.

� Retrieve an entire XML document from an XML column using getXXX methods.

� Retrieve a sequence from a document in an XML column by using the SQL XMLQUERY
function to retrieve the sequence into a serialized sequence in the database, and then
using getXXX methods to retrieve the data into an application variable.

� Retrieve a sequence from a document in an XML column as a user-defined table by using
the SQL XMLTABLE function to define the result table and retrieve it. Then use getXXX
methods to retrieve the data from the result table into application variables.

� Invoke routines with XML parameters in Java applications.

JDBC3.0 provides some basic methods to retrieve XML document as Bytes, String or Stream,
or set the XML document from Bytes, String or Stream. IBM Data Server Driver for JDBC and
SQLJ 3.x also supports DB2Xml interfaces for XML processing.

JDBC4.0 introduces the SQLXML Java data type, which lets you map an XML data type table
column to a Java data type. Use IBM Data Server Driver for JDBC and SQLJ 4.x, the latest

JCC driver JDBC
support

Java interface
for XML Data

Minimum Java
level required

Jar file

JCC 3.x JDBC 3.0 com.ibm.db2.jcc.DB2Xml 1.4 db2jcc.jar
sqlj.jar

JCC 4.x JDBC 4.0 java.sql.SQLXML 6.0 db2jcc4.jar
sqlj4.jar
130 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
level. This driver provides the SQLXML interface and also support other DB2 features such as
binary XML format. You have more flexibility in coding your application and better
performance.

7.1.1 XML support in JDBC 3.0

When developing applications with JDBC3.0, you can use the Java standard interface
ResultSet in order to retrieve XML data from DB2 tables. This interface provides getter
methods for retrieving XML column values from the current row. Table 7-2 gives a a summary
of the methods in the ResultSet interface.

Table 7-2 JDBC 3.0 Getter methods of ResultSet

The method getObject retrieves XML data into an object of type DB2Xml, which provides
more getter method. com.ibm.db2.jcc.DB2Xml supports the methods shown in Table 7-3.

Table 7-3 DB2Xml Getter Methods

Getter methods of ResultSet Description

getBytes Retrieves the value of the designated column in the current row of
this ResultSet object as UTF-8 encoded bytes

getString Retrieves the value of the designated column in the current row of
this ResultSet object as a string in the Java programming language

getAsciiStream Retrieves the value of the designated column in the current row of
this ResultSet object as a stream of ASCII characters.

getBinaryStream Retrieves the value of the designated column in the current row of
this ResultSet object as a UTF-8 encoded binary stream

getCharacterStream Retrieves the value of the designated column in the current row of
this ResultSet object as a java.io.Reader object

getObject Retrieves the value of the designated column in the current row of
this ResultSet object as a com.ibm.db2.jcc.DB2Xml object

Note: The methods in Table 7-2 do not add an encoding declaration to the retrieved XML
data.

DB2Xml Getter Methods Description

getDB2Bytes() Retrieves the value of the designated column in the current row of
this ResultSet object as UTF-8 encoded bytes

getDB2XmlBytes() Retrieves the value of the designated column in the current row of
this ResultSet object as a byte array in the Java programming
language. The method converts the bytes to the target encoding
and adds XML declaration with encoding tag

getDB2String() Retrieves the value of the designated column in the current row of
this ResultSet object as a string in the Java programming language

getDB2XmlString() Retrieves the value of the designated column in the current row of
this ResultSet object as a string in the Java programming
language. The method will add XML declaration with encoding tag
"ISO-10646-UCS-2"
Chapter 7. Using XML with Java 131

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
The getDB2XmlXXX methods generate XML declarations with an encoding attribute for the
retrieved XML data. For example, the methods getDB2String() and getDB2XmlString() return
the XML data in the same encoding, USC-2, but the latter adds the appropriate encoding
declaration to the XML document.

In a JDBC application, you can update or insert data into XML columns of a table at a DB2
data server using one of the setter methods of the interface PreparedStatement.

Following are the setXXX methods that are supported against XML columns in JDBC 3.0.

� setAsciiStream()

� setBinaryStream()

� setBlob()

� setBytes()

� setCharacterStream()

� setClob()

� setString()

� setObject(): supports DB2Xml, String, byte[], InputStream, Reader, CLOB, and BLOB as
parameters.

7.1.2 XML support in JDBC 4.0

In JDBC 4.0, the main feature for XML support is the new SQLXML object, which is the
mapping in the Java programming language for the SQL XML data type. The SQLXML
interface provides methods for accessing the XML value as a String, a Reader or Writer, or as
a Stream. The XML value may also be accessed through a Source or set as a Result, which
are used with XML Parser APIs such as DOM, SAX, and StAX.

The interfaces ResultSet, CallableStatement, and PreparedStatement are enhanced with
new getter or setter methods, such as ResultSet.getSQLXML to allow a programmer to

getDB2AsciiStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a stream of ASCII characters.

getDB2XmlAsciiStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a stream of ASCII characters. The method
will add XML declaration with encoding tag

getDB2BinaryStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a UTF-8 encoded binary stream

getDB2XmlBinaryStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a binary stream. The method converts the
bytes to the target encoding and adds XML declaration with
encoding tag

getDB2CharacterStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a java.io.Reader object

getDB2XmlCharacterStream() Retrieves the value of the designated column in the current row of
this ResultSet object as a java.io.Reader object. The method will
add XML declaration with encoding tag "ISO-10646-UCS-2"

DB2Xml Getter Methods Description
132 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
retrieve the value of the designated column of this ResultSet as a java.sql SQLXML object in
the Java programming language.

The SQLXML interface provides the methods listed in Table 7-4 for retrieving XML data from
an SQLXML object.

Table 7-4 Methods to retrieve XML data from SQLXML object

SQLXML interface provides the methods listed inTable 7-5 for setting XML data to a JDBC
object.

Table 7-5 Method to set XML value to SQLXML object

For the implementation of the BankStmt application in Java, we mostly use JDBC 4.0
standard SQLXML object in our programming.

7.1.3 Constructing XML document in Java

You are able to construct XML document using DB2 SQL/XML publishing functions. If your
application holds information in application variables and wants to construct this data into an
XML document, you can also do this by easily writing Java code with different XML APIs. In
our example, we will construct a GroupHeader (subdocument of the
BankToCustomerStatement message). We will use DOM APIs in this example because it is
easy to understand. The GroupHeader we want to create is shown in Example 7-1.

Example 7-1 Creating a GroupHeader of the BankToCustomerStatement message

<GrpHdr>
<MsgId>AAAASESS-FP-ACCR001</MsgId>
<CreDtTm>2010-10-18T12:30:00+01:00</CreDtTm>
<MsgPgntn>

SQLXML getter methods Description

getBinaryStream() Retrieves the XML value designated by this SQLXML instance
as a stream

getCharacterStream() Retrieves the XML value designated by this SQLXML instance
as a java.io.Reader object

getString() Returns a string representation of the XML value designated
by this SQLXML instance

getSource(Class<T> sourceClass) Returns a Source for reading the XML value designated by this
SQLXML instance

SQLXML setter methods Description

setBinaryStream() Retrieves a stream that can be used to write the XML value
that this SQLXML instance represents

setCharacterStream() Retrieves a stream to be used to write the XML value that this
SQLXML instance represents

setString() Sets the XML value designated by this SQLXML instance to
the given String representation

setResult(Class<T> resultClass) Returns a Result for setting the XML value designated by this
SQLXML instance.
 void setString(String value)
Chapter 7. Using XML with Java 133

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
<PgNb>1</PgNb>
<LastPgInd>true</LastPgInd>

</MsgPgntn>
</GrpHdr>

The code for constructing XML as a DOM tree is shown in Example 7-2.

Example 7-2 Constructing XML as a DOM tree

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Text;
...
String MsgIdStr="AAAASESS-FP-ACCR001";
String CreDtTmStr="2010-10-18T12:30:00+01:00";
String PgNbStr="1";
String LastPgIndStr="true";

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try{
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.newDocument(); 1

//**
// Create element nodes
//**
Element GrpHdr = document.createElement("GrpHdr"); 2
Element MsgId = document.createElement("MsgId");
Element CreDtTm = document.createElement("CreDtTm");
Element MsgPgntn = document.createElement("MsgPgntn");
Element PgNb = document.createElement("PgNb");
Element LastPgInd = document.createElement("LastPgInd");

//**
// Create text nodes with designated values
//**
Text MsgIdValue = document.createTextNode(MsgIdStr); 3
Text CreDtTmValue = document.createTextNode(CreDtTmStr);
Text PgNbValue = document.createTextNode(PgNbStr);
Text LastPgIndValue = document.createTextNode(LastPgIndStr);

//**
// Append text node under element nodes
//**
MsgId.appendChild(MsgIdValue); 4
CreDtTm.appendChild(CreDtTmValue);
PgNb.appendChild(PgNbValue);
LastPgInd.appendChild(LastPgIndValue);

//**
// Construct the DOM tree
//**
MsgPgntn.appendChild(PgNb); 5
MsgPgntn.appendChild(LastPgInd);
134 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
GrpHdr.appendChild(MsgId);
GrpHdr.appendChild(CreDtTm);
GrpHdr.appendChild(MsgPgntn);

document.appendChild(GrpHdr);

}catch (Exception e) {
System.out.println("Some exception occur: " +

e.getMessage());
}

Note:
1.Obtain a new instance of a DOM Document object to build a DOM tree
2.Document.createElement() method to create element nodes with specified tagName
3.Document.createTextNode() method to create text nodes with designated values
4.Element.appendChild() method to append text node under element nodes
5.Append element nodes and construct the DOM tree

7.1.4 Binary XML format in Java applications

DB2 10 for z/OS introduces a binary format for XML data to be used with Java applications,
which is called Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format
(XDBX)1. This format is an external representation of an XML value that is only used for
exchange with a DB2 client application or the UNLOAD or LOAD utilities. The binary
representation is smaller in size, and it saves the parsing cost.

The IBM Data Server Driver for JDBC and SQLJ can send XML data to the data server or
retrieve XML data from the data server as textual XML data or binary XML data, as shown in
Figure 7-1.

1 See http://www.ibm.com/support/docview.wss?uid=swg27019354&aid=1.
Chapter 7. Using XML with Java 135

http://www.ibm.com/support/docview.wss?uid=swg27019354&aid=1

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 7-1 Exchange data as textual or binary XML format

You are able to set the JCC datasource property xmlFormat to control whether the data
format is textual XML format or binary XML format. Possible values are:

� com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_NOT_SET

Specifies that binary XML format is used if the data server supports it. If the data server
does not support binary XML format, textual XML format is used. This is the default.

� com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_TEXTUAL

Specifies that the XML textual format is used.

� com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_BINARY

Specifies that the binary XML format is used.

To change the XML format, you need set the datasource property first, then get a new
connection, which will pick up your setting. Example 7-3 shows the Java code for setting the
xmlFormat. Storage and retrieval of binary XML data requires the IBM Data Server Driver for
JDBC and SQLJ version 4.9 or later. If you use the DB2 Client, V9.7 Fix Pack 3a and above
provides this support.

Example 7-3 Setting the xmlFormat

DB2BaseDataSource db2ds=null;
...
db2ds.setXmlFormat(com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_BINARY);
con = ((DB2SimpleDataSource)db2ds).getConnection();

Note that the format of XML data is transparent to the application.The IBM Data Server Driver
for JDBC and SQLJ presents binary XML data to the application only through the XML object
interfaces. The user does not see the data in the binary XML format.

Textual XML

DB2
(XML stored format

in the tables)

Binary XML

<root xmlns:foo = “bar”>
<Person>
<name mgr = “NO”>Bill</name>
<foo:age>35</foo:age>

</Person>
<Person>
<name mgr = “NO”>Joe</name>
<foo:age>45</foo:age>

</Person>
</root>

I3foo1I3bar2m12
X4root300
X6Person400X4name500Y3mgr6002NOT4BillzX3age712T235zz
e4e5a62NOT3Joezx712T245zz
zZ

 Binary XML is smaller in size
 Savings in DB2 CPU time during insert and select
 Savings in time end to end for insert
136 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
Accessing the XML value through SQLXML getSource() and setResult() methods in which
the input or output data is in a non-textual representation can lead to improved processing
performance. The SAX representation is the most efficient way to retrieve data that is in the
binary XML format because the data does not undergo extra conversions from binary format
to textual format.

7.2 The BankStmt application in Java

The BankToCustomerStatement, one of the ISO 20022 (Universal financial industry message
scheme) message, is used to inform the account owner, or authorised party, of the entries
booked to the account, and to provide the owner with balance information on the account at a
given point in time.

The BankToCustomerStatement message is composed of two building blocks:

� Group Header: This building block is mandatory and present once. It contains elements
such as Message Identification and CreationDateTime.

� Statement: This building block is mandatory and repetitive. It should be repeated for each
account on which a statement is provided. The report contains components such as
Balance and Entry.

In Chapter 3, “Application scenario” on page 45, we present our scenario to log and store the
message for auditing purposes. The diagram in Figure 3-2 on page 49 illustrates the flow
between the various code samples presented in this book.

In our Java application, we retrieve, manipulate, and re-save those XML documents in DB2,
shred the previously saved XML message (see 7.2.5, “Call stored procedure to shred XML”
on page 145) and query the message to produce an XML document to send out via an MQ
Message. The display of this data is generated by combining the XML output with an XSLT file
to produce an new HTML/XML display.

The purpose of the Java application is to demonstrate how to use Java with DB2 pureXML
and we have chosen to just emphasize the different steps and choices made that are related
to XML, disregarding irrelevant code and components.

7.2.1 Setting up the environment

Before creating the actual Java application, we assume that the necessary environment has
been set up, which including

� Java SDK and IBM Data Server Driver for JDBC and SQLJ are installed on client side.

� The table is defined and the schema is registered on server side

Java environment on client
To run the BankStmt application, you need install an SDK for Java Version 6 or later. To verify
the Java version you have, run the following command in your command windows.

java -version

To run the BankStmt application, you need setup the IBM Data Server Driver for JDBC and
SQLJ version 4.9 or later on your client. If you use the DB2 Client, V9.7 Fix Pack 3a and
above provides this driver. To verify the driver version you have, run the following command in
your command windows.

java com.ibm.db2.jcc.DB2Jcc -version
Chapter 7. Using XML with Java 137

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
Schema registration
We need to register XML schemas in the DB2 XML schema repository to allow us to validate
our XML documents. To register the schema, you can either call the DB2-supplied stored
procedures, or Command Line Processor, or via the Java method. Example 7-4 shows how to
register the schema in a Java application by calling the registerDB2XmlSchema method.

Example 7-4 Register XML schema in Java application

String NameSchema = "CAMT053_JAVA";
String XSDFilename = "camt.053.001.02.xsd";
...
//**
// Deregister the XML schema if it already exists.
//**

try {
ds.deregisterDB2XmlObject(

"SYSXSR", NameSchema);
}
catch (SQLException e) {}

System.out.println("deregister complete");

//**
//register the XML schema
//**

fi[0]= new FileInputStream(XSDFilename);

// Schema Name Qualifiers, always this one, or blank which will default to SYSXSR
xmlSchemaNameQualifiers[0] = "SYSXSR";

// Schema Name
xmlSchemaNames[0] = NameSchema;

//Schema Location: Null means a schema can't be referred by "schemaLocation" in
document.
xmlSchemaLocations[0] = LocationName;

//The actual contents of the schema documents.
xmlSchemaDocuments[0] = new BufferedInputStream(fi[0]);

//Lengths of the actual contents of the schema documents.
xmlSchemaDocumentsLengths[0] = (int) fi[0].getChannel().size();

//Properties of the schema documents. Null means no properties.
xmlSchemaDocumentsProperties[0] = null;

//Lengths of the properties of the whole schema.
xmlSchemaDocumentsPropertiesLengths[0] = 0;

//Properties of the whole schema. Null means no properties.
xmlSchemaProperties = null;

//Lengths of the properties of the whole schema.
xmlSchemaPropertiesLength = 0;
138 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
System.out.println("Register one schema begins...");

ds.registerDB2XmlSchema(

xmlSchemaNameQualifiers,
xmlSchemaNames,
xmlSchemaLocations,
xmlSchemaDocuments,
xmlSchemaDocumentsLengths,
xmlSchemaDocumentsProperties,
xmlSchemaDocumentsPropertiesLengths,
xmlSchemaProperties,
xmlSchemaPropertiesLength,
false);

System.out.println("Register schema completed.");

DDL for tables in BankStmt application
The BankToCustomerStatement message is received from DB2 MQ Listener and stored in
the BK_TO_CSTMR_STMT table.

The DDL for the table is shown in Example 7-5. The values of MSG_ID and
MSG_CRE_DT_TM columns come from the XML document itself. The corresponding XML
element name is MsgId (Message Identification), CreDtTm (Creation Date Time) in Group
Header of XML document.

Example 7-5 DDL for table BK_TO_CSTMR_STMT

CREATE TABLE "BK_TO_CSTMR_STMT" (
 "MSG_ID" VARCHAR(35) WITH DEFAULT NULL ,
 "MSG_CRE_DT_TM" TIMESTAMP WITH TIMEZONE WITH DEFAULT NULL,
 "BK_TO_CSTMR_STMT" XML NOT NULL)
IN DATABASE XMLR5DB;

The XML documents can either be validated explicitly using the DSN_XMLVALIDATE built-in
function, or you can automate XML schema validation by adding an XML type modifier to an
XML column definition. This is discussed in Chapter 5, “Validating XML data” on page 73. In
this chapter, we show the validation via DSN_XMLVALIDATE function.

7.2.2 Insertion of rows with XML column values

Our scenario, described in Chapter 3, “Application scenario” on page 45, shows the stored
procedure inserting the XML document into the BK_TO_CUST_STMT table after validating
and shredding out MSG_ID and MSG_CRE_DT_TM from the input parameter.

As Java provides various XML Parser APIs to parse XML documents, it is also easy to shred
out some useful information from XML data and insert them into DB2.

Example 7-6 shows that we read the XML document from a file, then parse it and get the
MSG_ID and MSG_CRE_DT_TM by using DOM APIs, then insert the data, and use
DSN_XMLVALIDATE to validate the XML document during insert.

Example 7-6 Parsing XML value and inserting into DB2

SQLXML sqlxml1 = con1.createSQLXML();
Chapter 7. Using XML with Java 139

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
OutputStream os = sqlxml1.setBinaryStream();
//**
// get SQLXML object from file
//**
try{

fis = new FileInputStream(XMLFilename);
int read;
while ((read = fis.read ()) != -1) {

os.write (read);
}

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

//**
// parse the XML value with a DOM parser
//**
try{

DocumentBuilder parser =
DocumentBuilderFactory.newInstance().newDocumentBuilder();

Document result = parser.parse(XMLFilename); 1

//get MSG_ID
NodeList nodes = result.getElementsByTagName("MsgId"); 2
MsgId = nodes.item(0).getFirstChild().getNodeValue(); 3

//get MSG_CRE_DT_TM
nodes = result.getElementsByTagName("CreDtTm");
CreDtTm = nodes.item(0).getFirstChild().getNodeValue();
//convert XML timestamp format to java format
CreDtTm = CreDtTm.replace("T", " "); 4

} catch (Exception e) {
e.printStackTrace();

}

//**
// insert XML data, also use DSN_XMLVALIDATE to validate
//**
String sql = "INSERT INTO BK_TO_CSTMR_STMT " +

"VALUES(?,?,DSN_XMLVALIDATE(CAST(? AS XML),'SYSXSR.CAMT053_JAVA'))"; 5
pst = con1.prepareStatement(sql);

pst.setString(1, MsgId);
pst.setString(2, CreDtTm);
pst.setSQLXML(3, sqlxml1); 6

pst.executeUpdate(); 7

The numbered steps in Example 7-6 are explained as follows:

1. The parser.parse() method parses the content of the given file as an XML document and
returns a new DOM Document object.
140 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
2. This step finds the element named “MsgId”, using the getElementsByTagName() method,
and returns a nodelist.

3. Since we are only expecting 1 node in the nodelist, we just simply use item(0) to get the
first node in the nodelist, and then use getFirstChild().getNodeValue() method to get the
value of text node.

4. The XML datetime format use 'T' is a separator indicating that time-of-day, such as
2010-10-18T17:00:00+01:00, which is not compatible with Java datetime format, which
require a space between day and hour, such as 2010-10-18 17:00:00+01:00. We just
convert it here.

5. We call function DSN_XMLVALIDATE(CAST(? AS XML) to validate the XML document.

6. We set the parameter to the given java.sql.SQLXML object.

7. We execute the insert. The XML document is inserted as binary XML format (data that is
in the Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data
server supports binary XML data.

7.2.3 Updates of XML columns

You can use the SQL UPDATE statement to update entire documents in an XML column, or
update portions of XML documents using the XMLMODIFY function with a basic XPath
updating expression.

To update the entire XML documents, you can execute a Java Statement or execute a
prepareStatement with a setXXX method to set the designated parameter to an XML value.

To update portions of XML documents, use the SQL UPDATE statement with the
XMLMODIFY built-in scalar function. The XMLMODIFY function specifies a basic updating
expression that you can use to insert nodes, delete nodes, replace nodes, or replace the
values of a node in XML documents that are stored in XML columns.

Assume that we have insert a BankToCustomerStatement message, and the statement that
reports on booked entries and balances for a cash account is shown as Figure 7-2.
Chapter 7. Using XML with Java 141

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 7-2 Bank To Customer Statement example

The first balance (Bal element with the Cd code OPBD) show that the book balance of the
account at the beginning of the account reporting period is 600000 Swedish krona. There is
one entry (Ntry) in the statement, and the code of CdtDbtInd is DBIT which indicates the
balance is a a debit balance, so the operation is a decrease. The Amount is 200100 Swedish
krona. The second balance (Bal element with the Cd code CLBD) show the balance of the
account at the end of the pre-agreed account reporting period. It is the sum of the opening
booked balance at the beginning of the period and all entries booked to the account during
the pre-agreed account reporting period, so the amount is 399900 Swedish krona.

Now imagine that we want to modify/correct the message, add a new entry which is a credit
balance increase of 100100 Swedish krona. We need do the following modification.

1. Append a new entry (Ntry) after the first entry, record the credit balance of 100100
Swedish krona.

2. Modify the amount of ClosingBooked (CLBD) balance to 500000 Swedish krona

Example 7-7 shows how to modify an XML document, insert nodes and replace the values of
a node.

Example 7-7 Modifying an XML document

//**
142 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
// update XML document, add a new entry as the last entry
//**

String sql = " UPDATE BK_TO_CSTMR_STMT "+
"SET BK_TO_CSTMR_STMT = XMLMODIFY ("+ 1
"'declare default element namespace " +
"\"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02\"; "+
"insert nodes $newentry/newNtry/Ntry "+ 2
"after /Document/BkToCstmrStmt/Stmt/Ntry[fn:last()]', "+ 3
"XMLPARSE(DOCUMENT " +
" '<newNtry xmlns=\"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02\"> "+
" <Ntry> "+
" <Amt Ccy=\"SEK\">100100</Amt> "+
" <CdtDbtInd>CRDT</CdtDbtInd> "+
" <Sts>BOOK</Sts> "+
" <BkTxCd> "+
" <Domn> "+
" <Cd>PAYM</Cd> "+
" <Fmly> "+
" <Cd>0001</Cd> "+
" <SubFmlyCd>0005</SubFmlyCd> "+
" </Fmly> "+
" </Domn> "+
" </BkTxCd> "+
" </Ntry> "+
" </newNtry>') as \"newentry\") "+
"WHERE MSG_ID=? ";

pst = con1.prepareStatement(sql);
pst.setString(1, "AAAASESS-FP-STAT002");
pst.executeUpdate();

//**
// update XML document, modify the amount of ClosingBooked(CLBD) balance
//**

sql = " UPDATE BK_TO_CSTMR_STMT "+
"SET BK_TO_CSTMR_STMT = XMLMODIFY ("+
"'declare default element namespace " +
"\"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02\"; "+
" replace value of node " + 4
"/Document/BkToCstmrStmt/Bal[Tp/CdOrPrtry/Cd=\"CLBD\"]/Amt" + 5
" with \"500000\"') "+
"WHERE MSG_ID=? ";

pst = con1.prepareStatement(sql);
pst.setString(1, "AAAASESS-FP-STAT002");
pst.executeUpdate();

The numbered steps in Example 7-7 are as follows:

1. Invoke XMLMODIFY function to insert or replace XML nodes.

2. This UPDATE is to insert a new Ntry node.,

3. The fn:last function returns the number of Ntry nodes. /.../Ntry[fn:last()] is the last Ntry
node of the document. The new Ntry node will be inserted after the last Ntry node
Chapter 7. Using XML with Java 143

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
4. This UPDATE is to replace value of a node.

5. It replaces the Amt value when .../Cd is “CLBD”.

7.2.4 Retrieving XML data

You can use one of the following ways to retrieve XML data:

� Use the ResultSet.getSQLXML method to retrieve the data. Then use a SQLXML.getXXX
method to retrieve the data into a compatible output data type. This technique requires
JDBC 4.0 or later.

� Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the data into a
compatible data type.

� If you use JCC3 driver that don’t support JDBC 4.0, you can use the ResultSet.getObject
method to retrieve the data, and then cast it to the DB2Xml type and assign it to a DB2Xml
object. Use a DB2Xml.getDB2XXX or DB2Xml.getDB2XmlXXX method to retrieve the
data into a compatible output data type.

You can retrieve the entire XML document or partial XML document using XMLQUERY
function. You can retrieve data from XML columns in a table as binary XML data (data that is
in the Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format), if the data
server supports binary XML data. Example 7-8 shows how to retrieve the entire or partial
XML document.

Example 7-8 Retrieving the entire or partial XML document

//**
// retrieve XML document to a SQLXML object
//**
String sql = "SELECT BK_TO_CSTMR_STMT FROM BK_TO_CSTMR_STMT WHERE MSG_ID = ?";
pst = con1.prepareStatement(sql);
pst.setString(1, "AAAASESS-FP-STAT002");
ResultSet rs=pst.executeQuery();

while (rs.next()) {
sqlxml=rs.getSQLXML(1);
actualResults.println(sqlxml.getString());

}

//**
// retrieve the XML nodes by using XMLQUERY to a SQLXML object
//**
sql = " SELECT XMLQUERY(" +

"'declare default element namespace " +
"\"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02\"; " +
"/Document/BkToCstmrStmt/Stmt/Bal/Amt' " +
"passing BK_TO_CSTMR_STMT) " +
"FROM BK_TO_CSTMR_STMT " +
"WHERE MSG_ID = ?";

pst = con1.prepareStatement(sql);
pst.setString(1, "AAAASESS-FP-STAT002");
rs=pst.executeQuery();

while (rs.next()) {
sqlxml=rs.getSQLXML(1);
actualResults.println(sqlxml.getString());
144 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
}

7.2.5 Call stored procedure to shred XML

The BankStmt application will continue to shred the BankToCustomerStatement message
from BK_TO_CSTMR_STMT table into a STMT table, which demonstrates a simple hybrid
design, and how to populate using the INSERT from SELECT with XMLTABLE. We plan to do
the shredding in a native stored procedure. Our java application will retrieve the XML
message and call the stored procedure with the XML value as parameter.

Example 7-9 shows the definition for STMT table, each row contains one statement (Stmt
building block) of the BankToCustomerStatement message, e.g. STMT_ID column is
corresponding to the “Id” node under Stmt element, and STMT_XML column will be the sub
document (the Stmt building block) of the BankToCustomerStatement message.

Example 7-9 DDL for STMT table

CREATE TABLE "STMT" (
 "STMT_ID" VARCHAR(35) NOT NULL ,
 "MSG_ID" VARCHAR(35) ,
 "MSG_CRE_DT_TM" TIMESTAMP ,
 "ELECTRNC_SEQ_NB" BIGINT ,
 "LGL_SEQ_NB" BIGINT ,
 "CRE_DT_TM" TIMESTAMP NOT NULL ,
 "FR_DT_TM" TIMESTAMP ,
 "TO_DT_TM" TIMESTAMP ,
 "RPTG_SRC_CD" CHAR(4) NOT NULL ,
 "RPTG_SRC_PRTRY" VARCHAR(35) NOT NULL ,
 "ADDTL_INF" VARCHAR(140) NOT NULL,
 "STMT_XML" XML NOT NULL)
 IN DATABASE XMLR5DB ;

Example 7-10 shows our code for creating the SQL procedure in Java.

Example 7-10 Creating a SQLstored procedure

stmt.executeUpdate("" +
"CREATE PROCEDURE MYSP(IN parm1 XML,OUT parm2 XML)" + 1
"LANGUAGE SQL " +
"APPLICATION ENCODING SCHEME UNICODE" +
"DISABLE DEBUG MODE " +
"BEGIN " +
"DECLARE var1 XML; " +
"SET var1 = parm1; " +
"INSERT INTO STMT(" + 2
" STMT_ID, " +
" MSG_ID, " +
" MSG_CRE_DT_TM, " +
" ELECTRNC_SEQ_NB, " +
" LGL_SEQ_NB, " +
" CRE_DT_TM, " +
" FR_DT_TM, " +
" TO_DT_TM, " +
" RPTG_SRC_CD, " +
" RPTG_SRC_PRTRY, " +
Chapter 7. Using XML with Java 145

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
" ADDTL_INF, " +
" STMT_XML " +
") " +
"SELECT T.STMT_ID, " +
" T.MSG_ID, " +
" T.MSG_CRE_DT_TM," +
" T.ELECTRNC_SEQ_NB," +
" T.LGL_SEQ_NB, " +
" T.CRE_DT_TM, " +
" T.FR_DT_TM, " +
" T.TO_DT_TM, " +
" COALESCE(T.RPTG_SRC_CD,'') AS PRTG_SRC_CD," + 3
" COALESCE(T.RPTG_SRC_PRTRY,'') AS RPTG_SRC_PRTRY," +
" COALESCE(T.ADDTL_INF,'') AS ADDTL_INF," +
" XMLDOCUMENT(T.STMT_XML)" + 4
"FROM XMLTABLE(" +
" XMLNAMESPACES(DEFAULT " +
" 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02')," +
" '$var1/Document/BkToCstmrStmt/Stmt'" +
" PASSING var1 as \"var1\"" +
" COLUMNS STMT_ID VARCHAR(35) PATH 'Id'," +
" MSG_ID VARCHAR(35) PATH '../GrpHdr/MsgId'," +
" MSG_CRE_DT_TM TIMESTAMP PATH '../GrpHdr/CreDtTm'," +
" ELECTRNC_SEQ_NB BIGINT PATH 'ElctrncSeqNb'," +
" LGL_SEQ_NB BIGINT PATH 'LglSeqNb'," +
" CRE_DT_TM TIMESTAMP PATH 'CreDtTm'," +
" FR_DT_TM TIMESTAMP PATH 'FrToDt/FrDtTm'," +
" TO_DT_TM TIMESTAMP PATH 'FrToDt/ToDtTm'," +
" RPTG_SRC_CD CHAR(4) PATH 'RptgSrc/Cd'," +
" RPTG_SRC_PRTRY VARCHAR(35) PATH 'RptgSrc/Prtry'," +
" ADDTL_INF VARCHAR(144) PATH 'AddtlStmtInf'," +
" STMT_XML XML PATH '.'" +
")AS T; " +
//**
// For the output parameter, You can do some more XML operations,
// here we just simply set the output parameter the same as input
//**
"SET parm2 = var1; " +
"END

);

Example 7-10 demonstrates that:

1. In DB2 10, we can use XML as the data type for a parameter of a native SQL procedure,
and an XML SQL variable declared within the procedure.

2. We use INSERT from SELECT with XMLTABLE function for the shredding. If the
BankToCustomerStatement message includes multiple statements, we are able to break
one message into multiple statements (one rows for each statement) into the STMT table
by using the XMLTABLE function.

3. To insert a nullable value into a NOT NULL column, we use the COALESCE function.

4. When inserting the XML value from XMLTABLE, we need to use the XMLDOCUMENT
function to return a constructed XML value
146 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
To call the stored procedures in Java, you should invoke methods in the CallableStatement
class. The basic steps for calling a stored procedures using standard CallableStatement
methods are:

1. Invoke the Connection.prepareCall method with the CALL statement as its argument to
create a CallableStatement object.

2. Invoke the CallableStatement.setXXX methods to pass values to the input parameters
(parameters that are defined as IN or INOUT in the CREATE PROCEDURE statement).

3. Invoke the CallableStatement.registerOutParameter method to register parameters that
are defined as OUT in the CREATE PROCEDURE statement with specific data types.

4. Invoke the CallableStatement.executeXXX methods to call the stored procedure

5. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT
parameters or INOUT parameters.

The sample code to prepare, call the stored procedure, and retrieve the XML data from OUT
parameters is shown in Example 7-11.

Example 7-11 Handling the SQL stored procedure

String sql = "CALL MYSP(?,?)";
CallableStatement cstmt = con1.prepareCall(sql);

//initialize the parms
SQLXML xml1 = con1.createSQLXML();

stmt = con1.createStatement();
sql = "SELECT BK_TO_CSTMR_STMT FROM BK_TO_CSTMR_STMT " +

"WHERE MSG_ID='AAAASESS-FP-STAT003-4'";
ResultSet rs = stmt.executeQuery(sql);
if(rs.next())

xml1=rs.getSQLXML(1);

actualResults.println("value of input XML:");
actualResults.println(xml1.getString());

cstmt.setSQLXML(1, xml1);
cstmt.registerOutParameter(2, java.sql.Types.SQLXML);
cstmt.execute();

xml1 = cstmt.getSQLXML(2);
actualResults.println("value of output XML:");
actualResults.println(xml1.getString());

cstmt.close();

7.2.6 XSLT to transform XML document

With XSLT(see 1.2.4, “Extensible Stylesheet Language” on page 11) you can transform an
XML document into another XML document, or another type of document that is recognized
by a browser, like HTML and XHTML. With XSLT you can add or remove elements and
attributes to or from the output file. You can also rearrange and sort elements, perform tests
and make decisions about which elements to hide and display.
Chapter 7. Using XML with Java 147

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
JAXP (Java API for XML Processing) provides interfaces in package javax.xml.transform
allowing applications to invoke an XSLT transformation.

In the BankStmt application, we want to generate a report that lists all Entries which have an
amount greater than 100,000 SEK. The expected output is shown in Example 7-12. In the
output, we list the account Id, amount, date time, and account servicer reference of the entry.

Example 7-12 Expecting output after transform

<?xml version="1.0" encoding="UTF-8"?>
<Result xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"

xmlns:iso20022="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02">
<Acct Id="50000000054910000005">

<Ntry>
<Amt Ccy="SEK">150000</Amt>
<DtTm>2010-10-19T10:15:00+01:00</DtTm>
<AcctSvcrRef>AAAASESS-FP-ACCR-03</AcctSvcrRef>

</Ntry>
</Acct>
<Acct Id="50000000054910000006">

<Ntry>
<Amt Ccy="SEK">200000</Amt>
<DtTm>2010-10-20T10:15:00+01:00</DtTm>
<AcctSvcrRef>AAAASESS-FP-ACCR-05</AcctSvcrRef>

</Ntry>
</Acct>

</Result>

We use an XSLT file to transform the original BankToCustomerStatement message to a new
XML document. The simple XSLT file is shown in Example 7-13.

Example 7-13 XSLT example to transform from XML to XML

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:iso20022="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"
 xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02">
<!-- root template -->
<xsl:template match="/">
<Result>

<xsl:for-each 1
select="/iso20022:Document/iso20022:BkToCstmrStmt/iso20022:Stmt/iso20022:Ntry">

<xsl:apply-templates select="."/> 2
</xsl:for-each>

</Result>
</xsl:template>
<!-- Ntry template -->
<xsl:template match="iso20022:Ntry">
 <xsl:if test="iso20022:Amt>100000"> 3

<Acct Id="{../iso20022:Acct/iso20022:Id/iso20022:Othr/iso20022:Id}"> 4
 <Ntry>
 <Amt Ccy="{iso20022:Amt/@Ccy}">
 <xsl:value-of select="iso20022:Amt"/>
 </Amt>

 <DtTm>
 <xsl:value-of select="iso20022:BookgDt/iso20022:DtTm"/>
148 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
 </DtTm>
 <AcctSvcrRef>

 <xsl:value-of select="iso20022:AcctSvcrRef"/>
 </AcctSvcrRef>
 </Ntry>
 </Acct>
 </xsl:if>
</xsl:template>
</xsl:stylesheet>

The numbered steps in Example 7-13 are:

1. The xsl:for-each element repeat for each Ntry node, which selected by the XPath
/iso20022:Document/iso20022:BkToCstmrStmt/iso20022:Stmt/iso20022:Ntry

2. For each Ntry node, apply Ntry template to do more transform

3. In Ntry template, the xsl:if element test if the Amt>100000

4. Construct the expecting Acct element with attribute Id

For more information about XSLT standard, reference http://www.w3.org/TR/xslt.

The Java application reads the BankToCustomerStatement message stored in
BK_TO_CSTMR_STMT table, then transforms it into a new XML document based on the
XSLT file and stores it into a file. The code snippet is shown in Example 7-14.

Example 7-14 Java application to transform XML document

//retrieve xml document from BK_TO_CSTMR_STMT
String sql = "SELECT BK_TO_CSTMR_STMT FROM BK_TO_CSTMR_STMT " +

"WHERE MSG_ID='AAAASESS-FP-STAT003-4'";
ResultSet rs = stmt.executeQuery(sql);
if(rs.next())

xml1=rs.getSQLXML(1);

// JAXP reads data using the Source interface
Source xmlSource = new StreamSource(xml1.getBinaryStream());
Source xsltSource = new StreamSource(xsltFile);

// the factory pattern supports different XSLT processors
TransformerFactory transFact =
TransformerFactory.newInstance();
Transformer trans = transFact.newTransformer(xsltSource);

//transform and put the new XML document into a file
Result result = new StreamResult(xmloutputFile);
trans.transform(xmlSource, result);

Transforming an XML document to a HTML display is quite similar. The only difference is that
we need to transform the HTML document with standard tag and attribute name.
Example 7-15 i shows that.

Example 7-15 XSLT example to transform from XML to HTML

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:iso20022="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"
>

Chapter 7. Using XML with Java 149

http://www.w3.org/TR/xslt

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
<!-- root template -->
<xsl:template match="/">
<html> 1

<body>
<table border="1" cellspacing="0"> 2

<tr>
<th>Acct(Id)</th> 3
<th>Amt(Ccy="SEK")</th>
<th>DtTm</th>
<th>AcctSvcrRef</th>

</tr>
<xsl:for-each select="//iso20022:Ntry"> 4

<xsl:apply-templates select="."/>
</xsl:for-each>

</table>
</body>

</html>
</xsl:template>
<!-- Ntry template -->
<xsl:template match="iso20022:Ntry">
 <xsl:if test="iso20022:Amt>100000">
 <tr>
 <td>
 <xsl:value-of
select="../iso20022:Acct/iso20022:Id/iso20022:Othr/iso20022:Id"/>
 </td>
 <td>
 <xsl:value-of select="iso20022:Amt"/>
 </td>
 <td>
 <xsl:value-of select="iso20022:BookgDt/iso20022:DtTm"/>
 </td>
 <td>
 <xsl:value-of select="iso20022:AcctSvcrRef"/>
 </td>
 </tr>
 </xsl:if>
</xsl:template>
</xsl:stylesheet>
Notes:
1.Start building a html document
2.Create a simple table in the HTML document
3.Define the header information using <th> tag
4.For each Ntry, apply Ntry template to convert it into one row in the table

The display of the HTML document is in Figure 7-3.

Figure 7-3 HTML output after XSLT
150 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
7.2.7 Java interface to MQ

WebSphere MQ allows you to easily exchange information across different platforms,
integrating new and existing business applications. The BankStmt application scenario (XML
message logging and auditing, as described in Chapter 3, “Application scenario” on page 45)
describes a common situation, where XML messages are flowing over a WebSphere MQ. In
Chapter 6, “DB2 SQL/XML programming” on page 87 we described how to capture these
messages and store them in DB2 pureXML for auditing purposes. In this section, after
retrieving the messages from DB2 and doing some transformations using XSLT, our Java
application puts the generated XML document in the WebSphere MQ.

To put a message into a queue, you need to connect to the queue manager first, which
provides queuing services to the applications, then open a queue and put the message into it.
Figure 7-4 show the process.

Figure 7-4 Put a message into a Queue

WebSphere MQ classes for Java Message Service (also referred to as WebSphere MQ JMS)
is a set of Java classes that implement Oracle Sun’s Java Message Service (JMS) interfaces
to enable JMS programs to access WebSphere MQ systems.

Using WebSphere MQ JMS as the API to write WebSphere MQ applications has a number of
benefits. Some advantages derive from JMS being an open standard with multiple
implementations. Other advantages come from additional features that are present in
WebSphere MQ JMS, but not in WebSphere MQ base Java, such as asynchronous message
delivery, message selectors, support for publish/subscribe messaging. WebSphere MQ JMS
APIs can be used to connect to MQ on multiple platforms.
Chapter 7. Using XML with Java 151

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
The example code to put the message into a queue is shown in Example 7-16.

Example 7-16 Java example to put a message into a queue

//**
// Before starting the example, you need input the following information:
// IP address(ipaddress), port number(port), channel name(channel)
// queue manager name(queueMgr) and queue name(queuename)
//**

//**
// Maps the specified key to the specified value into properties
//**
properties = new Hashtable();

properties.put("hostname", ipaddress);
properties.put("port", new Integer(Integer.parseInt(port)));
properties.put("channel", channel);

//**
// Connect to MQ
//**
try {

queueManager = new MQQueueManager(queueMgr, properties);
}
catch (java.lang.NoClassDefFoundError e) {

...
}

//**
// Open a queue
//**
MQQueue system_default_local_queue=null;

try {
system_default_local_queue = queueManager.accessQueue(queuename,

MQConstants.MQOO_INPUT_AS_Q_DEF | MQConstants.MQOO_OUTPUT,
null, null, null);

}
catch (MQException ex) {

...
}

//**
// Put a message into the queue
//**
MQMessage put_msg = new MQMessage();
put_msg.characterSet = 1208;
try {

put_msg.writeUTF(xmlmessage);
}
catch (Exception ex) {

...
}

try {
152 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch07.fm
system_default_local_queue.put(put_msg, new MQPutMessageOptions());
}
catch (MQException ex) {

...
}

All Java example are available as additional material as described in Appendix B, “Additional
material” on page 273.

The sample code includes:

� RegisterSchema.java

This class registers the XML schema to the DB2 databases

� InsertXML.java

This class validate and insert XML data into db2 table.

� UpdateXML.java

This class demo partial updates of XML documents

� SelectXML.java

This class demo the retrieving entire or partial XML document to a SQLXML object

� XMLProcedure.java

This class creates SQL stored procedure with XML as parameter to shred XML document,
then call the SQL stored procedure from Java

� TransformXML.java

This class transform XML document retrieved into an new XML or HTML document

� SendMQMessage.java

This class send a XML message generated by XSLT to WebSphere MQ

We list the data we used as below:

� Schema of bank to customer statement message

camt.053.001.02.xsd

� XML file of bank to customer statement message

camt.053.001.02.xml

camt.053.001.03.xml

camt.053.001.04.xml

� XSLT file to transform XML message

camt.053.001.04.xsl

camt.053.001.05.xsl

� XML document send to WebSphere MQ

xmloutput.xml
Chapter 7. Using XML with Java 153

7915ch07.fm Draft Document for Review January 9, 2011 1:25 pm
154 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
Chapter 8. Using XML with COBOL

With Enterprise COBOL for z/OS® V4.1, you can integrate COBOL and Web-based business
processes in Web services, XML, Java™, and COBOL applications. This interoperability
enables you to capitalize on existing IT investment while incorporating new, Web-based
applications as part of your organization's infrastructure.

In this chapter we demonstrate the COBOL support for the DB2 pureXML format by
implementing a small COBOL application based on the BankToCustomerStatement message
of the ISO20022 standard presented in Chapter 3, “Application scenario” on page 45.

We also briefly touch on the native COBOL facilities for XML and discuss how they
complement those of DB2 pureXML.

The chapter contains the following:

� XML representation in COBOL
� The BankStmt application in COBOL
� COBOL functions for manipulating XML

The complete source code, DDL, XML schema, and scripts used in the application are made
available for download as described in Appendix B, “Additional material” on page 273.

8

© Copyright IBM Corp. 2011. All rights reserved. 155

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
8.1 XML representation in COBOL

COBOL offers different options for working with XML data. Most importantly, there is support
for the pureXML data type in DB2 in a couple of different variations, but in some cases
ordinary binary or character-based types may also be used. In addition, the file reference
variable was applicable to LOBs and XML.

As XML is always stored in Unicode, special attention has to be paid to which code pages are
used in the application and how to avoid data conversion.

We use the DB2 precompiler throughout this chapter. Experiences may vary slightly if using
the co-processor.

8.1.1 XML host variables in COBOL

In DB2, the data type XML is a basic data type with its own representation and associated
simple functions. You can insert and modify data as XML, and you can retrieve data as XML.
In COBOL, the XML data type always builds on one of the existing LOB formats. XML variable
declarations built on the basic LOB types are shown in Example 8-1.

Example 8-1 XML host variables in COBOL

01 DOC-AS-CLOB IS SQL TYPE IS XML AS CLOB(100K).
01 DOC-AS-BLOB IS SQL TYPE IS XML AS BLOB(100K).
01 DOC-AS-DBCLOB IS SQL TYPE IS XML AS DBCLOB(100K).

These declarations are translated by the precompiler as shown in Example 8-2.

Example 8-2 XML host variables after transformation by the DB2 pre-compiler

01 DOC-AS-CLOB.
 49 DOC-AS-CLOB-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-CLOB-DATA PIC X(102400).
01 DOC-AS-BLOB.
 49 DOC-AS-BLOB-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-BLOB-DATA PIC X(102400).
01 DOC-AS-DBCLOB.
 49 DOC-AS-DBCLOB-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-DBCLOB-DATA PIC G(102400) DISPLAY-1.

Whether you want to use CLOBs, DBCLOBs or BLOBs as the base format depends on how
and whether you want to manipulate the contents of the XML file in the application.

One significant difference between the base format of BLOB compared to that of CLOB (or
DBCLOB) is the encoding. XML is always stored in UTF-8 Unicode whereas the COBOL
application will work in EBCDIC or UTF-16 Unicode, so data conversion and data encoding is
always an issue you need to consider.

Data encoding
The character-based formats are what are referred to as externally encoded, whereas the
binary-based formats are referred to as internally encoded. A variable with subtype FOR BIT
DATA is also considered internally encoded.
156 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
Externally encoded means that the code page is derived from the CCSID of the host variable,
if one is specified, or else from the application code page. Internally encoded means that the
code page is derived from the data itself.

An XML document may or may not contain an encoding declaration, regardless of whether it
is internally or externally encoded. It is placed as an attribute of the XML declaration as can
be seen in Example 8-3.

Example 8-3 XML declaration with encoding declaration as an attribute

<?xml version="1.0" encoding="IBM037"?>

However, the significance of the encoding declaration is different depending on the format.
For internally encoded documents, the encoding declaration is a factor in deciding the code
page of the XML document, together with the Unicode Byte Order Mark (BOM) and the rest of
the XML declaration. The BOM is an optional byte sequence preceding the XML document
denoting the byte order of the following text, it is used for Unicode documents only.

The exact algorithm for determining the code page of an internally encoded XML document is
as follows:

� If the document contains a BOM, the BOM decides the Endianess. Possible outcomes are
UTF-16, UTF-32, Big Endian or Little Endian.

� If no BOM is present, and the XML document contains an encoding declaration, the
encoding declaration decides the code page. Possible outcome is any valid code page, it
does not have to be UTF-n encoding.

� If no BOM and no encoding declaration is present, and the document contains an XML
declaration, the code page is UTF-8 if the document is written in single-byte ASCII,
UTF-16 if the document is double-byte ASCII.

� If no BOM and no XML declaration is present, the code page is UTF-8.

For externally encoded documents any encoding declarations are ignored by DB2, instead
the code page is determined as with any character data. The default is the application code
page, but you may override it in the SQLDA, or by an explicit variable declaration as shown in
Example 8-4. This is probably the easiest way, but it requires that the SQLDA is not in use for
the variables in question.

Example 8-4 Explicit declaration of variable CCSID

01 XMLVAR USAGE IS SQL TYPE IS XML AS CLOB
EXEC SQL DECLARE :XMLVAR VARIABLE CCSID 277 END-EXEC.

We conclude that the internally encoded variables and externally encoded variables give
different results when used for inserting XML documents into DB2. This is summarized in
Table 8-1 on page 158 where the effect of inserting various XML documents using either XML
AS BLOB or XML AS CLOB is shown.

It is assumed that the XML AS CLOB variable has an EBCDIC CCSID associated with it,
either through explicit declaration or from the application code page. It is also assumed that
the EBCDIC code page referred to is the same through the table. The XML AS BLOB, of
course, has no associated CCSID.

Note: If there is a mismatch in Endianess between BOM and the UTF-16 XML document,
the insert or update fails.
Chapter 8. Using XML with COBOL 157

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
Table 8-1 Insert an XML document with different host variable types

Regardless of the encoding format used to enter XML data into DB2, care should be taken to
ensure that the encoding declaration is accurate, as data may later be transmitted to other
components or applications relying on the encoding declaration. If the encoding is not
accurate, errors may occur.

For details on how DB2 deals with with mixed data in character string, see:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db
2z10.doc.sqlref/db2z_mixeddatainchar.htm

Avoiding data conversion
In general it is recommended to avoid data conversion as this is both costly in terms of CPU
usage, and also has the potential for data loss. Data loss can occur if the resulting code page
does not hold all the code points present in the original document.

When an XML document is inserted into DB2, data conversion always takes place if the code
page of the XML document is anything but UTF-8. This is the case whether the variable
holding the XML document is internally or externally encoded, so for the simple case of
inserting an XML document in EBCDIC from a COBOL application, data conversion cannot
be avoided even if using a BLOB as the base for the XML column.

On the other hand, when retrieving an XML document from DB2 data conversion only occurs
if using an externally encoded format for the target variable and if the associated code page is
different from UTF-8. So here data conversion is avoided when using a binary format, but
then you have the data in Unicode which may or may not be desirable.

For COBOL applications that work with XML documents in an EBCDIC code page, either
because they are received and transmitted to other applications in that format, or because
they are created and manipulated entirely in COBOL, a good choice would be to use
externally encoded variables because that ensures that the necessary data conversions are
performed.

However, if the COBOL application receives the XML data from, or transmits XML data to an
application using another code page, e.g. via WebSphere MQ, there is the risk of performing
an unnecessary interim data conversion.

In this case it might be an idea to use an internally encoded format if the external application
either uses Unicode, or is able to perform the conversion from Unicode to its own code page.
The other option is using external encoding with the CCSID of the external application. Both
these choices eliminate the need for an interim conversion of the data, but both require that
the COBOL application can handle the XML data in the other application’s code page.

Document encoding XML AS CLOB, CCSID is
EBCDIC

XML AS BLOB

EBCDIC document with EBCDIC
encoding declaration

Insert successful Insert successful

EBCDIC document with UTF-8
encoding declaration

Insert successful SQL error -20398

UTF-8 document with EBCDIC
encoding declaration

SQL error -20398 SQL error -20398

UTF-8 document with UTF-8
declaration

SQL error -20398 Insert successful
158 Extremely pureXML in DB2 10 for z/OS

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.sqlref/db2z_mixeddatainchar.htm

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
In Figure 8-1 it is shown how the interim code conversion can be avoided by using an
internally encoded variable for the XML data.

Figure 8-1 Data conversion in a three-layer structure using CLOBs or BLOBs

8.1.2 Using non-XML variables for XML data

In general, it is recommended to use XML variables for XML data but in some cases it might
be practical to consider other options. One such case could be when developing COBOL
stored procedures. At present, the XML data type is not supported for external stored
procedures.

It is possible to use non-XML variables for insert and update, and for retrieval of XML
documents. Possible data types are CLOB, BLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY AND VARBINARY.

You can either let DB2 handle the conversion implicitly, or explicitly call the conversion
functions. XMLSERIALIZE converts the host variable type to XML whereas XMLPARSE
converts XML to a host variable type. It is recommended to let DB2 perform the conversion
implicitly whenever possible, as this is more efficient.

In more complex SQL/XML, calls, e.g. XMLMODIFY, it is not possible to substitute the XML
type with other host variable types. In this case it might be necessary to perform an explicit
conversion by calling XMLPARSE or XMLSERIALIZE.

Websphere
MQ

CCSID X

COBOL
CCSID Y

DB2
UTF-8

Convert from
CCSID X to Y

Convert from
CCSID Y to UTF-8

Convert from UTF-8
to CCSID Y

Convert from
CCSID Y to X

Websphere
MQ

CCSID X

COBOL
CCSID Y

DB2
UTF-8

No conversion Convert from
CCSID X to UTF-8

No conversionConvert from UTF-8
to CCSID X

1) Using CLOB for XML variable

2) Using BLOB for XML variable

External app.
CCSID X

COBOL
CCSID Y

DB2
UTF-8

Convert from
CCSID X to Y

Convert from
CCSID Y to UTF-8

Convert from UTF-8
to CCSID Y

Convert from
CCSID Y to X

External app.
CCSID X

COBOL
CCSID Y

DB2
UTF-8

No conversion Convert from
CCSID X to UTF-8

No conversionConvert from UTF-8
to CCSID X

Using CLOB for XML variable

Using BLOB for XML variable

XML
data source.

CCSID X

COBOL
CCSID Y

DB2
UTF-8

Convert from
CCSID X to Y

Convert from
CCSID Y to UTF-8

Convert from UTF-8
to CCSID Y

Convert from
CCSID Y to X

XML
data source.

CCSID X

COBOL
CCSID Y

DB2
UTF-8

No conversion Convert from
CCSID X to UTF-8

No conversionConvert from UTF-8
to CCSID X

Using CLOB for XML variable

Using BLOB for XML variable

Note: Always use XMLSERIALIZE WITHOUT XMLDECLARATION with an externally
encoded host variable.

The XML declaration resulting from an explicit serialization always contains
encoding="UTF-8" because the conversion is performed after document retrieval. This
does not match the contents of the document if any data conversion is performed and may
result in application errors.

For implicit serialization, the XML declaration always matches the document contents.
Chapter 8. Using XML with COBOL 159

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
8.1.3 Using file reference variables for efficient insert and retrieval

DB2 offers the use of file reference variables for XML data in the same manner as for LOBs.
File reference variables are variables that point to documents in the file system and they allow
you to refer to the documents without reading the contents of the documents into the memory
of the application.

They can be used for efficient insert of XML documents that you receive from outside the
application if you do not need to manipulate the contents before inserting, and for retrieval of
documents that you want to pass on as they are without any modifications.

The variable declarations for file reference variables in COBOL can be seen in Example 8-5.

Example 8-5 XML file reference filterable in COBOL

01 DOC-AS-CLOB-FILE IS SQL TYPE IS XML AS CLOB-FILE.
01 DOC-AS-BLOB-FILE IS SQL TYPE IS XML AS BLOB-FILE.
01 DOC-AS-DBCLOB-FILE IS SQL TYPE IS XML AS DBCLOB-FILE.

These declarations are translated by the pre-compiler as shown in Example 8-6.

Example 8-6 XML file reference variables after transformation by the DB2 pre-compiler

01 DOC-AS-CLOB-FILE.
 49 DOC-AS-CLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 DOC-AS-CLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-CLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
 49 DOC-AS-CLOB-FILE-NAME PIC X(255).
01 DOC-AS-BLOB-FILE.
 49 DOC-AS-BLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 DOC-AS-BLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-BLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
 49 DOC-AS-BLOB-FILE-NAME PIC X(255).
01 DOC-AS-DBCLOB-FILE.
 49 DOC-AS-DBCLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
 49 DOC-AS-DBCLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
 49 DOC-AS-DBCLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
 49 DOC-AS-DBCLOB-FILE-NAME PIC X(255).

To work with a file reference variable, you must initialize the fields concerning the file name,
i.e. the name of the file and the length of the name, and the file option. The file option is used
to signal which type of operation you want to perform on the file. These are supplied as
constant declarations in COBOL, the possible values are shown in Table 8-2. The length of
the file is provided by DB2 when writing to a file and does not have to be provided by the
application.

Table 8-2 Options for file reference variables

FILE-OPTION Constant Operation

SQL-FILE-READ 2 Input from application to database. A regular file can be
opened, read and closed

SQL-FILE-CREATE 4 Output from database to application. Creates a new file
if one does not exist. If one does exist, an error is
returned.
160 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
The initialization needed to read from a file named ‘CAMT.STMT.XML’ is shown in
Example 8-7.

Example 8-7 Initialization of a file reference variable

MOVE ‘CAMT.STMT.XML’ TO DOC-AS-CLOB-FILE-NAME.
MOVE 13 TO DOC-AS-CLOB-FILE-NAME-LENGTH.
MOVE SQL-FILE-READ TO DOC-AS-CLOB-FILE-OPTION.

When the file reference variable is subsequently referred to, the specified file option is
executed, thus if the file is used, such as in an insert operation, the file is read into DB2 and
inserted without materializing in application memory.

8.2 The BankStmt application in COBOL

This section contains a step-by-step implementation of the BankStmt application in COBOL.

The purpose of the application is to demonstrate how to use COBOL with DB2 pureXML and
we have chosen to emphasize the different steps and choices made that are related to XML,
thus disregarding irrelevant code and components like presentation layer or end-user dialog.
The application might therefore seem simple compared to a real-life application.

We shall use the same subset of the ISO20022 standard, namely the
BankToCustomerStatement message, which has been used throughout the book.

The BankToCustomerStatement message is sent by the account servicer to an account
owner or to a party authorized by the account owner to receive the message. It is used to
inform the account owner, or authorized party, of the entries booked to the account, and to
provide the owner with balance information on the account at a given point in time.

For the COBOL application, we have chosen the database schema that focuses on the
statement as a business object. This implies that the BankToCustomerStatement is saved
whole as one XML document, as opposed to shredding the message into smaller documents
before saving them.

The level at which to define a document may be difficult to decide, but a good rule-of-thumb is
that if the XML document matches a business object, it makes a good basis for the application
because it contains the data that is typically used in each application component.

SQL-FILE-APPEND 8 Output from database to application. Appends data to an
existing file. If one does not exist, a new file is created.

SQL-FILE-OVERWRITE 16 Output from database to application. Overwrites an
existing file. If one does not exist, a new file is created.

Note: Apply PTF for currently open APAR PM25980 when using binary file reference and
locator variables. It solves issues for non-UTF-8 encoded XML files.

FILE-OPTION Constant Operation
Chapter 8. Using XML with COBOL 161

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
8.2.1 Setting up the environment

When creating a COBOL application, the initial work also includes setting up the environment.
In this case we shall need tables for holding the data and the XML schema for validating the
documents.

The BankToCustomerStatement schema
In order to understand the structure of the documents we work with, and to see the types of
validation the schema imposes on this structure, we start by having a look at the schema for
the BankToCustomerStatement.

The overall structure of a BankToCustomerStatement message as it looks when shown in a
browser is shown in Figure 8-2. The elements can be expanded by clicking the ‘+’ to the left or
collapsed by clicking the ‘-’.

The outermost element is Document containing the element BkToCstmrStmt which in turn is
made up from a GrpHdr element and a Stmt element. The Stmt element contains simple
elements Id and CreDtTm, and complex elements FrToDt and Acct as well as a number of
complex elements Bal and Ntry.

Figure 8-2 BankToCustomerStatement message as shown in a browser

The schema for messages of this format is available from the ISO20022 web site. It is quite
extensive, and we shall not go into details, but let us have a look at a small subset of the
schema that we shall be working with. Note, that even if you are not used to dealing with XML
schemas, it is still possible to get an idea of what it says. The schema itself is also written in
XML.

In Figure 8-3, we see the part of the schema that is concerned with the overall structure of the
BankToCustomerStatement. We see the target namespace of the schema is
urn:iso:std:iso:20022:tech:xsd:camt.053.001.02, and that the outermost element is named
Document with type Document.
162 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
The type Document in turn is a complex type consisting of a sequence of elements with name
BkToCstmrStmt of type BankToCustomerStatementV02 which is a complex type made up
from another sequence of elements. This sequence contains an element of type GrpHdr and
then one or more occurrences of the element Stmt.

Figure 8-3 Subset of the BankToCustomerStatement schema

Schema registration
We need to register XML schemas in the DB2 XML schema repository to allow us to use DB2
to validate our XML documents.

The documents can either be validated explicitly using the DSN_XMLVALIDATE function
when inserting or updating, or DB2 can perform the validation automatically on insert and
update. The latter requires that the XML column is associated with an XML type modifier that
holds information about which schemas to use for validation.

We have decided to use automatic schema validation for the following reasons:

� The application code is simpler.

� This ensures that all documents are validated, even though there might be several
applications inserting or updating the XML documents.

� If the schema changes, we only need to alter the XML type modifier on the table, not all
the insert and update applications.

The schema consists of a single document camt.053.001.02.xsd which we have obtained
from the ISO20022 web site and have available on our workstation. To register the schema
we have a number of options:

� Upload the schema to z/OS and register it through the command line processor (CLP) in
Unix System Services (USS).

� Register the schema through the CLP in Windows on our workstation, connecting to DB2
on z/OS using DB2 Connect™.

� Use Optim Development Studio or similar development framework to register the
schema. This also requires DB2 Connect to connect to DB2 for z/OS.

We choose to register the schema from the workstation using the CLP available in Windows.
We first connect to DB2 using DB2 Connect, then register the schemas. The commands used
are shown in Example 8-8.
Chapter 8. Using XML with COBOL 163

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
For details on the other methods for schema registration, refer to 2.1.6, “XML schema
repository and schema validation”

Example 8-8 CLP commands for registration of XML schema

db2 connect to DB0B user xmlr2 using passwd01
db2 register xmlschema 'camt.053.001.02.xsd' from 'camt.053.001.02.xsd' as
SYSXSR.camt_053_001_02
db2 complete xmlschema SYSXSR.camt_053_001_02

With the schema in place, we can create the tables needed for the application.

As stated earlier we have decided that the bank statement is what corresponds to a business
object in this application, and we therefore need one table with one XML column, adding a
few redundant columns for easy access and overview. The XML column is created with a type
modifier referring to the XML schema that we just registered to allow for automatic schema
validation.

The DDL for the tables is shown in Example 8-9. Note, that no indexes are created at this
time. We add them when we have our programs and SQL queries in place to make sure that
the best possible indexes are chosen.

Example 8-9 DDL for the table in the BankStmt application

CREATE TABLE BK_TO_CSTMR_STMT
 (MSG_ID VARCHAR(35) ,
 MSG_CRE_DT_TM TIMESTAMP WITH TIME ZONE,
 BK_TO_CSTMR_STMT XML

(XMLSCHEMA ID SYSXSR.CAMT_053_001_02) NOT NULL) ;

8.2.2 Inserting XML documents

For the insert program we assume that we have the full BankToCustomerStatement message
available in the file system. The insert program runs as a batch program, and the name of the
file holding the XML document are passed as input in the JCL.

We also assume that the message is stored in EBCDIC, which matches the application code
page, so the data is automatically converted correctly to UTF-8 if we use a single-byte
character-based XML variable.

We shall need some data from the document to populate the redundant columns in the base
table, but if we choose to populate those after the insert, we can do it in DB2 and we do not
need to manipulate the contents of the XML file at all in the application program. This means
that we can use a file reference variable to hold the XML.

The redundant columns are populated after the insert, so we only need to insert the XML
document. We do, however, need to be able to identify the row after the insert in order to
supply values for the redundant columns. To this end we shall use the unique column
DB2_GENERATED_DOCID_FOR_XML COLUMN which is generated automatically by DB2
on insert of the XML document. We select this column from the final table of the insert
statement.

The code needed for the initial insert is shown in Example 8-10.

Example 8-10 Insert a BankToCustomerStatement

01 WS-BLANK-STRING PIC X(1) VALUE SPACES.
164 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
01 BK-STMT-DATA USAGE IS SQL TYPE IS XML AS CLOB-FILE.
01 DOC-ID PIC S9(18) COMP-5.
...
ACCEPT BK-STMT-DATA-NAME FROM SYSIN.
INSPECT BK-STMT-DATA-NAME TALLYING BK-STMT-DATA-NAME-LENGTH
 FOR CHARACTERS BEFORE INITIAL WS-BLANK-STRING.
MOVE SQL-FILE-READ TO BK-STMT-DATA-FILE-OPTION.

EXEC SQL
 SELECT DB2_GENERATED_DOCID_FOR_XML INTO :DOC-ID
 FROM FINAL TABLE
 (INSERT INTO BK_TO_CSTMR_STMT (BK_TO_CSTMR_STMT)
 VALUES (:BK-STMT-DATA))
END-EXEC.

The XML data has now been validated and inserted, and all we need is to populate the two
redundant columns. This is easily done by extracting the contents from the XML document
using the XMLTABLE function.

The update, and thus the remainder of what is needed for the insert operation is shown in
Example 8-11.

Example 8-11 Extracting key fields using XMLTABLE

EXEC SQL
 UPDATE BK_TO_CSTMR_STMT ST1
 SET (MSG_ID , MSG_CRE_DT_TM) =
 (SELECT X.MSGID , X.CREDTTM
 FROM BK_TO_CSTMR_STMT ST2,
 XMLTABLE (XMLNAMESPACES(DEFAULT
 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',

'/Document/BkToCstmrStmt/GrpHdr'
 PASSING ST2.BK_TO_CSTMR_STMT
 COLUMNS
 "MSGID" VARCHAR(35) PATH 'MsgId',
 "CREDTTM" TIMESTAMP PATH 'CreDtTm'
) X
 WHERE ST2.DB2_GENERATED_DOCID_FOR_XML = :DOC-ID)
 WHERE ST1.DB2_GENERATED_DOCID_FOR_XML = :DOC-ID
END-EXEC.

To test the program we need two documents available in the file system: One, that is valid
according to the XML schema and one that is not.

The JCL needed to run the program is shown in Example 8-12. The name of the file holding
the XML document is given as an input parameter in the SYSIN DD card.

Example 8-12 JCL for running COBOL insert program

//PH02CS04 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DISP=SHR,DSN=DB0BM.DBRMLIB.DATA
//STEPLIB DD DISP=SHR,DSN=DB0BT.SDSNLOAD
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Note: XPath (as well as XQuery) expressions are case-sensitive.
Chapter 8. Using XML with COBOL 165

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
//SYSUDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSIN DD *
CAMT.BKSTMT.XML
//SYSTSIN DD *
DSN SYSTEM(DB0B)
 RUN PROGRAM(INSBKST) PLAN(COBXML) -
 LIBRARY('DB0BM.RUNLIB.LOAD')
 END
//CARDIN DD *

We first run it with the XML document that is not valid. To produce the non-valid document we
have omitted the GrpHdr element altogether; the XML schema states that this is a required
element as we saw in the previous section.

Running the program with this document gives us the error shown in Example 8-13.

Example 8-13 Validation error on insert

DSNT408I SQLCODE = -20399, ERROR: ERROR ENCOUNTERED DURING XML VALIDATION:
LOCATION 184; TEXT An expected element match was not found.RC=0018,RSN=8604;
XSRID 144.
DSNT418I SQLSTATE = 2201R SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNNOPAR SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -510 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFE02' X'00000000' X'00000000' X'FFFFFFFF' X'00
 INFORMATION

We see that the error is detected in location 184 of the document, and that an expected
element match was not found there. By inspecting the document we find that this is the first
location after the start tag of the BkToCstmrStmt, and this is exactly the place where the
GrpHdr should be according to the schema.

We then run it with the valid document and the program completes as expected. To verify that
the document has been validated, we use the DB2-supplied SQL function
XMLXSROBJECTID which takes an XML column and returns the XSR object identifier that
was used to validate the XML document - or 0 if the document has not been validated. The
identifier can then be looked up in the SYSXSR.SYSOBJECTS catalog table as shown in
Example 8-14.

Example 8-14 Determining whether an XML document has been validated

---------+---------+---------+---------+---------+---------+-
SELECT B.ID, S.XSROBJECTNAME
FROM BK_TO_CSTMR_STMT B
, SYSIBM.XSROBJECTS S
WHERE S.XSROBJECTID = XMLXSROBJECTID(B.BK_TO_CSTMR_STMT)
---------+---------+---------+---------+---------+---------+-
 ID XSROBJECTNAME
---------+---------+---------+---------+---------+---------+-
 5 CAMT_053_001_02
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+-
166 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
8.2.3 Updating XML documents

Now let us look at a small program that updates a BankToCustomerStatement.

A BankToCustomerStatement can normally be sent either to the owner of the account, or to
another recipient. This is modelled by having a MsgRcpt element in the GrpHdr of the
document which is filled in only if the recipient is different from the owner. An example of a
recipient is shown in Figure 8-4.

Figure 8-4 Message recipient of a BankToCustomerStatement

Now imagine that we want to change the recipient of a BankToCustomerStatement. For this
purpose we use the DB2 function XMLMODIFY which can update part of an XML document.

The XMLMODIFY function has three subfunctions. It can

� Insert data into an XML document

� Replace data in an XML document

� Delete data from an XML document

Depending on the situation we might want to use any one of these functions.

� If the recipient is the owner and we want to change it to someone else, we should insert a
MsgRcpt element

� If the recipient is not the owner and we want to change to someone else who is not the
owner, we should replace the MsgRcpt element

� If the recipient is someone other than the owner and we want to change it to the owner, we
should delete the MsgRcpt element

For now, let us assume that the MsgRcpt element is once again available in a file which we
can access through a file reference variable. We input to the program the name of this file, an
ID of the XML message we want to change, and a choice of function to perform - replace,
insert or update.

We shall also consider an alternative to this approach, namely to input the raw data and then
build an XML element using COBOL features. See 8.3.1, “Generation of XML documents in
COBOL” on page 176.

Note: The use of the XMLMODIFY function to update parts of an XML document is
supported for tables with the multi-versioning format introduced in DB2 10 only.

A table has the multi-versioning format if it is created in DB2 10 NFM, has an XML column,
and resides in a universal table space. Or if it is created in DB2 9, resides in a universal
table space and all the XML columns are added to the table in DB2 10 NFM.
Chapter 8. Using XML with COBOL 167

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
The updating program is shown in Example 8-15. The program inputs the MSG_ID of the row
to update, a number indicating which function to perform and the name of a file holding a
MsgRcpt element. Depending on the function choice it executes one of three SQL statements
using XMLMODIFY to update the XML document. It either inserts the MsgRcpt element,
replaces an existing MsgRcpt element, or deletes an existing MsgRcpt element.

Example 8-15 COBOL program for updating a BkToCstmrStmt with a new MsgRcpt

WORKING-STORAGE SECTION.
01 REPLACE-MSG-RCPT PIC 9 VALUE 1.
01 INSERT-MSG-RCPT PIC 9 VALUE 2.
01 DELETE-MSG-RCPT PIC 9 VALUE 3.
01 FUNCTION-CHOICE PIC 9.
 EXEC SQL INCLUDE SQLDA END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
01 WS-BLANK-STRING PIC X(1) VALUE SPACES.
01 NEW-RCPT USAGE IS SQL TYPE IS XML AS CLOB-FILE.
01 MSGID PIC X(35).
...
MAIN SECTION.
 EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
 EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.

 ACCEPT MSGID FROM SYSIN.
 ACCEPT FUNCTION-CHOICE FROM SYSIN.
 ACCEPT NEW-RCPT-NAME FROM SYSIN.
 INSPECT NEW-RCPT-NAME TALLYING NEW-RCPT-NAME-LENGTH
 FOR CHARACTERS BEFORE INITIAL WS-BLANK-STRING.
 MOVE SQL-FILE-READ TO NEW-RCPT-FILE-OPTION.

 EVALUATE FUNCTION-CHOICE
 WHEN REPLACE-MSG-RCPT PERFORM REPLACE-RCPT
 WHEN INSERT-MSG-RCPT PERFORM INSERT-RCPT
 WHEN DELETE-MSG-RCPT PERFORM DELETE-RCPT
 WHEN OTHER DISPLAY "OTHER" FUNCTION-CHOICE
 END-EVALUATE.

REPLACE-RCPT.
 EXEC SQL
 UPDATE BK_TO_CSTMR_STMT
 SET BK_TO_CSTMR_STMT =
 XMLMODIFY (
 'declare default element namespace
- '"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
- 'replace node
- '/Document/BkToCstmrStmt/GrpHdr/MsgRcpt
- 'with $rcp/NewRcpt/MsgRcpt',
 :NEW-RCPT AS "rcp"
)
 WHERE MSG_ID = :MSGID
 END-EXEC.

INSERT-RCPT.
 EXEC SQL
 UPDATE BK_TO_CSTMR_STMT
 SET BK_TO_CSTMR_STMT =
168 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
 XMLMODIFY (
 'declare default element namespace
- '"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
- 'insert node $rcp/NewRcpt/MsgRcpt after
- '/Document/BkToCstmrStmt/GrpHdr/CreDtTm',
 :NEW-RCPT AS "rcp"
)
 WHERE MSG_ID = :MSGID
 END-EXEC.

DELETE-RCPT.
 EXEC SQL
 UPDATE BK_TO_CSTMR_STMT
 SET BK_TO_CSTMR_STMT =
 XMLMODIFY (
 'declare default element namespace
- '"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
- 'delete node
- '/Document/BkToCstmrStmt/GrpHdr/MsgRcpt'
)
 WHERE MSG_ID = :MSGID
 END-EXEC.

Make a note of the following two points:

� For both the replace and insert expressions, a path of $rcp/Newrcpt/MsgRcpt is used
instead of just $rcp to indicate the new element. This is because we have wrapped the
XML element in a container element, in this case NewRcpt, which is not to be inserted into
DB2. This is necessary when inserting more than one element and therefore a good
practice to adapt in general for consistency.

� XPath expressions may be quite long, spanning several lines, especially if many
namespace declarations are needed. The XPath expressions in the program are enclosed
in apostrophes, and an apostrophe is used together with the continuation character ‘-’ to
indicate that the expression continues on the next line. This requires the program to be
precompiled with the APOST and APOSTSQL options.

The program was tested with function 1, for insert of a new MsgRcpt element, and a file
containing the MsgRcpt element shown in Figure 8-4 on page 167. This produced the error
shown in Example 8-16.

Example 8-16 SQL error when updating XML document with MsgRcpt element

DSNT408I SQLCODE = -20399, ERROR: ERROR ENCOUNTERED DURING XML VALIDATION:
 LOCATION 237; TEXT An element is not in the choice.RC=0018,RSN=8608;
 XSRID 144.
DSNT418I SQLSTATE = 2201R SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNNOPAR SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -510 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X'FFFFFE02' X'00000000' X'00000000' X'FFFFFFFF'
 X'00000000' X'00000000' SQL DIAGNOSTIC INFORMATION

The error states that an element that begins in location 237 of the XML document is not
allowed in that place. This turns out to be the MsgRcpt element which is not surprising as this
is the only place where we have changed the document.
Chapter 8. Using XML with COBOL 169

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
The MsgRcpt element is inserted after the CreDtTm element in the GrpHdr element. Let us
compare this to the schema definition of the GrpHdr element which is shown in Figure 8-5. In
fact, this is a definition of the complex type GroupHeader42 which describes the GrpHdr
element. We see that it comprises a sequence with a MsgId element, followed by a CreDtTm
element, which again is followed by an optional MsgRcpt element and two other optional
elements.

Figure 8-5 Schema definition for the GrpHdr element

In other words, the location of the MsgRcpt element is not in conflict with the schema
definition, so why does DB2 not recognize the element name as valid in the context?

The explanation is related to namespaces. We recall that namespaces are a mechanism for
ensuring uniqueness of element names, so that two elements in different domains and
possibly with different structure and contents are not confused even though they have the
same element name. By associating with each element a namespace, we guarantee that we
know which one we are referencing. This association can be done either explicitly with a
prefix to the element name, or implicitly by declaring a default element namespace.

The BankToCustomerStatement has the default namespace of
urn:iso:std:iso:20022:tech:xsd:camt.053.001.02, and therefore all the elements belonging to
this message have the same namespace unless another namespace is explicitly given. The
MsgRcpt element we attempted to insert into the document had no namespaces associated
with it, and therefore it is not the same element as the one in the BankToCustomerStatement
schema. Hence, it is not valid in the context.

We alter the contents of the file containing the MsgRcpt element as shown in Figure 8-6 and
attempt to run the update again. This time the namespace declaration matches the default
element declaration, and the insert succeeds.

Figure 8-6 MsgRcpt element with namespace declaration
170 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
8.2.4 Querying XML documents

For retrieving XML from DB2, there are two options. Either the data is retrieved as XML, or
else the data is converted to simple SQL types either as a result of a cast operation, or from
using the XMLTABLE function.

In Example 8-17 it is shown how to select a whole XML document with a given ID from the
BK_TO_CSTMR_STMT table and write it to a file using a file reference variable.

Example 8-17 Retrieval of an XML document to a file

01 WS-BLANK-STRING PIC X(1) VALUE SPACES.
01 MSGID PIC X(35).
01 BK-STMT-FILE USAGE IS SQL TYPE IS XML AS CLOB-FILE.
 EXEC SQL INCLUDE SQLDA END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
...
MAIN SECTION.
 EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
 EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.

 ACCEPT MSGID FROM SYSIN.

 ACCEPT BK-STMT-FILE-NAME FROM SYSIN.
 INSPECT BK-STMT-FILE-NAME TALLYING BK-STMT-FILE-NAME-LENGTH
 FOR CHARACTERS BEFORE INITIAL WS-BLANK-STRING.
 MOVE SQL-FILE-OVERWRITE TO BK-STMT-FILE-FILE-OPTION.

 EXEC SQL
 SELECT BK_TO_CSTMR_STMT INTO :BK-STMT-FILE
 FROM BK_TO_CSTMR_STMT
 WHERE MSG_ID = :MSGID

 END-EXEC.

Now imagine that we want to make a list of all entries created after a given date. The list is to
contain the statement id, amount, currency, credit-debit indicator and datetime.

We want to extract these values into simple SQL host variables of type DECIMAL, CHAR and
TIMESTAMP. In this case it is actually transparent to the COBOL application that we are
working with XML data, because all the XML manipulation takes place in DB2 via EXEC SQL
statements. Even for the host variable declarations, we do not have to consider the different
XML alternatives.

See Example 8-18 for a program that extracts the entries for all bank statement and places
them in relational host variables. The program inputs a timestamp and selects data from
entries that have a timestamp later than this timestamp. This is done by passing the value of
the timestamp as a parameter to the XPath expression, and then using it in the predicate
where it is compared to the timestamp of each entry.

It uses XMLTABLE to get a relational view of each entry, of which there may be several per
BankToCustomerStatement, so potentially there are more rows returned than rows in the
table. These are then filtered by the predicate, so potentially there could also be fewer rows
than rows in the table. The values of these are then placed in relational host variables for
further processing.
Chapter 8. Using XML with COBOL 171

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
Example 8-18 Retrieval of data in relational format from an XML document

01 FROM-TIME PIC X(19).
01 STMT-ID PIC X(20).
01 NTRY-TIME PIC X(26).
01 AMOUNT PIC S9(9)V9(2) COMP-3.
01 CREDIT-DEBIT PIC X(4).
01 CURRENCY-NM PIC X(4).
...
MAIN SECTION.
 EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
 EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.

 ACCEPT FROM-TIME FROM SYSIN.

 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT X.STMT, X.DTTM, X.CCY , X.AMT , X.CREDBTIND
 FROM BK_TO_CSTMR_STMT S,
 XMLTABLE (XMLNAMESPACES(DEFAULT
 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',

'/Document/BkToCstmrStmt/Stmt/Ntry[BookgDt/DtTm>$tm]'
 PASSING S.BK_TO_CSTMR_STMT, TIMESTAMP(:FROM-TIME) AS "tm"
 COLUMNS
 "STMT" CHAR(20) PATH '../Id',
 "DTTM" CHAR(26) PATH 'BookgDt/DtTm',
 "CCY" CHAR(4) PATH 'Amt/@Ccy',
 "AMT" DECIMAL(11,2) PATH 'Amt',
 "CREDBTIND" CHAR(4) PATH 'CdtDbtInd'
) X
 END-EXEC.
 EXEC SQL
 OPEN C1
 END-EXEC.
 EXEC SQL
 FETCH C1 INTO :STMT-ID ,
 :NTRY-TIME ,
 :CURRENCY-NM ,
 :AMOUNT ,
 :CREDIT-DEBIT
 END-EXEC.
 PERFORM WRITE-AND-FETCH
 UNTIL SQLCODE IS NOT EQUAL TO ZERO.
 EXEC SQL WHENEVER NOT FOUND GOTO CLOSEC1 END-EXEC.
CLOSEC1.
 EXEC SQL CLOSE C1 END-EXEC.

8.2.5 Designing indexes

We recall that XML indexes can be utilized by XMLEXISTS and XMLTABLE functions, so only
XPath patterns used in one of these functions are candidates for index use.

In the COBOL application we have not used the XMLEXISTS function at all. The XMLTABLE
function has been used twice, but only the one extracting entries from the bank statement
contained a predicate.
172 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
The pattern used for the context node in this expression is the candidate for index access. It is
shown in Example 8-19.

Example 8-19 Candidate index pattern for the BankStmt application

'/Document/BkToCstmrStmt/Stmt/Ntry[BookgDt/DtTm>$tm]'

We need to include the whole path down to and including the DtTm element as this is the one
the predicate evaluates, and we need to include namespace declarations in the index. The
resulting index can be seen in Example 8-20.

Example 8-20 XML index on DtTm elements

CREATE INDEX IXMLNTRY
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
GENERATE KEY USING XMLPATTERN
'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
/Document/BkToCstmrStmt/Stmt/Ntry/BookgDt/DtTm'
AS SQL TIMESTAMP

To ensure that the index is utilized by the COBOL program, we run the Runstats utility on the
table and XML index, and then do an explain of the program. In Example 8-21 a select of a
few essential columns from the plan table is shown for the programafter and before the
creation of the index.

The access type for the access to table BK_TO_CSTMR_STMT is DX which is an indication
that an XML index is being used for access, the access name is IXMLNTRY which is the index
we just created.

Example 8-21 Access path using the index IXMLNTRY

SELECT CREATOR, TNAME, METHOD, ACCESSTYPE, ACCESSCREATOR, ACCESSNAME
FROM PLAN_TABLE
WHERE PROGNAME = 'GETNTRY'
;
---------+---------+---------+---------+---------+---------+---------+---------+
CREATOR TNAME METHOD ACCESSTYPE ACCESSCREATOR ACCESSNAME
---------+---------+---------+---------+---------+---------+---------+---------+
XMLR2 BK_TO_CSTMR_ST 0 DX XMLR2 IXMLNTRY
XMLR2 X 1 R
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE612I DATA FOR COLUMN HEADER TNAME COLUMN NUMBER 2 WAS TRUNCATED
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

8.2.6 Schema evolution

As part of the application life-cycle it is expected that an XML format will evolve over time. In
this section, we show an example of a schema change, identify which components are
affected, and demonstrate how to change the application accordingly.

Note: The support for date and time data types and functions in XML functions, including
TIME, DATE and TIMESTAMP as data types for indexes, requires DB2 10 NFM.
Chapter 8. Using XML with COBOL 173

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
We recall that a BankToCustomerStatement can be sent either to the owner of the account, or
to another recipient and that this is modelled by having a MsgRcpt element in the GrpHdr of
the document which is filled in only if the recipient is different from the owner.

Imagine now that you wanted to send the same message to more than one recipient, so in the
XML document you would have more than one MsgRcpt. What would be the impact on the
schema and your applications? The schema definition of the GrpHdr is shown in Figure 8-7.

Figure 8-7 Schema definition of GrpHdr element

We notice that the current schema definition does not allow more than occurrence of the
MsgRcpt element, this is determined by the maxOccurs=”1” attribute, and if you tried to insert
a document containing e.g. two message recipients, you would get a validation error. So the
first thing that has to change is the schema definition.

To alter the schema definition to allow for multiple occurrences of the MsgRcpt element, all
you need to do is change the maxOccurs=”1” clause of the element to
maxOccurs=”unbounded”. The result is shown in Figure 8-8.

Figure 8-8 Revised schema definition for GrpHdr with multiple MsgRcpt elements

We give the schema another version, e.g. SYSXSR.CAMT_053_001_03 and register it to
DB2 in the same way as we did the original schema. See Example 8-8 on page 164 for
details.

We then need to alter the table definition so that the version 3 schema is used for automatic
validation. We do not want to remove the original schema because the data already in the
table was validated against this schema, and removing it would remove the audit trail. It would
also leave the table in check pending because the rows would not have been validated
against a schema mentioned in the XML type modifier. Instead we add the new version to the
type modifier of the XML column on top of the original schema.

When updating or inserting new XML documents, these are automatically validated against
the latest version of the type modifier when using automatic validation.

The DDL needed to extend the type modifier of the XML column is shown in Example 8-22.
174 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
Example 8-22 Adding a new schema to an XML type modifier

ALTER TABLE BK_TO_CSTMR_STMT
ALTER DOCUMENT
SET DATA TYPE XML
(XMLSCHEMA ID SYSXSR.CAMT_053_001_02,
ID SYSXSR.CAMT_053_001_03)

The table and schema repository are now set to handle the updated schema.

Application changes
On the application side, the changes needed are of course influenced by the degree to which
the fields involved in the change are used. The following examples nevertheless show that
XML in many ways are quite robust to minor changes.

The insert application takes a whole XML document from the file system and inserts it into
DB2 without manipulating it at all. The data validation is performed by DB2, but as we have
altered the XML type modifier to include the new schema, this is already taken care of.
Hence, no changes are necessary in the insert application.

The update application alters the message recipient of the statement. Instead of altering it,
we might in future want to just add another message recipient as this is now allowed by the
new schema. The COBOL program already contains the option of inserting a new message
recipient, let us investigate it to see whether it may be used for inserting additional message
recipients next to existing ones.

The XMLMODIFY expression used for insert is shown in Example 8-23. Note, that it inserts
the MsgRcpt element right after the CreDtTm element. This means that if one or more
MsgRcpt elements are already there, the new element is placed before these. This is valid
according to the schema, so unless any significance is given to the order of the MsgRcpt
elements, the application needs no changes to cater for the schema change.

In fact, because we chose to wrap the MsgRcpt element in a container element called
NewRcpt, we are now also able to use the insert function to insert several new message
recipients at one time, if we found that desirable.

Example 8-23 Insert a MsgRcpt element after the CreDtTm element

EXEC SQL
 UPDATE BK_TO_CSTMR_STMT
 SET BK_TO_CSTMR_STMT =
 XMLMODIFY (
 'declare default element namespace
- '"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
- 'insert node $rcp/NewRcpt/MsgRcpt after
- '/Document/BkToCstmrStmt/GrpHdr/CreDtTm',
 :NEW-RCPT AS "rcp"
)
 WHERE ID = :UPD-ID
 END-EXEC.

None of the query applications make use of the message recipients, so no changes are
necessary here.
Chapter 8. Using XML with COBOL 175

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
Comparing to relational schema change
In summary, the only changes needed in the COBOL BankStmt application to allow multiple
message recipients were the following changes in the environment:

� In the schema definition, change the attribute of the Msgrcpt element from maxOccurs
=“1” to maxOccurs =“unbounded”

� Register the resulting schema in DB2 with a new version number

� Extend the type modifier of the XML column to include the new schema version

All of these changes can be performed as online changes.

No changes at all were necessary on the application side.

If the database schema had been relational, the required changes would likely be much more
extensive involving a new table for the message recipient data as well as converting existing
data to make them available in the new table.

This, in turn, would require application changes, allowing the application to insert and update
data in the new table.

8.3 COBOL functions for manipulating XML

COBOL also offers support for XML, independently of the pureXML support in DB2.

This functionality may in some cases complement the DB2 functionality when basing the
database design on pureXML.

We shall give a brief introduction to the most important concepts, namely parsing, generation
and validation of XML documents in native COBOL. For more detailed information, refer to
Enterprise COBOL for z/OS Version 4.2 Programming Guide, SC23-8529-01.

8.3.1 Generation of XML documents in COBOL

The DB2 pureXML functionality for creating XML documents from relational data is offered by
the various publishing functions like XMLDOCUMENT, XMLELEMENT, XMLNAMESPACE
etc. These functions were studied in 2.1.2, “SQL/XML language” on page 24.

Correspondingly, COBOL offers support for generation of XML documents from COBOL
structures through the XML GENERATE statement.

This function takes as input a data item which is typically a group, and generates as output an
XML document with similar structure as the input data item. The resulting element names are
taken from the names in the group data item, and the resulting element contents is taken from
the contents of these variables.

In Example 8-24 we see how to use XML GENERATE to generate a MsgRcpt element from a
variable structure.

Example 8-24 COBOL program for generation of the MsgRcpt element

01 NewRcpt.
 02 MsgRcpt.
 05 Nm PIC X(20) Value 'Pamela Woods'.
 05 PstlAdr.
176 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
 10 StrtNm PIC X(20) Value '555'.
 10 BldgNb PIC X(20) Value 'Bailey Avenue'.
 10 PstCd PIC X(20) Value '95141'.
 10 TwnNm PIC X(20) Value 'San Jose'.
01 NS PIC X(50)
 VALUE 'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02'.
01 NEW-RCPT USAGE IS SQL TYPE IS XML AS CLOB(1K).
 EXEC SQL DECLARE :NEW-RCPT VARIABLE CCSID 1208 END-EXEC.
...
XML GENERATE NEW-RCPT-DATA FROM NewRcpt
COUNT IN NEW-RCPT-LENGTH
WITH ENCODING 1208
NAMESPACE IS NS
END-XML.

There are a couple of things we should note from this example:

� The result of the XML GENERATE operation is stored in the variable NEW-RCPT defined
as CLOB AS XML. To initialize the length of this variable the keyword COUNT IN is used.

� The XML document is generated with code page UTF-8 to avoid code page conversion.
This is done by use of the keyword WITH ENCODING in the XMLPARSE statement. To
pass this information to DB2, an explicit CCSID declaration of the host
variable:NEW-RCPT is made.

� The namespace is provided in a separate alphanumeric variable and included in the
generation with the keyword NAMESPACE IS. This is optional for the XML GENERATE
statement.

� The element names are copied exactly as declared in the COBOL program so if mixed
case element names are needed, make sure that the variable declarations are in mixed
case.

The result of the generation is shown in Figure 8-9.

Figure 8-9 MsgRcpt element created with XML GENERATE

This provides us with an alternative to the program for updating the MsgRcpt of a bank
statement which was discussed in 8.2.3, “Updating XML documents” on page 167. Instead of
assuming that the new MsgRcpt is provided as an XML element in a text file, we can input the
text values and build the XML element ourselves.

The XML GENERATE function also has the option of generating the values as attributes
instead of text elements by using the keyword WITH ATTRIBUTES. This would result in the
XML element shown in Figure 8-10.
Chapter 8. Using XML with COBOL 177

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 8-10 MsgRcpt element created with XML GENERATE WITH ATTRIBUTES

In most cases, the simple XML GENERATE is probably the better choice. At the moment,
there is no support for generating XML documents with both text elements and attributes.

8.3.2 Shredding XML documents in COBOL

DB2 offers support for shredding XML documents into relational data through the XMLTABLE
function. This function assumes that the XML document is stored in DB2.

COBOL has similar support for XML documents stored in COBOL variables, this is offered
through the XML PARSE statement.

This statement takes as input an XML document and a parsing procedure that handles the
events that occur during parsing. This enables you to shred the document into COBOL
variables, e.g. an alphanumeric group with the same structure as the XML document or
separate elementary data items. In addition, you could just process the data directly without
saving the XML contents into variables.

The parsing procedure has to be written in the application program using the different XML
events provided by the XML parser as it goes through the document.

In Example 8-25, we see how to use XML PARSE with a processing procedure to parse an
MsgRcpt element into a variable structure.

Example 8-25 COBOL program for shredding a MsgRcpt element into variables

01 MsgRcpt.
 05 Nm PIC X(20).
 05 PstlAdr.
 10 StrtNm PIC X(20).
 10 BldgNb PIC X(20).
 10 PstCd PIC X(20).
 10 TwnNm PIC X(20).
01 NS PIC X(50).
01 RCPT PIC X(207).
01 CURRENT-ELEMENT PIC X(40).
...
XML PARSE NEW-RCPT
 PROCESSING PROCEDURE GET-DATA
END-XML.
...
GET-DATA.
 EVALUATE XML-EVENT
 When 'START-OF-ELEMENT'
 Move XML-Text to current-element
 When 'CONTENT-CHARACTERS'
 EVALUATE current-element
 When 'Nm'
178 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch08.fm
 Move XML-TEXT TO Nm
 When 'PstlAdr'
 Move XML-TEXT TO PstlAdr
 When 'StrtNm'
 Move XML-TEXT TO StrtNm
 When 'BldgNb'
 Move XML-TEXT TO BldgNb
 When 'PstCd'
 Move XML-TEXT TO PstCd
 When 'TwnNm'
 Move XML-TEXT TO TwnNm
 When Other
 Continue
 End-evaluate
 When 'ATTRIBUTE-NAME'

Continue
 When 'ATTRIBUTE-CHARACTERS'

Continue
 When 'EXCEPTION'
 DISPLAY 'Exception code: ' XML-CODE
 END-EVALUATE.

The XML PARSE statement was introduced in COBOL before the pureXML format was
available in DB2, and is useful for shredding XML documents saved as LOBs in DB2.

In general, we recommend to save XML data as pureXML especially if you need to query the
contents of those data, and in that case the shredding is more readily done by the XMLTABLE
function in DB2.

8.3.3 Validation of XML documents in COBOL

Finally, COBOL also offers validation of XML documents against an XML schema through a
variant of the XML PARSE statement. This requires Enterprise COBOL for z/OS V4.2.

The schema does not have to be registered anywhere, but it does have to be in a
pre-processed format known as Optimized Schema Representation (OSR). This can be done
from Unix System Services with a command like the one in Example 8-26. First, the schema
is copied to USS from TSO, next the OSR document is generated.

Example 8-26 Converting a schema to OSR format

cp -B "//'XMLR2.BKSTMT.XSD'" /u/xmlr2/bkstmt.xsd
xsdosrg -v -o /u/xmlr2/bkstmt.osr /u/xmlr2/bkstmt.xsd

We have extended the XML PARSE statement in Example 8-25 on page 178 with the
validating phrase as shown in Example 8-27.

Example 8-27 XMLPARSE with schema validation

CONFIGURATION SECTION.
SPECIAL-NAMES.
 XML-SCHEMA RSCHEMA IS 'DDSCHEMA'.
...
XML PARSE RCPT
 WITH ENCODING 1208
 VALIDATING WITH FILE RSCHEMA
Chapter 8. Using XML with COBOL 179

7915ch08.fm Draft Document for Review January 9, 2011 1:25 pm
 PROCESSING PROCEDURE GET-DATA
END-XML.

The schema declaration in the SPECIAL-NAMES section allows us to associate the schema
name RSCHEMA with an external file containing the schema. This can then be supplied in as
a DD statement in the JCL to run the COBOL program as shown inExample 8-28.

Example 8-28 DD statement for supplying a schema to the COBOL program

//GO.DDSCHEMA DD PATH='/u/xmlr2/bkstmt.osr'

As mentioned earlier, the automatic schema validation that can be set up in DB2 just by
associating an XML type identifier with the XML column, is very robust to schema changes
and very easy to work with. This makes it generally a better choice than explicit schema
validation in both DB2 and COBOL.
180 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
Chapter 9. Utilities with XML

In this chapter we introduce the use of DB2 utilities with XML data types.
The utilities handle XML objects in a way similar to the way they handle LOB objects, but for
some utilities you need to specify certain XML keywords.

This chapter contains the following sections:

� CHECK DATA
� CHECK INDEX
� For UNLOAD, SPANNED with BINARY XML performs significantly better than other

formats. Use SPANNED if possible rather than file references.
� COPY
� COPYTOCOPY
� EXEC SQL
� LISTDEF
� LOAD
� For UNLOAD, SPANNED with BINARY XML performs significantly better than other

formats. Use SPANNED if possible rather than file references.
� QUIESCE
� REBUILD INDEX
� RECOVER INDEX and RECOVER TABLESPACE
� REORG INDEX and REORG TABLESPACE
� REPAIR
� REPORT
� RUNSTATS
� UNLOAD
� DSNTIAUL
� DSN1COPY

We discuss only those features that are directly related to XML.

9

© Copyright IBM Corp. 2011. All rights reserved. 181

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
9.1 CHECK DATA

We discussed in Example 5-3 on page 76 and Example 5-4 on page 77 when an XML table
space can be placed in CHECK-pending state. You should run the CHECK DATA utility to
reset the CHECK-pending state.

The CHECK DATA utility checks XML relationships and can check the consistency between a
base table space and the corresponding XML table spaces. If the base table space is not
consistent with any related XML table spaces, CHECK DATA reports the error.

The default behavior of CHECK DATA is to check all objects that are in CHECK-pending
status (SCOPE PENDING). However, you can limit the scope of checking by specifying
SCOPE REFONLY to check only the base tables or SCOPE AUXONLY to check XML and
LOB objects.

You can specify the action that DB2 performs when it finds an error in XML columns by using
keyword XMLERROR. XMLERROR REPORT reports the error only and XMLERROR
INVALIDATE reports the error and sets the column in error to an invalid status.

You can specify the action that DB2 performs when it finds an error in LOB or XML columns
by using keyword AUXERROR. AUXERROR REPORT reports the error only and
AUXERROR INVALIDATE reports the error and sets the column in error to an invalid status.

You do not normally specify both XMLERROR and AUXERROR.

CHECK DATA utility has the following features to support XML data.

� Check consistency between the base table space and the NODEID index.
� Check consistency between the XML table space and the NODEID index .
� Check consistency in the document structure for each XML document.
� Validate schema if XML columns have a type modifier.
182 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
Figure 9-1 shows the CHECK DATA utility syntax for keywords introduced in DB2 10.

Figure 9-1 CHECK DATA syntax - new keywords

Options INCLUDE XML TABLESPACES and SCOPE XMLSCHEMAONLY are new.

If you specify the INCLUDE XML TABLESPACES option, CHECK DATA can check the
structural integrity of XML documents. CHECK DATA can verify the following items for XML
objects:

� All rows in an XML column exist in the XML table space.

� All documents in the XML table space are structurally valid.

� Each index entry in the NODEID index has a corresponding XML document.

� Each XML document in the XML table space has corresponding entries in the NODEID
index.

� Each entry in the DOCID column in the base table space has a corresponding entry in the
NODEID index over the XML table space, if the XML column is not null.

� Each entry in the NODEID index contains a corresponding value in the DOCID column.

� If an XML column has an XML type modifier, all XML documents in the column are valid
with respect to at least one XML schema that is associated with the XML type modifier.

If the base table space is not consistent with any related XML table spaces, or a problem is
found during any of the previously listed checks, CHECK DATA reports the error.

For XML checking, the default behavior of CHECK DATA is to check only the consistency
between each XML column and its NODEID index. However, you can modify the scope of
checking by specifying combinations of the CHECK DATA SCOPE keyword and the INCLUDE

CHECK DATA syntax – new keywords

INCLUDE XML TABLESPACES

--- drain spec ---
Chapter 9. Utilities with XML 183

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
XML TABLESPACES keyword. For LOBs, CHECK DATA utility checks for the consistency
between the base table and the auxiliary index.

Table 9-1 is a reference table for the CHECK DATA invocation based on the combination of
the various options which are applicable for LOBs as well.

Table 9-1 CHECK DATA invocation

The 'XML checks' column indicates CHECK DATA utility checks only for the consistency
between the base table and the NODEID index.

The 'LOB checks' column indicates CHECK DATA utility checks for the consistency between
the base table and the auxiliary index.

Example 9-1 shows an example of CHECK DATA utility control statement for our scenario.

Example 9-1 CHECK DATA example

CHECK DATA TABLESPACE DSN00242.BKRTORCS SCOPE ALL

CHECK
DATA
base
table
space(s)

INCLUDE XML
TABLESPACES

XMLSCHEMA SCOPE Structure
check

Schema
validation

XML checks LOB checks

X ALL/AUXONLY - - Yes Yes

X REFONLY - - - -

X XMLSCHEMA
ONLY

- Yes
Default:
INCLUDE XML
TABLESPACES
ALL

- -

X PENDING - - Yes
Base table
spaces in
CHKP/ACHKP

Yes
Base table
spaces in
CHKP/ACHKP

X X ALL/AUXONLY Yes
Specified
XML table
spaces only

- Yes
All XML table
spaces

Yes
All LOB table
spaces

X X REFONLY - - - -

X X XMLSCHEMA
ONLY

- Yes
Specified XML
table spaces only

- -

X X PENDING - Yes
Specified XML
table spaces in
CHKP

Yes
Base table
spaces in
CHKP/ACHKP

Yes
Base table
spaces in
CHKP/ACHKP

X X X ALL/AUXONLY Yes
Specified
XML table
spaces only

Yes
Specified XML
table spaces only

Yes
All XML table
spaces

Yes
All LOB table
spaces

X X X REFONLY - - - -

X X X XMLSCHEMA
ONLY

- Yes
Specified XML
table spaces only

- -

X X X PENDING - Yes
Specified XML
table spaces in
CHKP

Yes
Base table
spaces in
CHKP/ACHKP

Yes
Base table
spaces in
CHKP/ACHKP
184 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
INCLUDE XML TABLESPACES(TABLE BK_TO_CSTMR_STMT XMLCOLUMN BK_TO_CSTMR_STMT) XMLSCHEMA

Table space DSN00242.BKRTORCS contains table BK_TO_CSTMR_STMT with XML
column BK_TO_CSTMR_STMT which has an XML type modifier. If you specify the statement
as shown in Example 9-1, CHECK DATA checks LOB relationships, the base table space,
XML relationships, and the structural integrity of XML documents for column
BK_TO_CSTMR_STMT, and does XML schema validation on the documents for column
BK_TO_CSTMR_STMT.

You can usethe option SHRLEVEL REFERENCE or SHRELEVEL CHANGE.

Figure 9-2 shows considerations with option SHRLEVEL REFERENCE.

Figure 9-2 CHECK DATA - SHRLEVEL REFERENCE considerations

Figure 9-3 shows considerations with option SHRLEVEL CHANGE.

Figure 9-3 CHECK DATA - SHRLEVEL CHANGE considerations (1 of 2)

– … SHRLEVEL REFERENCE and AUXERROR/XMLERROR REPORT

• If no problem found, remove CHKP or ACHKP from table spaces

• If problem found:
– DOCID of XML document is printed in the job output

– No further action

– … SHRLEVEL REFERENCE and AUXERROR/XMLERROR INVALIDATE

• If no problem found, remove CHKP or ACHKP from table spaces

• If problem found:
– DOCID of XML document is printed in the job output

– Exception tables automatically generated for XML column (schema validation only)

– Affected XML documents moved to XML exception table (schema validation only)

– Corrupted XML document deleted from XML table space

– Index entries for corrupted XML documents removed from NODEID index

– Invalid bit set in the XML indicator in the base table space

– Value index(es) not touched/checked by CHECK DATA

– … SHRLEVEL CHANGE in general

• Utility creates shadow copies of all table and index spaces

• Shadow copies discarded at the end of utility execution

– … SHRLEVEL CHANGE and AUXERROR/XMLERROR REPORT

• If no problem found, CHKP or ACHKP remain on table spaces

• If problem found:

– DOCID of XML document is printed in the job output

– No further action
Chapter 9. Utilities with XML 185

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
Example 9-4 shows more considerations with SHRLEVEL CHANGE.

Figure 9-4 CHECK DATA - SHRLEVEL CHANGE considerations (2 of 2)

Refer to 10.5, “Diagnostics” on page 238 for examples of invoking the CHECK DATA utility
when diagnosing problems with XML data.

9.2 CHECK INDEX

You can use the CHECK INDEX utility to check XML indexes, document ID indexes, and
NODEID indexes. You do not need to specify any additional keywords. You cannot specify the
DOCID and NODEID indexes in a single CHECK INDEX control statement because they
belong to two different table spaces. Specify the control statement using two CHECK INDEX
statements in the utility run as shown in Example 9-2.

Example 9-2 CHECK INDEX utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//DSNUPROC.SORTWK01 DD DSN=XMLR4.SORTWK01,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK02 DD DSN=XMLR4.SORTWK02,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK03 DD DSN=XMLR4.SORTWK03,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),

… SHRLEVEL CHANGE and AUXERROR/XMLERROR INVALIDATE

• If no problem found, CHKP or ACHKP remain on table spaces

• If problem found:
– DOCID of XML document is printed in the job output

– For each corrupted XML document CHECK DATA creates
REPAIR LOCATE… DOCID.. DELETE

– Message issued telling you to run REBUILD INDEX on NODEID index if a problem is found

– NO RBDP set on NODEID index

– REPAIR LOCATE … RID… REPLACE statements generated to invalidate entry.

– Value indexes not touched/checked by CHECK DATA

• CHECK DATA generates REPAIR statements for XML documents which are not
valid according to the defined XML type modifier also:
– REPAIR LOCATE ... DOCID … DELETE

– REPAIR LOCATE ... RID ... REPLACE

– Run REPAIR

• Delete corrupted XML documents from XML table space
REPAIR LOCATE TABLESPACE “DSN00155 "."XBKR0000"
DOCID 1 DELETE SHRLEVEL CHANGE

• Set invalid bit in the XML indicator column in the base table space
REPAIR LOCATE TABLESPACE "DSN00155 ".“BKRTORCS "
RID X'0123456789ABCDEF'
VERIFY OFFSET 28 DATA X'ABCD'
REPLACE OFFSET 28 DATA X'1234'
186 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
// UNIT=SYSDA
//DSNUPROC.SORTWK04 DD DSN=XMLR4.SORTWK04,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSUT1 DD DSN=XMLR4.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
CHECK INDEX (XMLR4.I_DOCIDBK_TO_CSTMR_STMT)
CHECK INDEX (XMLR4.I_NODEIDXBK_TO_CSTMR_STMT)

1DSNU000I 314 15:32:32.95 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 15:32:32.97 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 15:32:32.98 DSNUGUTC - CHECK INDEX(XMLR4.I_DOCIDBK_TO_CSTMR_STMT)
 DSNU395I 314 15:32:32.99 DSNUKPIK - INDEXES WILL BE CHECKED IN PARALLEL, NUMBER OF
TASKS = 3
 DSNU701I -DB0B 314 15:32:32.99 DSNUKIUL - 1 INDEX ENTRIES UNLOADED FROM
'DSN00242.BKRTORCS'
 DSNU705I 314 15:32:33.00 DSNUKPIK - UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
 DSNU719I 314 15:32:33.07 DSNUKPIK - 1 ENTRIES CHECKED FOR INDEX
'XMLR4.I_DOCIDBK_TO_CSTMR_STMT'
 DSNU720I 314 15:32:33.07 DSNUKPIK - SORTCHK PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU719I -DB0B 314 15:32:33.07 DSNUKTER - 1 ENTRIES CHECKED FOR INDEX
'XMLR4.I_DOCIDBK_TO_CSTMR_STMT'
 DSNU380I -DB0B 314 15:32:33.07 DSNUGSRX - TABLESPACE DSN00242.BKRTORCS PARTITION 1 IS IN
COPY PENDING

0DSNU050I 314 15:32:33.07 DSNUGUTC - CHECK INDEX(XMLR4.I_NODEIDXBK_TO_CSTMR_STMT)
 DSNU395I 314 15:32:33.08 DSNUKPIK - INDEXES WILL BE CHECKED IN PARALLEL, NUMBER OF
TASKS = 3
 DSNU701I -DB0B 314 15:32:33.08 DSNUKIUL - 1 INDEX ENTRIES UNLOADED FROM
'XMLR4.I_NODEIDXBK_TO_CSTMR_STMT'
 DSNU705I 314 15:32:33.09 DSNUKPIK - UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
 DSNU719I 314 15:32:33.12 DSNUKPIK - 1 ENTRIES CHECKED FOR INDEX
'XMLR4.I_NODEIDXBK_TO_CSTMR_STMT'
 DSNU720I 314 15:32:33.12 DSNUKPIK - SORTCHK PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU719I -DB0B 314 15:32:33.12 DSNUKTER - 1 ENTRIES CHECKED FOR INDEX
'XMLR4.I_NODEIDXBK_TO_CSTMR_STMT'
 DSNU380I -DB0B 314 15:32:33.12 DSNUGSRX - TABLESPACE DSN00242.XBKR0000 PARTITION 1 IS IN
COPY PENDING

NOTE: You can specify the CHECK INDEX control statement as shown below:
CHECK INDEX(ALL) TABLESPACE DSN00242.BKRTORCS
CHECK INDEX(ALL) TABLESPACE DSN00242.XBKR0000
The advantage with this approach is any user defined indexes are also checked.

After you run the CHECK INDEX utility, you might need to correct XML data.

To correct XML data, based on the CHECK INDEX output, perform one of the actions shown
in Table 9-2.
Chapter 9. Utilities with XML 187

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
Table 9-2 Action to be taken based on CHECK INDEX output

9.3 COPY

You can use the COPY utility to copy XML objects. You do not need to specify any additional
keywords. When you specify that DB2 is to copy a table space with XML columns, DB2 does
not automatically copy any related XML table spaces or indexes. You must explicitly specify
the XML objects that you want to copy.

The COPY utility control statement in Example 9-3 specifies that DB2 is to copy base table
space DSN00242.BKRTORCS and the XML table space DSN00242.XBKR0000.

Example 9-3 COPY utility JCL for taking full image copy and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
TEMPLATE A DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
COPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A)
 TABLESPACE DSN00242.XBKR0000 COPYDDN(A)

1DSNU000I 314 18:12:48.11 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 18:12:48.14 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 18:12:48.14 DSNUGUTC - TEMPLATE A
DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
 DSNU1035I 314 18:12:48.14 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

Problem Action

Problem with a document ID index 1. Confirm that the base table space is at
the correct level.

2. Rebuild the index.

Problem with an XML table space for a NODEID
index or an XML index and the index is correct

Run REPAIR LOCATE RID DELETE to remove the
orphan row.

Problem with an XML table space for a
NODEID index or an XML index and the index is
incorrect

Run REBUILD INDEX or RECOVER INDEX to
rebuild the index.

Problem with an XML index over an XML table
space

Run REBUILD INDEX to rebuild the index.
Restriction: Do not run REPAIR LOCATE RID
DELETE to remove orphan rows unless the
NODEID index does not represent the same row
and the base table space does not use the
document ID index.

Note: CHECK INDEX of an XML index cannot run if REBUILD INDEX, REORG INDEX, or
RECOVER is being run on that index because CHECK INDEX needs access to the
NODEID index. CHECK INDEX SHRLEVEL CHANGE cannot run two jobs concurrently for
two different indexes that are in the same table space.
188 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
0DSNU050I 314 18:12:48.14 DSNUGUTC - COPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A)
TABLESPACE DSN00242.XBKR0000 COPYDDN(A)
 DSNU1038I 314 18:12:48.19 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00001
 DSN=DSN00242.BKRTORCS.F.D2010314.T231248.COPY
 DSNU400I 314 18:12:48.24 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN00242.BKRTORCS
 NUMBER OF PAGES=3
 AVERAGE PERCENT FREE SPACE PER PAGE = 32.66
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
 DSNU1038I 314 18:12:48.27 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00002
 DSN=DSN00242.XBKR0000.F.D2010314.T231248.COPY
 DSNU400I 314 18:12:48.30 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN00242.XBKR0000
 NUMBER OF PAGES=3
 AVERAGE PERCENT FREE SPACE PER PAGE = 19.66
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
 DSNU428I -DB0B 314 18:12:48.31 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
DSN00242.BKRTORCS
 DSNU428I -DB0B 314 18:12:48.31 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
DSN00242.XBKR0000

Both full and incremental image copies are supported for an XML table space, as well as the
SHRLEVEL REFERENCE, SHRLEVEL CHANGE, CONCURRENT, and FLASHCOPY
options.

To demonstrate using COPY utility to take an incremental image copy, the XML document is
modified as shown in Figure 9-5.
Chapter 9. Utilities with XML 189

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 9-5 Make a partial update to the XML document

The COPY utility control statement in Example 9-4 specifies that DB2 is to take an
incremental image copy of base table space DSN00242.BKRTORCS and the XML table
space DSN00242.XBKR0000.

Example 9-4 COPY utility JCL for taking incremental image copy and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//DSNUPROC.SYSIN DD *
TEMPLATE A DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
COPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A) FULL NO
 TABLESPACE DSN00242.XBKR0000 COPYDDN(A) FULL NO

1DSNU000I 314 18:14:25.22 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 18:14:25.25 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

SELECT XMLSERIALIZE(
 XMLQUERY(
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
 /Document/BkToCstmrStmt/Stmt/Bal/Amt[../Tp/CdOrPrtry/Cd="CLBD"]'
 PASSING BK_TO_CSTMR_STMT) AS CLOB(500))
FROM BK_TO_CSTMR_STMT;

<Amt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"
Ccy="SEK">435678.50</Amt>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

UPDATE BK_TO_CSTMR_STMT
SET BK_TO_CSTMR_STMT = XMLMODIFY (
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
 replace value of node
/Document/BkToCstmrStmt/Stmt/Bal/Amt[../Tp/CdOrPrtry/Cd="CLBD"]
 with "900000"')
 WHERE MSG_ID IS NULL ;

DSNE615I NUMBER OF ROWS AFFECTED IS 1

SELECT XMLSERIALIZE(
 XMLQUERY(
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
 /Document/BkToCstmrStmt/Stmt/Bal/Amt[../Tp/CdOrPrtry/Cd="CLBD"]'
 PASSING BK_TO_CSTMR_STMT) AS CLOB(500))
FROM BK_TO_CSTMR_STMT;

<Amt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02" Ccy="SEK">900000</Amt>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
190 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
0DSNU050I 314 18:14:25.26 DSNUGUTC - TEMPLATE A
DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
 DSNU1035I 314 18:14:25.26 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

0DSNU050I 314 18:14:25.26 DSNUGUTC - COPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A) FULL
NO TABLESPACE DSN00242.XBKR0000 COPYDDN(A) FULL NO
 DSNU1038I 314 18:14:25.30 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00001
 DSN=DSN00242.BKRTORCS.I.D2010314.T231425.COPY
 DSNU400I 314 18:14:25.34 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN00242.BKRTORCS
 NUMBER OF PAGES=3
 AVERAGE PERCENT FREE SPACE PER PAGE = 32.66
 PERCENT OF CHANGED PAGES = 5.88
 ELAPSED TIME=00:00:00
 DSNU1038I 314 18:14:25.37 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00002
 DSN=DSN00242.XBKR0000.I.D2010314.T231425.COPY
 DSNU400I 314 18:14:25.41 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN00242.XBKR0000
 NUMBER OF PAGES=3
 AVERAGE PERCENT FREE SPACE PER PAGE = 6.33
 PERCENT OF CHANGED PAGES = 4.44
 ELAPSED TIME=00:00:00
 DSNU428I -DB0B 314 18:14:25.42 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
DSN00242.BKRTORCS
 DSNU428I -DB0B 314 18:14:25.42 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
DSN00242.XBKR0000

Unless either the CONCURRENT option or the FLASHCOPY option is specified, COPY does
not copy empty or unformatted data pages of an XML table space.

To copy an XML table space with a base table space that has the NOT LOGGED attribute, all
associated XML table spaces must also have the NOT LOGGED attribute. The XML table
space acquires this NOT LOGGED attribute by being linked to the logging attribute of its
associated base table space. You cannot independently alter the logging attribute of an XML
table space.

If the LOG column of the SYSIBM.SYSTABLESPACE record for an XML table space has the
value of "X", the logging attributes of the XML table space and its base table space are linked,
and that the logging attribute of both table spaces is NOT LOGGED. To break the link, alter
the logging attribute of the base table space back to LOGGED, and the logging attribute of
both table spaces are changed back to LOGGED

9.4 COPYTOCOPY

You can use the COPYTOCOPY utility to copy existing copies of the XML objects. You do not
need to specify any additional keywords.

The COPYTOCOPY utility control statement in Example 9-5 specifies that DB2 is to make
primary and backup copies for the remote site for the XML table space DSN00242.XBKR0000
using the last full image copy that was created.

Example 9-5 COPYTOCOPY utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
Chapter 9. Utilities with XML 191

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
TEMPLATE A DSN(&DB..&SN..&IC..&PB..D&DATE..T&TIME..COPY)
COPYTOCOPY TABLESPACE DSN00242.XBKR0000
FROMLASTFULLCOPY
RECOVERYDDN(A,A)

1DSNU000I 314 19:22:30.00 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 19:22:30.04 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 19:22:30.04 DSNUGUTC - TEMPLATE A
DSN(&DB..&SN..&IC..&PB..D&DATE..T&TIME..COPY)
 DSNU1035I 314 19:22:30.04 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
1DSNU000I 314 19:22:31.81 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 19:22:31.83 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 19:22:31.83 DSNUGUTC - COPYTOCOPY TABLESPACE DSN00242.XBKR0000
FROMLASTFULLCOPY RECOVERYDDN(A,A)
 DSNU1403I 314 19:22:31.87 DSNU2BCC - LOCAL SITE PRIMARY DATA SET
DSN00242.XBKR0000.F.D2010314.T233001.COPY WITH
 START_RBA 0000696BCB4C IS IN USE BY COPYTOCOPY
 FOR TABLESPACE DSN00242.XBKR0000
 DSNU1404I 314 19:22:31.88 DSNU2BDR - COPYTOCOPY PROCESSING COMPLETED FOR
 TABLESPACE DSN00242.XBKR0000
 ELAPSED TIME = 00:00:00
 NUMBER OF PAGES COPIED=3
 DSNU1406I 314 19:22:31.89 DSNU2BDR - COPYTOCOPY COMPLETED. ELAPSED TIME = 00:00:00

9.5 EXEC SQL

The EXEC SQL utility control statement declares cursors or executes dynamic SQL
statements. You can use this utility as part of the DB2 cross-loader function of the LOAD
utility.

The cross-loader function enables you to use a single LOAD job to transfer data from one
location to another location or from one table to another table at the same location. You can
use either a local server or any DRDA-compliant remote server as a data input source for
populating your tables. Your input can even come from other sources besides DB2 for z/OS;
you can use IBM Information Integrator Federation feature for access to data from sources as
diverse as Oracle and Sybase, as well as the entire DB2 family of database servers.

For example, suppose that you create the following table with an XML column:

CREATE TABLE BK_TO_CSTMR_STMT
(MSG_ID VARCHAR(35),
MSG_CRE_DT_TM TIMESTAMP WITH TIMEZONE,
BK_TO_CSTMR_STMT XML NOT NULL)

You cannot declare the following cursor, because it includes XML data in the
BK_TO_CSTMR_STMT column:

EXEC SQL
DECLARE C1 CURSOR FOR SELECT * FROM BK_TO_CSTMR_STMT

Note: You cannot declare a cursor that includes XML data. Thus, you cannot use the DB2
family cross-loader function to transfer data from XML columns. However, you can declare
a cursor on a table with XML columns if the cursor does not include any XML columns.
192 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
END-EXEC

However, you can declare a cursor that includes non-XML columns, as in the following
example:

EXEC SQL
DECLARE C2 CURSOR FOR SELECT MSG_ID FROM BK_TO_CSTMR_STMT
END-EXEC

9.6 LISTDEF

When you create object lists with the LISTDEF utility, you can specify whether you want
related XML objects to be included or excluded.

Use the following keywords to indicate the objects to include or exclude:

� ALL Base and XML objects (This keyword is the default.)

� BASE Base objects only

� XML XML objects only

For example, the LISTDEF statements in Table 9-3 generate the indicated lists.

Table 9-3 Example LISTDEF statements

Example 9-6 shows the JCL for the LISTDEF utility for the first LISTDEF statement in
Table 9-3 and the output of the utility run.

Example 9-6 JCL for LISTDEF utility and output (1 of 3)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
OPTIONS PREVIEW
LISTDEF LISTALL INCLUDE TABLESPACES DATABASE DSN00242
 INCLUDE INDEXSPACES DATABASE DSN00242

LISTDEF statement followed by
objects that are included in the list

LISTDEF LISTALL INCLUDE TABLESPACES DATABASE DSN00242
INCLUDE INDEXSPACES DATABASE DSN00242

� All tables spaces in the DSN00242 database, including XML table spaces
� All index spaces in the DSN00242 database

LISTDEF LISTXML INCLUDE TABLESPACES DATABASE DSN00242 XML
INCLUDE INDEXSPACES DATABASE DSN00242 XML

� All XML table spaces in the DSN00242 database
� All XML index spaces in the DSN00242 database

LISTDEF LIST INCLUDE TABLESPACES DATABASE DSN00242 ALL
INCLUDE INDEXSPACES DATABASE DSN00242 ALL
EXCLUDE INDEXSPACES DATABASE DSN00242 XML

� All tables spaces in the DSN00242 database, including XML table spaces
� All index spaces in the DSN00242 database except for XML index spaces
Chapter 9. Utilities with XML 193

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
1DSNU000I 314 20:59:55.38 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 20:59:55.41 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 20:59:55.41 DSNUGUTC - OPTIONS PREVIEW
 DSNU1000I 314 20:59:55.41 DSNUZODR - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
 DSNU1035I 314 20:59:55.41 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 314 20:59:55.41 DSNUGUTC - LISTDEF LISTALL INCLUDE TABLESPACES DATABASE
DSN00242 INCLUDE INDEXSPACES DATABASE DSN00242
 DSNU1035I 314 20:59:55.41 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
 DSNU1020I -DB0B 314 20:59:55.41 DSNUILSA - EXPANDING LISTDEF LISTALL
 DSNU1021I -DB0B 314 20:59:55.41 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 20:59:55.42 DSNUILSA - CLAUSE IDENTIFIES 2 OBJECTS
 DSNU1021I -DB0B 314 20:59:55.42 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 20:59:55.43 DSNUILSA - CLAUSE IDENTIFIES 2 OBJECTS
 DSNU1023I -DB0B 314 20:59:55.43 DSNUILSA - LISTDEF LISTALL CONTAINS 4 OBJECTS
 DSNU1010I 314 20:59:55.43 DSNUGPVV - LISTDEF LISTALL EXPANDS TO THE FOLLOWING OBJECTS:
 LISTDEF LISTALL -- 00000004 OBJECTS
 INCLUDE TABLESPACE DSN00242.BKRTORCS
 INCLUDE TABLESPACE DSN00242.XBKR0000
 INCLUDE INDEXSPACE DSN00242.IRDOCIDB
 INCLUDE INDEXSPACE DSN00242.IRNODEID

Example 9-7 shows the JCL for the LISTDEF utility for the second LISTDEF statement in
Table 9-3 on page 193 and the output of the utility run.

Example 9-7 JCL for LISTDEF utility and output (2 of 3)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
OPTIONS PREVIEW
LISTDEF LISTXML INCLUDE TABLESPACES DATABASE DSN00242 XML
 INCLUDE INDEXSPACES DATABASE DSN00242 XML

1DSNU000I 314 21:00:53.19 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 21:00:53.22 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 21:00:53.22 DSNUGUTC - OPTIONS PREVIEW
 DSNU1000I 314 21:00:53.22 DSNUZODR - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
 DSNU1035I 314 21:00:53.22 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 314 21:00:53.22 DSNUGUTC - LISTDEF LISTXML INCLUDE TABLESPACES DATABASE
DSN00242 XML INCLUDE INDEXSPACES DATABASE DSN00242 XML
 DSNU1035I 314 21:00:53.22 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
 DSNU1020I -DB0B 314 21:00:53.22 DSNUILSA - EXPANDING LISTDEF LISTXML
 DSNU1021I -DB0B 314 21:00:53.22 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 21:00:53.22 DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS
 DSNU1021I -DB0B 314 21:00:53.22 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 21:00:53.22 DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS
 DSNU1023I -DB0B 314 21:00:53.22 DSNUILSA - LISTDEF LISTXML CONTAINS 2 OBJECTS
 DSNU1010I 314 21:00:53.22 DSNUGPVV - LISTDEF LISTXML EXPANDS TO THE FOLLOWING OBJECTS:
 LISTDEF LISTXML -- 00000002 OBJECTS
 INCLUDE TABLESPACE DSN00242.XBKR0000
 INCLUDE INDEXSPACE DSN00242.IRNODEID

Example 9-8 shows the JCL for the LISTDEF utility for the third LISTDEF statement in
Table 9-3 on page 193 and the output of the utility run.
194 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
Example 9-8 JCL for LISTDEF utility and output (3 of 3)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
OPTIONS PREVIEW
LISTDEF LIST INCLUDE TABLESPACES DATABASE DSN00242 ALL
 INCLUDE INDEXSPACES DATABASE DSN00242 ALL
 EXCLUDE INDEXSPACES DATABASE DSN00242 XML
1DSNU000I 314 21:02:09.82 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 21:02:09.85 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 21:02:09.85 DSNUGUTC - OPTIONS PREVIEW
 DSNU1000I 314 21:02:09.85 DSNUZODR - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
 DSNU1035I 314 21:02:09.85 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 314 21:02:09.85 DSNUGUTC - LISTDEF LIST INCLUDE TABLESPACES DATABASE DSN00242
ALL INCLUDE INDEXSPACES
 DATABASE DSN00242 ALL EXCLUDE INDEXSPACES DATABASE DSN00242 XML
 DSNU1035I 314 21:02:09.85 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
 DSNU1020I -DB0B 314 21:02:09.85 DSNUILSA - EXPANDING LISTDEF LIST
 DSNU1021I -DB0B 314 21:02:09.85 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 21:02:09.86 DSNUILSA - CLAUSE IDENTIFIES 2 OBJECTS
 DSNU1021I -DB0B 314 21:02:09.86 DSNUILSA - PROCESSING INCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 21:02:09.86 DSNUILSA - CLAUSE IDENTIFIES 2 OBJECTS
 DSNU1021I -DB0B 314 21:02:09.86 DSNUILSA - PROCESSING EXCLUDE CLAUSE DATABASE DSN00242.
 DSNU1022I -DB0B 314 21:02:09.86 DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS
 DSNU1023I -DB0B 314 21:02:09.86 DSNUILSA - LISTDEF LIST CONTAINS 3 OBJECTS
 DSNU1010I 314 21:02:09.86 DSNUGPVV - LISTDEF LIST EXPANDS TO THE FOLLOWING OBJECTS:
 LISTDEF LIST -- 00000003 OBJECTS
 INCLUDE TABLESPACE DSN00242.BKRTORCS
 INCLUDE TABLESPACE DSN00242.XBKR0000
 INCLUDE INDEXSPACE DSN00242.IRDOCIDB

9.7 LOAD

You can load data containing XML columns with one of two methods.

� The XML column can be loaded from the input record. XML column value can be placed in
the INPUT record with or without any other loading column values. The input record can
be in delimited or non-delimited format.

For a non-delimited format, the XML column is treated like a variable character with a
2-byte length preceding the XML value. For a delimited format there are no length bytes
present. If the input record is in spanned record format, specify the FORMAT SPANNED
YES option.

� The XML column can be loaded from a separate file whether the XML column length is
less than 32 KB or not.

To load data into a base table that has XML columns:

1. Create input data sets to ensure that you use the appropriate format:

– If the data set is in delimited format, ensure that the XML input fields follow the
standard LOAD utility delimited format.
Chapter 9. Utilities with XML 195

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
– If the data set is not in delimited format, specify the XML input fields similar to the way
that you specify VARCHAR input. Specify the length of the field in a 2-byte binary field
that precedes the data.

2. Create a LOAD utility control statement.

– To load XML directly from input record, specify XML as the input field type. XML is the
only acceptable field type and data type conversion is not supported. Do not specify
DEFAULTIF.

If you want the whitespace to be preserved in the XML data, also specify the keywords
PRESERVE WHITESPACE. By default, LOAD strips the whitespace.

When data in the binary XML format is loaded into a table, and PRESERVE
WHITESPACE is not specified, DB2 strips whitespace only when the input data
contains whitespace tags.

– To load XML from a file, specify CHAR or VARCHAR along with either BLOBF, CLOBF
or DBCLOBF to indicate that the input column contains a filename from which a
BLOBF, CLOBF or DBCLOBF is to be loaded to the XML column.

3. Submit the utility control statement.

Example 9-9 shows the JCL for the LOAD utility and the output of the utility run.

Example 9-9 LOAD utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//LOAD1 EXEC DSNUPROC,SYSTEM=DB0B,UID=''
//SYSREC DD DSN=XMLR4.BKSTMT.XMLDATA,DISP=SHR
//SYSERR DD DSN=XMLR4.LOAD.SYSERR,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSDISC DD DSN=XMLR4.LOAD.SYSDISC,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSMAP DD DSN=XMLR4.LOAD.SYSMAP,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSUT1 DD DSN=XMLR4.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=*
//SORTOUT DD DSN=XMLR4.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//DSNUPROC.SYSIN DD *
LOAD DATA REPLACE
 INTO TABLE XMLR4.BK_TO_CSTMR_STMT
 (BK_TO_CSTMR_STMT POSITION(1) XML PRESERVE WHITESPACE)

Note: When you load XML documents into a table, and the XML value cannot be cast to
the type that you specified when you created the index, the value is ignored without any
warnings or errors, and the document is inserted into the table.

When you insert XML documents into a table with XML indexes that are of type
DECFLOAT, the values might be rounded when they are inserted. If the index is unique, the
rounding might cause duplicates even if the original values are not exactly the same.
196 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
1DSNU000I 300 20:39:12.45 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = XMLR4.XMLR4LD
 DSNU1044I 300 20:39:12.47 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 300 20:39:12.48 DSNUGUTC - LOAD DATA REPLACE
 DSNU650I -DB0B 300 20:39:12.48 DSNURWI - INTO TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 300 20:39:12.48 DSNURWI - (BK_TO_CSTMR_STMT POSITION(1) XML PRESERVE
WHITESPACE)
 DSNU350I -DB0B 300 20:39:13.13 DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE
 DSNU304I -DB0B 300 20:39:13.26 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1
FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU1147I -DB0B 300 20:39:13.26 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF
RECORDS LOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU302I 300 20:39:13.27 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS
PROCESSED=1
 DSNU300I 300 20:39:13.27 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU349I -DB0B 300 20:39:13.32 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR
INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU258I 300 20:39:13.32 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNU259I 300 20:39:13.32 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU010I 300 20:39:13.33 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

NOTE: SYSREC shows the name of the data set which has the XML document. The first few
characters of the XML document are shown below:
Ù<?xml version="1.0" encoding="UTF-8" ?> <Document xmlns:xsi="http://ww ...
1F46A994A89A89977F4F748989889877EEC6F746644C98A989A4A999A7AA8778AA9766AA ...
1DCF74305592965EF1B0F055364957EF43608F0FE0C46344553074352A729EF8337A1166 ...
The first two positions contain X’11FD’ which is the length of the XML document.

This technique requires specifying the exact size of the XML document preceding the data.

DB2 automatically generates the document ID column for each row that is loaded into a table
with at least one XML column. The document ID column is partially hidden. It is not included
in the result set of a SELECT * statement. However, you can query this column by name and
view information about this column and its index in the catalog. Several utilities report
information on this column in their output.

Loading XML data with the LOAD utility has the following restrictions:

� You cannot specify that XML input fields be loaded into non-XML columns, such as CHAR
or VARCHAR columns.

� DB2 ignores any specified FREEPAGE and PCTFREE values until the next time that you
run the REORG utility on this data.

� If you specify PREFORMAT, DB2 preformats the base table space, but not the XML table
space.

� You cannot directly load the document ID column of the base table space.

� You cannot specify a default value for an XML column.

� You can load XML values that are greater than 32 KB by using file reference variables in
the LOAD utility, or using applications with SQL XML as file reference variables.

LOAD utility using file reference variable
The method of loading XML records using file reference variables is used when the XML
records are stored in separate input files. The normal input file contains the data for the
non-XML columns of the base table and the names of the XML files. The sum of the length of
all normal data fields and the XML file names cannot exceed 32 KB.

The XML input files can be any of these types:
Chapter 9. Utilities with XML 197

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
� A sequential file
� A member of a PDS or PDSE
� A HFS file on a HFS directory
� A spanned file

The XML input file contains the entire XML record and the name of this file is stored in the
normal load input file as a CHAR or VARCHAR field. So, instead of containing the whole XML
record, the normal input file now only contains a file name, which in most cases no longer
causes the sequential file to hit the 32 KB limit.

Additional keywords have been added to the CHAR and VARCHAR field specifications of the
LOAD utility to support a file name as the input for the actual XML record:

� BLOBF: The input field contains the name of a file with a BLOB value.

� CLOBF: The input field contains the name of a file with a CLOB value.

� DBCLOBF: The input field contains the name of a file with a DBCLOB value.

In case of CLOBF and DBCLOBF, CCSID conversions are done when the CCSID of the input
data is different than the CCSID of the table space. (EBCDIC, ASCII, UNICODE, or CCSID
keywords might have been specified for the input data; the default is EBCDIC input data). In
case of BLOBF, no conversions are done.

When the input field of a BLOBF, CLOBF, or DBCLOBF is NULL, the resulting XML value is
NULL (null indicator field for the CHAR or VARCHAR field specified in the NULLIF keyword s
hex FF).

Example 9-10 shows the JCL for the LOAD utility using file reference variable and the output
of the utility run.

Example 9-10 LOAD utility JCL (using file reference variable) and output

//XMLR4LD JOB (999,POK),'DB0B COBOL',CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//*
//LOAD1 EXEC DSNUPROC,SYSTEM=DB0B,UID=''
//SYSREC DD DSN=XMLR4.CVXML.XMLTEXT,DISP=SHR
//SYSERR DD DSN=XMLR4.LOAD.SYSERR,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSDISC DD DSN=XMLR4.LOAD.SYSDISC,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSMAP DD DSN=XMLR4.LOAD.SYSMAP,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSUT1 DD DSN=XMLR4.LOAD.SYSUT1,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=*
//SORTOUT DD DSN=XMLR4.LOAD.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//DSNUPROC.SYSIN DD *
LOAD DATA REPLACE
 INTO TABLE XMLR4.BK_TO_CSTMR_STMT

(BK_TO_CSTMR_STMT POSITION(1:25) CHAR CLOBF)
/*
198 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
1DSNU000I 300 21:34:55.57 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = XMLR4.XMLR4LD
 DSNU1044I 300 21:34:55.61 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 300 21:34:55.62 DSNUGUTC - LOAD DATA REPLACE
 DSNU650I -DB0B 300 21:34:55.62 DSNURWI - INTO TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 300 21:34:55.62 DSNURWI - (BK_TO_CSTMR_STMT POSITION(1:25) CHAR CLOBF)
 DSNU350I -DB0B 300 21:34:56.31 DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE
 DSNU304I -DB0B 300 21:34:56.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1
FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU1147I -DB0B 300 21:34:56.47 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF
RECORDS LOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU302I 300 21:34:56.48 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS
PROCESSED=1
 DSNU300I 300 21:34:56.48 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU349I -DB0B 300 21:34:56.54 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR
INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU258I 300 21:34:56.54 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNU259I 300 21:34:56.54 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU010I 300 21:34:56.55 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

NOTE: SYSREC shows the name of the data set where positions 1 to 25 have the name of the
data set which has the XML document as shown below:
XMLR4.BKSTMT.XMLDATA1
The first few characters of the XML document are shown below:
<?xml version="1.0" encoding="UTF-8" ?> <Document xmlns:xsi="http://ww ...
46A994A89A89977F4F748989889877EEC6F746644C98A989A4A999A7AA8778AA9766AA ...
CF74305592965EF1B0F055364957EF43608F0FE0C46344553074352A729EF8337A1166 ...
The XML document starts from position 1.

LOAD XML data using input in binary format
Example 9-11 shows the JCL for the LOAD utility and the output of the utility run.

Example 9-11 LOAD utility JCL and output (input to load is in binary format)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SORTWK01 DD DSN=XMLR4.SORTWK01,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK02 DD DSN=XMLR4.SORTWK02,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK03 DD DSN=XMLR4.SORTWK03,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK04 DD DSN=XMLR4.SORTWK04,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSREC DD DSN=XMLR4.UNLOAD.XML.BINARY.REC00,
// DISP=OLD
Chapter 9. Utilities with XML 199

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
//DSNUPROC.SYSUT1 DD DSN=XMLR4.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTOUT DD DSN=XMLR4.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSERR DD DSN=XMLR4.SYSERR,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSMAP DD DSN=XMLR4.SYSMAP,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "XMLR4"."BK_TO_CSTMR_STMT"
WHEN(00001:00002) = X'0003'
NUMRECS 1
("BK_TO_CSTMR_STMT"
 POSITION(3) XML PRESERVE WHITESPACE BINARYXML)
1DSNU000I 308 14:24:26.48 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 308 14:24:26.50 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 308 14:24:26.51 DSNUGUTC - LOAD DATA INDDN SYSREC LOG NO RESUME YES
EBCDIC CCSID(37, 0, 0)
 DSNU650I -DB0B 308 14:24:26.51 DSNURWI - INTO TABLE "XMLR4". "BK_TO_CSTMR_STMT"
WHEN(1:2)=X'0003' NUMRECS 1
 DSNU650I -DB0B 308 14:24:26.51 DSNURWI - ("BK_TO_CSTMR_STMT" POSITION(3) XML
PRESERVE WHITESPACE BINARYXML)
 DSNU304I -DB0B 308 14:24:26.70 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF
RECORDS=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU1147I -DB0B 308 14:24:26.70 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL
NUMBER OF RECORDS LOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU302I 308 14:24:26.70 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF
INPUT RECORDS PROCESSED=1
 DSNU300I 308 14:24:26.70 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED
TIME=00:00:00
 DSNU349I -DB0B 308 14:24:26.76 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF
KEYS=1 FOR INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU258I 308 14:24:26.76 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF
INDEXES=1
 DSNU259I 308 14:24:26.76 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED
TIME=00:00:00
 DSNU380I -DB0B 308 14:24:26.76 DSNUGSRX - TABLESPACE DSN00242.BKRTORCS PARTITION
1 IS IN COPY PENDING
 DSNU380I -DB0B 308 14:24:26.76 DSNUGSRX - TABLESPACE DSN00242.XBKR0000 PARTITION
1 IS IN COPY PENDING
DSNU010I 308 14:24:26.77 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN
CODE=4
200 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
LOAD XML data using input in spanned record format
Example 9-12 shows the JCL for the LOAD utility and the output of the utility run.

Example 9-12 LOAD utility JCL and output (input to load is in spanned record format)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SORTWK01 DD DSN=XMLR4.SORTWK01,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK02 DD DSN=XMLR4.SORTWK02,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK03 DD DSN=XMLR4.SORTWK03,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK04 DD DSN=XMLR4.SORTWK04,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSREC DD DSN=XMLR4.DSN00242.XBKR0000.T214620.UFILEREF.NEW,
// DISP=OLD
//DSNUPROC.SYSUT1 DD DSN=XMLR4.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTOUT DD DSN=XMLR4.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSERR DD DSN=XMLR4.SYSERR,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSMAP DD DSN=XMLR4.SYSMAP,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 FORMAT SPANNED YES
 INTO TABLE "XMLR4"."BK_TO_CSTMR_STMT"
WHEN(00001:00002) = X'0003'
NUMRECS 1

 The LOAD control statement is the output of the UNLOAD utility run shown in
Example 9-26 on page 223. We set POSITION(3) because positions 3 and 4 contain the
length of the XML document. Apply the PTF for APAR PM29986 if you want to use
POSITION(*).
Chapter 9. Utilities with XML 201

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
("DSN_NULL_IND_00001" POSITION(00003) CHAR(1)
, "MSG_ID"
 POSITION(00004) VARCHAR
 NULLIF(DSN_NULL_IND_00001)=X'FF'
, "DSN_NULL_IND_00002" POSITION(*) CHAR(1)
, "MSG_CRE_DT_TM"
 POSITION(*) TIMESTAMP WITH TIME ZONE EXTERNAL(032)
 NULLIF(DSN_NULL_IND_00002)=X'FF'
, "BK_TO_CSTMR_STMT"
 POSITION(*) XML PRESERVE WHITESPACE)

NOTE: The LOAD control statement is the output of UNLOAD utility run shown in Example 9-27 on page 224.
1DSNU000I 309 19:07:40.66 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 309 19:07:40.69 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 309 19:07:40.70 DSNUGUTC - LOAD DATA INDDN SYSREC LOG NO RESUME YES EBCDIC CCSID(37, 0, 0) FORMAT SPANNED YES
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - INTO TABLE "XMLR4". "BK_TO_CSTMR_STMT" WHEN(1:2)=X'0003' NUMRECS 1
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - ("DSN_NULL_IND_00001" POSITION(3) CHAR(1),
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - "MSG_ID" POSITION(4) VARCHAR NULLIF(DSN_NULL_IND_00001)=X'FF',
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - "DSN_NULL_IND_00002" POSITION(*) CHAR(1),
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - "MSG_CRE_DT_TM" POSITION(*) TIMESTAMP WITH TIME ZONE EXTERNAL(32)
 NULLIF(DSN_NULL_IND_00002)=X'FF',
 DSNU650I -DB0B 309 19:07:40.70 DSNURWI - "BK_TO_CSTMR_STMT" POSITION(*) XML PRESERVE WHITESPACE)
 DSNU304I -DB0B 309 19:07:40.89 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU1147I -DB0B 309 19:07:40.89 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU302I 309 19:07:40.89 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=1
 DSNU300I 309 19:07:40.89 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU349I -DB0B 309 19:07:40.95 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU258I 309 19:07:40.95 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNU259I 309 19:07:40.95 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU380I -DB0B 309 19:07:40.96 DSNUGSRX - TABLESPACE DSN00242.BKRTORCS PARTITION 1 IS IN COPY PENDING
 DSNU380I -DB0B 309 19:07:40.96 DSNUGSRX - TABLESPACE DSN00242.XBKR0000 PARTITION 1 IS IN COPY PENDING
DSNU010I 309 19:07:40.96 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

For UNLOAD, SPANNED with BINARY XML performs significantly better than other formats.
Use SPANNED if possible rather than file references.

9.8 MERGECOPY

MERGECOPY utility merges incremental image copies to produce a merged incremental
image copy, or merge full image copy with incremental image copies to produce a full image
copy of the XML table spaces.

Example 9-13 shows the JCL for MERGECOPY utility and the output of the utility run. This
utility run merges the full image copy taken in Example 9-3 on page 188 and the incremental
image copy taken in Example 9-4 on page 190.

Example 9-13 MERGECOPY utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
TEMPLATE A DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
MERGECOPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A) NEWCOPY YES
MERGECOPY TABLESPACE DSN00242.XBKR0000 COPYDDN(A) NEWCOPY YES

1DSNU000I 314 18:30:00.98 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 18:30:01.01 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 18:30:01.02 DSNUGUTC - TEMPLATE A
DSN(&DB..&SN..&IC..D&DATE..T&TIME..COPY)
 DSNU1035I 314 18:30:01.02 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
202 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
0DSNU050I 314 18:30:01.02 DSNUGUTC - MERGECOPY TABLESPACE DSN00242.BKRTORCS COPYDDN(A)
NEWCOPY YES
 DSNU1038I 314 18:30:01.06 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00001
 DSN=DSN00242.BKRTORCS.F.D2010314.T233001.COPY
 DSNU463I 314 18:30:01.07 DSNUYBR3 - THE PRIMARY IMAGE COPY DATA SET
DSN00242.BKRTORCS.I.D2010314.T231425.COPY WITH DATE=101110 AND TIME=181425
 IS PARTICIPATING IN MERGECOPY.
 DSNU463I 314 18:30:01.09 DSNUYBR3 - THE PRIMARY IMAGE COPY DATA SET
DSN00242.BKRTORCS.F.D2010314.T231248.COPY WITH DATE=101110 AND TIME=181248
 IS PARTICIPATING IN MERGECOPY.
 DSNU454I 314 18:30:01.13 DSNUYBR0 - COPY MERGE COMPLETE
 NUMBER OF COPIES=2
 NUMBER OF COPIES MERGED=2
 TOTAL NUMBER OF PAGES MERGED=6
 ELAPSED TIME=00:00:00

0DSNU050I 314 18:30:01.14 DSNUGUTC - MERGECOPY TABLESPACE DSN00242.XBKR0000 COPYDDN(A)
NEWCOPY YES
 DSNU1038I 314 18:30:01.17 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=A
 DDNAME=SYS00004
 DSN=DSN00242.XBKR0000.F.D2010314.T233001.COPY
 DSNU463I 314 18:30:01.18 DSNUYBR3 - THE PRIMARY IMAGE COPY DATA SET
DSN00242.XBKR0000.I.D2010314.T231425.COPY WITH DATE=101110 AND TIME=181425
 IS PARTICIPATING IN MERGECOPY.
 DSNU463I 314 18:30:01.19 DSNUYBR3 - THE PRIMARY IMAGE COPY DATA SET
DSN00242.XBKR0000.F.D2010314.T231248.COPY WITH DATE=101110 AND TIME=181248
 IS PARTICIPATING IN MERGECOPY.
 DSNU454I 314 18:30:01.23 DSNUYBR0 - COPY MERGE COMPLETE
 NUMBER OF COPIES=2
 NUMBER OF COPIES MERGED=2
 TOTAL NUMBER OF PAGES MERGED=6
 ELAPSED TIME=00:00:00

9.9 QUIESCE

When you specify QUIESCE TABLESPACESET, the table space set includes related XML
objects. You can specify that you want to quiesce the XML table space, base table space, or
both of them, plus related index spaces if they are copy enabled.

All table spaces that are involved in a versioning relationship are quiesced when QUIESCE is
run on either the system-maintained temporal table or the history table space. Auxiliary LOB
and XML table spaces on both system-maintained temporal table spaces and history table
spaces are included.

Example 9-14 shows the JCL for the QUIESCE utility and the output of the utility run.

Example 9-14 QUIESCE utility JCL and output (1 of 2)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
QUIESCE TABLESPACESET DSN00242.BKRTORCS
Chapter 9. Utilities with XML 203

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
1DSNU000I 314 21:50:34.75 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 21:50:34.77 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 21:50:34.78 DSNUGUTC - QUIESCE TABLESPACESET DSN00242.BKRTORCS
 DSNU477I -DB0B 314 21:50:34.78 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET
DSN00242.BKRTORCS
 DSNU477I -DB0B 314 21:50:34.78 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE
DSN00242.BKRTORCS
 DSNU477I -DB0B 314 21:50:34.78 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE
DSN00242.XBKR0000
 DSNU474I -DB0B 314 21:50:34.78 DSNUQUIA - QUIESCE AT RBA 000069A77034 AND AT LRSN
000069A77034
 DSNU475I 314 21:50:34.78 DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I 314 21:50:34.79 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Notice that only the table spaces are included. Indexes are included only if they are copy
enabled.

Let us alter the index definitions to make them copy enabled. Figure 9-6 shows how this is
done.

Figure 9-6 Copy enable the DOCID and NODEID indexes

Example 9-15 shows the JCL for the QUIESCE utility and the output of the utility run.

Example 9-15 QUIESCE utility JCL and output (2 of 2)

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999

SELECT NAME,DBNAME,COPY FROM SYSIBM.SYSINDEXES
WHERE DBNAME='DSN00242';
---------+---------+---------+---------+---------+---------+---
NAME DBNAME COPY
---------+---------+---------+---------+---------+---------+---
I_NODEIDXBK_TO_CSTMR_STMT DSN00242 N
I_DOCIDBK_TO_CSTMR_STMT DSN00242 N
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---
ALTER INDEX I_NODEIDXBK_TO_CSTMR_STMT COPY YES;
---------+---------+---------+---------+---------+---------+---
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---
ALTER INDEX I_DOCIDBK_TO_CSTMR_STMT COPY YES;
---------+---------+---------+---------+---------+---------+---
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---
SELECT NAME,DBNAME,COPY FROM SYSIBM.SYSINDEXES
WHERE DBNAME='DSN00242';
---------+---------+---------+---------+---------+---------+---
NAME DBNAME COPY
---------+---------+---------+---------+---------+---------+---
I_NODEIDXBK_TO_CSTMR_STMT DSN00242 Y
I_DOCIDBK_TO_CSTMR_STMT DSN00242 Y
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
204 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
QUIESCE TABLESPACESET DSN00242.BKRTORCS
1DSNU000I 314 22:14:39.70 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 314 22:14:39.73 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 314 22:14:39.73 DSNUGUTC - QUIESCE TABLESPACESET DSN00242.BKRTORCS
 DSNU477I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET
DSN00242.BKRTORCS
 DSNU477I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE
DSN00242.BKRTORCS
 DSNU477I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE SUCCESSFUL FOR INDEXSPACE
DSN00242.IRDOCIDB
 DSNU477I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE
DSN00242.XBKR0000
 DSNU477I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE SUCCESSFUL FOR INDEXSPACE
DSN00242.IRNODEID
 DSNU474I -DB0B 314 22:14:39.74 DSNUQUIA - QUIESCE AT RBA 000069A99034 AND AT LRSN
000069A99034
 DSNU568I -DB0B 314 22:14:39.74 DSNUGSRX - INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT IS IN
INFORMATIONAL COPY PENDING STATE
 DSNU568I -DB0B 314 22:14:39.74 DSNUGSRX - INDEX XMLR4.I_NODEIDXBK_TO_CSTMR_STMT IS IN
INFORMATIONAL COPY PENDING STATE
 DSNU475I 314 22:14:39.74 DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00

As expected, indexes are now included.

9.10 REBUILD INDEX

You can use the REBUILD INDEX utility to rebuild XML indexes, DOCID indexes, and
NODEID indexes. You do not need to specify any additional keywords in the REBUILD INDEX
statement.SHRLEVEL CHANGE is not allowed on not logged tables and XML indexes.

When you process both NODEID indexes and XML indexes together, they are processed
sequentially. First the NODEID index is processed and then the XML index.

Example 9-16 shows the JCL for the REBUILD utility and the output of the utility run

Example 9-16 REBUILD INDEX utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SORTWK01 DD DSN=XMLR4.SORTWK01,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK02 DD DSN=XMLR4.SORTWK02,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK03 DD DSN=XMLR4.SORTWK03,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK04 DD DSN=XMLR4.SORTWK04,
Chapter 9. Utilities with XML 205

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSUT1 DD DSN=XMLR4.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
REBUILD INDEX (ALL) TABLESPACE DSN00242.BKRTORCS
REBUILD INDEX (ALL) TABLESPACE DSN00242.XBKR0000
1DSNU000I 315 19:54:04.76 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 19:54:04.79 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 19:54:04.79 DSNUGUTC - REBUILD INDEX(ALL) TABLESPACE DSN00242.BKRTORCS
 DSNU3343I -DB0B 315 19:54:04.80 DSNUCINM - REAL-TIME STATISTICS INFORMATION MISSING FOR
TABLESPACE DSN00242.BKRTORCS PARTITION 1
 DSNU555I -DB0B 315 19:54:04.81 DSNUCRUL - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
PROCESSED=1
 DSNU705I 315 19:54:04.81 DSNUCRIB - UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
 DSNU394I -DB0B 315 19:54:05.01 DSNURBXC - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=1 FOR
INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU391I 315 19:54:05.01 DSNUCRIB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 1
 DSNU392I 315 19:54:05.01 DSNUCRIB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU425I -DB0B 315 19:54:05.03 DSNUGFCR - INDEXSPACE DSN00242.IRDOCIDB DOES NOT HAVE
THE COPY YES ATTRIBUTE
0DSNU050I 315 19:54:05.04 DSNUGUTC - REBUILD INDEX(ALL) TABLESPACE DSN00242.XBKR0000
 DSNU3343I -DB0B 315 19:54:05.05 DSNUCINM - REAL-TIME STATISTICS INFORMATION MISSING FOR
TABLESPACE DSN00242.XBKR0000 PARTITION 1
 DSNU555I -DB0B 315 19:54:05.06 DSNUCRUL - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
PROCESSED=1
 DSNU705I 315 19:54:05.06 DSNUCRIB - UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
 DSNU394I -DB0B 315 19:54:05.27 DSNURBXC - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=1 FOR
INDEX XMLR4.I_NODEIDXBK_TO_CSTMR_STMT
 DSNU391I 315 19:54:05.27 DSNUCRIB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 1
 DSNU392I 315 19:54:05.27 DSNUCRIB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU425I -DB0B 315 19:54:05.28 DSNUGFCR - INDEXSPACE DSN00242.IRNODEID DOES NOT HAVE
THE COPY YES ATTRIBUTE
DSNU010I 315 19:54:05.28 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

9.11 RECOVER INDEX and RECOVER TABLESPACE

You can use the RECOVER utility to recover XML objects. You do not need to specify any
additional keywords in the RECOVER statement. When you recover an XML table space or
index to a point in time, you should recover all related objects to the same point in time.
Related objects include XML objects, LOB objects, and referentially related objects. If you do
not recover all related objects to the same point in time, one or more objects might be placed
in a restrictive state.

For point-in-time recoveries of base, LOB, XML, and history objects, the option VERIFYSET,
new with DB2 10, specifies whether the RECOVER utility verifies that all related objects that
are required for the point-in-time recovery are included in the RECOVER control statement.

� VERIFYSET YES means the RECOVER utility verifies that all of the objects that are
required to perform a point-in-time recovery of the base, LOB, XML, and history objects,
have been included in the RECOVER control statement. VERIFYSET YES is the default.
206 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
� VERIFYSET NO means the RECOVER utility does not verify that all of the objects that are
required to perform a point-in-time recovery of the base, LOB, XML, and history objects,
have been included in the RECOVER control statement.

Specifying VERIFYSET NO allows you to break up a point-in-time recovery into multiple
jobs or to avoid recovering objects that have changed since the selected recovery point.

The VERIFYSET option does not apply to point-in-time recoveries of catalog and directory
objects.

The other option for point-in-time recovery is ENFORCE YES/NO.

� ENFORCE YES specifies that CHKP and ACHKP pending states are set for a
point-in-time recovery when only a subset of the related objects (BASE, LOB, XML, and
RI) have been recovered to a point in time. ENFORCE YES is the default for catalog and
directory objects. There is no override for the ENFORCE YES option for catalog and
directory objects.

� ENFORCE NO specifies that CHKP and ACHKP pending states are not set for a
point-in-time recovery when only a subset of the related objects (BASE, LOB, XML, and
RI) have been recovered to a point in time.

We took a full image copy of the base table space and XML table space (See Example 9-3 on
page 188), did a partial update to the XML document (See Example on page 190), took an
incremental image copy (See Example 9-4 on page 190), and merged the full and
incremental image copies (See Example 9-13 on page 202).

We now want to take the table space back to the full image copy before we dis the partial
update to the XML document.

Before we do, we examine the status of the database and query the content of the table.

Figure 9-7 shows the status of the database.

Figure 9-7 Status of database DSN00242

-DISPLAY DB(DSN00242)

DSNT360I -DB0B ***********************************
DSNT361I -DB0B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB0B ***********************************
DSNT362I -DB0B DATABASE = DSN00242 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB0B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BKRTORCS TS 0001 RW
BKRTORCS TS RW
XBKR0000 XS 0001 RW
XBKR0000 XS RW
IRDOCIDB IX L0001 RW
IRDOCIDB IX L* RW
IRNODEID IX L0001 RW
IRNODEID IX L* RW
******* DISPLAY OF DATABASE DSN00242 ENDED **********************
DSN9022I -DB0B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Chapter 9. Utilities with XML 207

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 9-8 shows the content of the XML document.

Figure 9-8 Content of the XML document

Example 9-17 shows the JCL for RECOVER utility to recover the base table space to the
LRSN value associated with the full image copy taken before the partial update to the XML
document was done.

Example 9-17 RECOVER TABLESPACE utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
RECOVER TABLESPACE DSN00242.BKRTORCS TOLOGPOINT X'000069667C5E'
1DSNU000I 315 19:49:49.27 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 19:49:49.30 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 19:49:49.30 DSNUGUTC - RECOVER TABLESPACE DSN00242.BKRTORCS TOLOGPOINT
X'000011112222'
 DSNU1316I -DB0B 315 19:49:49.31 DSNUCAIN - THE FOLLOWING TABLESPACES ARE MISSING FROM THE
RECOVERY LIST DSN00242.XBKR0000
 DSNU500I 315 19:49:49.31 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:00
DSNU012I 315 19:49:49.31 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

Example 9-18 shows the JCL with the revised RECOVER utility control statement and output
of the utility run.

Example 9-18 RECOVER TABLESPACE utility JCL (with modified control statement) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
RECOVER TABLESPACE DSN00242.BKRTORCS
 TABLESPACE DSN00242.XBKR0000
TOLOGPOINT X'000069667C5E'

SELECT XMLSERIALIZE(
 XMLQUERY(
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
 /Document/BkToCstmrStmt/Stmt/Bal/Amt[../Tp/CdOrPrtry/Cd="CLBD"]'
 PASSING BK_TO_CSTMR_STMT) AS CLOB(500))
FROM BK_TO_CSTMR_STMT;

<Amt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02" Ccy="SEK">900000</Amt>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

Note: The RBA value for the TOLOGPOINT is the LRSN value associated with the full
image copy shown in Example 9-21 on page 216. It is important to ensure that both the
base table space and the XML table space are recovered to the same point-in-time.
208 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
1DSNU000I 315 19:36:29.07 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 19:36:29.10 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 19:36:29.10 DSNUGUTC - RECOVER TABLESPACE DSN00242.BKRTORCS TABLESPACE
DSN00242.XBKR0000
 TOLOGPOINT X'000069667C5E'
 DSNU532I 315 19:36:29.11 DSNUCBMD - RECOVER TABLESPACE DSN00242.BKRTORCS START
 DSNU515I 315 19:36:29.11 DSNUCBAL - THE IMAGE COPY DATA SET
DSN00242.BKRTORCS.F.D2010314.T231248.COPY WITH
 DATE=20101110 AND TIME=181248
 IS PARTICIPATING IN RECOVERY OF TABLESPACE DSN00242.BKRTORCS
 DSNU504I 315 19:36:29.33 DSNUCBMD - MERGE STATISTICS FOR TABLESPACE DSN00242.BKRTORCS
-
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=3
 ELAPSED TIME=00:00:00
 DSNU532I 315 19:36:29.34 DSNUCBMD - RECOVER TABLESPACE DSN00242.XBKR0000 START
 DSNU515I 315 19:36:29.34 DSNUCBAL - THE IMAGE COPY DATA SET
DSN00242.XBKR0000.F.D2010314.T231248.COPY WITH
 DATE=20101110 AND TIME=181248
 IS PARTICIPATING IN RECOVERY OF TABLESPACE DSN00242.XBKR0000
 DSNU504I 315 19:36:29.54 DSNUCBMD - MERGE STATISTICS FOR TABLESPACE DSN00242.XBKR0000
-
 NUMBER OF COPIES=1
 NUMBER OF PAGES MERGED=3
 ELAPSED TIME=00:00:00
 DSNU830I -DB0B 315 19:36:29.14 DSNUCARS - INDEX XMLR4.I_DOCIDBK_TO_CSTMR_STMT IS IN
REBUILD PENDING
 DSNU831I -DB0B 315 19:36:29.14 DSNUCARS - ALL INDEXES OF DSN00242.BKRTORCS ARE IN REBUILD
PENDING
 DSNU830I -DB0B 315 19:36:29.36 DSNUCARS - INDEX XMLR4.I_NODEIDXBK_TO_CSTMR_STMT IS IN
REBUILD PENDING
 DSNU831I -DB0B 315 19:36:29.36 DSNUCARS - ALL INDEXES OF DSN00242.XBKR0000 ARE IN REBUILD
PENDING
 DSNU1511I -DB0B 315 19:36:29.55 DSNUCALA - FAST LOG APPLY WAS NOT USED FOR RECOVERY
 DSNU1510I 315 19:36:29.55 DSNUCBLA - LOG APPLY PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU535I -DB0B 315 19:36:29.55 DSNUCATM - FOLLOWING TABLESPACES RECOVERED TO A CONSISTENT
POINT
 DSN00242.BKRTORCS
 DSN00242.XBKR0000
 DSNU500I 315 19:36:29.57 DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:00

The base table space and XML table space are now recovered to the same point-in-time. DB2
places the DOCID and NODEID indexes in REBUILD-pending state (RBDP) to ensure the
indexes are consistent with the data.

Figure 9-9 shows the status of the database.
Chapter 9. Utilities with XML 209

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 9-9 Status of database DSN00242 (after partial recovery)

Let us rebuild the indexes. Example 9-16 on page 205 shows the JCL for the REBUILD
INDEX utility and the output of the utility run.

Figure 9-10 shows the status of the database after the indexes are rebuilt.

Figure 9-10 Status of database DSN00242 (after partial recovery and rebuild of indexes)

-DISPLAY DB(DSN00242)

DSNT360I -DB0B ***********************************
DSNT361I -DB0B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB0B ***********************************
DSNT362I -DB0B DATABASE = DSN00242 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB0B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BKRTORCS TS 0001 RW
BKRTORCS TS RW
XBKR0000 XS 0001 RW
XBKR0000 XS RW
IRDOCIDB IX L0001 RW RBDP
IRDOCIDB IX L* RW RBDP
IRNODEID IX L0001 RW RBDP
IRNODEID IX L* RW RBDP
******* DISPLAY OF DATABASE DSN00242 ENDED **********************
DSN9022I -DB0B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

-DISPLAY DB(DSN00242)

DSNT360I -DB0B ***********************************
DSNT361I -DB0B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB0B ***********************************
DSNT362I -DB0B DATABASE = DSN00242 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB0B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BKRTORCS TS 0001 RW
BKRTORCS TS RW
XBKR0000 XS 0001 RW
XBKR0000 XS RW
IRDOCIDB IX L0001 RW
IRDOCIDB IX L* RW
IRNODEID IX L0001 RW
IRNODEID IX L* RW
******* DISPLAY OF DATABASE DSN00242 ENDED **********************
DSN9022I -DB0B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

210 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
Figure 9-11 shows the content of the XML document.

Figure 9-11 Content of the XML document after partial recovery

9.12 REORG INDEX and REORG TABLESPACE

You can use the REORG INDEX utility to reorganize XML indexes. and the REORG
TABLESPACE utility to reorganize XML table space. You do not need to specify any additional
keywords in the REORG statement. When you specify that you want XML objects (either XML
indexes or XML table spaces) to be reorganized, you must also specify the WORKDDN
keyword and provide the specified temporary work file. The default is SYSUT1.

When you specify the name of the base table space in the REORG statement, DB2
reorganizes only that table space and not any related XML objects. If you want DB2 to
reorganize the XML objects, you must specify those object names.

When you run REORG on an XML table space that supports XML versions, REORG discards
rows for versions of an XML document that are no longer needed.

For XML table spaces and base table spaces with XML columns, you cannot specify the
following options in the REORG statement:

� DISCARD
� REBALANCE
� UNLOAD EXTERNAL

REORG can take inline copies of XML table spaces.

If you specify a base table space with the STATISTICS keyword, DB2 does not gather
statistics for the related XML table space or its indexes.

If large amounts of data are deleted from a partition-by-growth universal table space,
including XML table spaces, run the REORG TABLESPACE utility with SHRLEVEL

SELECT XMLSERIALIZE(
 XMLQUERY(
'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
 /Document/BkToCstmrStmt/Stmt/Bal/Amt[../Tp/CdOrPrtry/Cd="CLBD"]'
 PASSING BK_TO_CSTMR_STMT) AS CLOB(500))
FROM BK_TO_CSTMR_STMT;

<Amt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"
Ccy="SEK">435678.50</Amt>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

Note: If the DOCID and NODEID indexes are enabled for image copy, in Figure 9-9 on
page 210 you would see RECP instead of RBDP. Instead of rebuilding the indexes you
would recover the indexes using RECOVER INDEX utility which uses the image copy you
would have established for these indexes using the COPY utility.
Chapter 9. Utilities with XML 211

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
REFERENCE or SHRLEVEL CHANGE on the entire table space to reclaim physical space
from the partition-by-growth and XML table spaces.

Do not use REORG UNLOAD ONLY to propagate data. When you specify the UNLOAD
ONLY option, REORG unloads only the data that physically resides in the base table space;
LOB and XML columns are not unloaded. For purposes of data propagation, you should use
UNLOAD or REORG UNLOAD EXTERNAL instead.

Example 9-19 shows the JCL for the REORG TABLESPACE utility and the output of the utility
run.
212 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
Example 9-19 REORG TABLESPACE utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SORTWK01 DD DSN=XMLR4.SORTWK01,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK02 DD DSN=XMLR4.SORTWK02,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK03 DD DSN=XMLR4.SORTWK03,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTWK04 DD DSN=XMLR4.SORTWK04,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSREC DD DSN=XMLR4.DSN00242.REORG.DATA,
// DISP=(MOD,CATLG)
//DSNUPROC.SYSUT1 DD DSN=XMLR4.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SORTOUT DD DSN=XMLR4.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
REORG TABLESPACE DSN00242.BKRTORCS
REORG TABLESPACE DSN00242.XBKR0000

1DSNU000I 319 18:06:00.66 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 319 18:06:00.68 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 319 18:06:00.69 DSNUGUTC - REORG TABLESPACE DSN00242.BKRTORCS
 DSNU251I 319 18:06:00.81 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=1 FOR TABLESPACE
DSN00242.BKRTORCS PART 1
 DSNU252I 319 18:06:00.81 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=1 FOR TABLESPACE
DSN00242.BKRTORCS
 DSNU250I 319 18:06:00.81 DSNURULD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU303I -DB0B 319 18:06:01.21 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE
XMLR4.BK_TO_CSTMR_STMT PART=1
 DSNU304I -DB0B 319 18:06:01.21 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE
XMLR4.BK_TO_CSTMR_STMT
 DSNU302I 319 18:06:01.22 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=1
 DSNU300I 319 18:06:01.22 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU042I 319 18:06:01.22 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=1
 ELAPSED TIME=00:00:00
 DSNU349I -DB0B 319 18:06:01.28 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR INDEX
XMLR4.I_DOCIDBK_TO_CSTMR_STMT
 DSNU258I 319 18:06:01.28 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNU259I 319 18:06:01.28 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU421I 319 18:06:01.30 DSNUGFUM - START OF DFSMS MESSAGES

1PAGE 0001 5695-DF175 DFSMSDSS V1R12.0 DATA SET SERVICES 2010.319 18:06
-ADR030I (SCH)-PRIME(0), DCB VALUES HAVE BEEN MODIFIED FOR SYSPRINT. BLKSIZE VALUE MODIFIED FROM 0 TO 128
 COPY DATASET(INCLUDE(-
 DB0BD.DSNDBC.DSN00242.BKRTORCS.I0001.A001)) -
 RENAMEU(-
 (DB0BD.DSNDBC.DSN00242.BKRTORCS.I0001.A001 , -
 DB0BI.DSN00242.BKRTORCS.N00001.C2RPDUCT)) -
 REPUNC ALLDATA(*) ALLEXCP CANCELERROR SHARE -
 WRITECHECK TOLERATE(ENQF)
 ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'COPY '
 ADR109I (R/I)-RI01 (01), 2010.319 18:06:01 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
 ADR050I (001)-PRIME(01), DFSMSDSS INVOKED VIA APPLICATION INTERFACE
 ADR016I (001)-PRIME(01), RACF® LOGGING OPTION IN EFFECT FOR THIS TASK
0ADR006I (001)-STEND(01), 2010.319 18:06:01 EXECUTION BEGINS
Chapter 9. Utilities with XML 213

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
0ADR711I (001)-NEWDS(01), DATA SET DB0BD.DSNDBC.DSN00242.BKRTORCS.I0001.A001 HAS BEEN ALLOCATED WITH NEWNAME
 DB0BI.DSN00242.BKRTORCS.N00001.C2RPDUCT USING STORCLAS DB0BDATA, DATACLAS DB0B, AND
MGMTCLAS MCDB22
0ADR806I (001)-T0MI (03), DATA SET DB0BD.DSNDBC.DSN00242.BKRTORCS.I0001.A001 COPIED USING A FAST REPLICATION
FUNCTION
0ADR801I (001)-DDDS (01), DATA SET FILTERING IS COMPLETE. 1 OF 1 DATA SETS WERE SELECTED: 0 FAILED
SERIALIZATION AND 0 FAILED FOR OTHER REASONS
0ADR454I (001)-DDDS (01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED
0 DB0BD.DSNDBC.DSN00242.BKRTORCS.I0001.A001
0ADR006I (001)-STEND(02), 2010.319 18:06:01 EXECUTION ENDS
0ADR013I (001)-CLTSK(01), 2010.319 18:06:01 TASK COMPLETED WITH RETURN CODE 0000
0ADR012I (SCH)-DSSU (01), 2010.319 18:06:01 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0000
 DSNU422I 319 18:06:01.48 DSNUGFCD - END OF DFSMS MESSAGE

0DSNU050I 319 18:06:01.49 DSNUGUTC - REORG TABLESPACE DSN00242.XBKR0000
 DSNU251I 319 18:06:01.58 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=1 FOR TABLESPACE
DSN00242.XBKR0000 PART 1
 DSNU252I 319 18:06:01.58 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=1 FOR TABLESPACE
DSN00242.XBKR0000
 DSNU250I 319 18:06:01.58 DSNURULD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU303I -DB0B 319 18:06:01.97 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE
XMLR4.XBK_TO_CSTMR_STMT PART=1
 DSNU304I -DB0B 319 18:06:01.97 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE
XMLR4.XBK_TO_CSTMR_STMT
 DSNU302I 319 18:06:01.97 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=1
 DSNU300I 319 18:06:01.97 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU042I 319 18:06:01.97 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=1
 ELAPSED TIME=00:00:00
 DSNU349I -DB0B 319 18:06:02.06 DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=1 FOR INDEX
XMLR4.I_NODEIDXBK_TO_CSTMR_STMT
 DSNU258I 319 18:06:02.06 DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=1
 DSNU259I 319 18:06:02.06 DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU421I 319 18:06:02.08 DSNUGFUM - START OF DFSMS MESSAGES

1PAGE 0001 5695-DF175 DFSMSDSS V1R12.0 DATA SET SERVICES 2010.319 18:06
- COPY DATASET(INCLUDE(-
 DB0BD.DSNDBC.DSN00242.XBKR0000.I0001.A001)) -
 RENAMEU(-
 (DB0BD.DSNDBC.DSN00242.XBKR0000.I0001.A001 , -
 DB0BI.DSN00242.XBKR0000.N00001.C2RPDUYM)) -
 REPUNC ALLDATA(*) ALLEXCP CANCELERROR SHARE -
 WRITECHECK TOLERATE(ENQF)
 ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'COPY '
 ADR109I (R/I)-RI01 (01), 2010.319 18:06:02 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
 ADR050I (001)-PRIME(01), DFSMSDSS INVOKED VIA APPLICATION INTERFACE
 ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
0ADR006I (001)-STEND(01), 2010.319 18:06:02 EXECUTION BEGINS
0ADR711I (001)-NEWDS(01), DATA SET DB0BD.DSNDBC.DSN00242.XBKR0000.I0001.A001 HAS BEEN ALLOCATED WITH NEWNAME
 DB0BI.DSN00242.XBKR0000.N00001.C2RPDUYM USING STORCLAS DB0BDATA, DATACLAS DB0B, AND
MGMTCLAS MCDB22
0ADR806I (001)-T0MI (03), DATA SET DB0BD.DSNDBC.DSN00242.XBKR0000.I0001.A001 COPIED USING A FAST REPLICATION
FUNCTION
0ADR801I (001)-DDDS (01), DATA SET FILTERING IS COMPLETE. 1 OF 1 DATA SETS WERE SELECTED: 0 FAILED
SERIALIZATION AND 0 FAILED FOR OTHER REASONS
0ADR454I (001)-DDDS (01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED
0 DB0BD.DSNDBC.DSN00242.XBKR0000.I0001.A001
0ADR006I (001)-STEND(02), 2010.319 18:06:02 EXECUTION ENDS
0ADR013I (001)-CLTSK(01), 2010.319 18:06:02 TASK COMPLETED WITH RETURN CODE 0000
0ADR012I (SCH)-DSSU (01), 2010.319 18:06:02 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0000
 DSNU422I 319 18:06:02.27 DSNUGFCD - END OF DFSMS MESSAGE

DSNU010I 319 18:06:02.29 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

The REORG table space utility reorganizes also the DOCID index (and any user defined
indexes) when reorganizing the base table space, and the NODEID index when reorganizing
the XML table space.

You can reorganize only the indexes using the REORG INDEX utility.
214 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
9.13 REPAIR

You can use the REPAIR utility on XML objects.

You can use the REPAIR utility to:

� Set the status of an XML column to invalid.

� Delete a corrupted XML document and its NODEID index entries.

The most common use for the REPAIR utility for XML objects is to take corrective action after
you run CHECK DATA with SHRLEVEL CHANGE on a table space with XML columns.
CHECK DATA with SHRLEVEL CHANGE operates on shadow data sets, so it does not
modify XML columns or XML table spaces. Instead, CHECK DATA generates REPAIR
statements that you can run to delete invalid XML documents and to mark the corresponding
XML columns as invalid.

Refer to 10.5, “Diagnostics” on page 238 for examples of invoking the REPAIR utility when
diagnosing problems with XML data.

9.14 REPORT

When you specify REPORT TABLESPACESET, the output report includes XML objects in the
list of members in the table space set.

The sample output in Example 9-20 shows a table space set for a table that contains an XML
column:

Example 9-20 REPORT utility JCL (with TABLESPACESET option) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
REPORT TABLESPACESET DSN00242.BKRTORCS

1DSNU000I 315 16:50:26.26 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 16:50:26.28 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 16:50:26.28 DSNUGUTC - REPORT TABLESPACESET DSN00242.BKRTORCS
 DSNU587I -DB0B 315 16:50:26.29 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE
DSN00242.BKRTORCS

 TABLESPACE SET REPORT:

 TABLESPACE : DSN00242.BKRTORCS
 TABLE : XMLR4.BK_TO_CSTMR_STMT
 INDEXSPACE : DSN00242.IRDOCIDB
 INDEX : XMLR4.I_DOCIDBK_TO_CSTMR_STMT

 XML TABLESPACE SET REPORT:

 TABLESPACE : DSN00242.BKRTORCS

 BASE TABLE : XMLR4.BK_TO_CSTMR_STMT
 COLUMN : BK_TO_CSTMR_STMT
Chapter 9. Utilities with XML 215

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
 XML TABLESPACE : DSN00242.XBKR0000
 XML TABLE : XMLR4.XBK_TO_CSTMR_STMT
 XML NODEID INDEXSPACE: DSN00242.IRNODEID
 XML NODEID INDEX : XMLR4.I_NODEIDXBK_TO_CSTMR_STMT

 DSNU580I 315 16:50:26.29 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

NOTE: The same result is produced if you use the following:
REPORT TABLESPACESET DSN00242.XBKR0000

When you specify REPORT RECOVERY, the output report includes recovery related
information. Use REPORT RECOVERY to find information that is necessary for recovering a
table space, index, or a table space and all of its indexes. This is particularly useful for
point-in-time recovery.

Example 9-21 shows the JCL for the REPORT utility with the RECOVERY option for the base
table space and the output of the utility run.

Example 9-21 REPORT utility JCL (with RECOVERY option for base table space) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
REPORT RECOVERY TABLESPACE DSN00242.BKRTORCS

1DSNU000I 315 17:02:40.42 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 17:02:40.45 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 17:02:40.45 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN00242.BKRTORCS
 DSNU581I -DB0B 315 17:02:40.45 DSNUPREC - REPORT RECOVERY TABLESPACE DSN00242.BKRTORCS
 DSNU593I -DB0B 315 17:02:40.46 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
 MINIMUM RBA: 000000000000
 MAXIMUM RBA: FFFFFFFFFFFF
 MIGRATING RBA: 000000000000
 DSNU582I -DB0B 315 17:02:40.46 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN00242.BKRTORCS
SYSCOPY ROWS AND SYSTEM LEVEL BACKUPS
 TIMESTAMP = 2010-11-04-22.02.43.096801, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,
START LRSN =000066569186
 DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
 NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
 DSNAME = DSN00242.BKRTORCS , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M
..
..
..
TIMESTAMP = 2010-11-10-18.12.48.246523, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =000069667C5E
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 3.4E+01 , CPAGESF = 0.0E0
216 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
 DSNAME = DSN00242.BKRTORCS.F.D2010314.T231248.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M

 TIMESTAMP = 2010-11-10-18.14.25.344136, IC TYPE = I , SHR LVL = R, DSNUM = 0000,
START LRSN =0000696BCB4C
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 3.4E+01 , CPAGESF = 2.0E+00
 DSNAME = DSN00242.BKRTORCS.I.D2010314.T231425.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M

 TIMESTAMP = 2010-11-10-18.30.01.134384, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =0000696BCB4C
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 3.4E+01 , CPAGESF = 0.0E0
 DSNAME = DSN00242.BKRTORCS.F.D2010314.T233001.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M
..
..
..
DSNU580I 315 17:02:40.46 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

 DSNU010I 315 17:02:40.46 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 9-22 shows the JCL for the REPORT utility with the RECOVERY option for the XML
table space and the output of the utility run.

Example 9-22 REPORT utility JCL (with TRECOVERY option for XML table space) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
REPORT RECOVERY TABLESPACE DSN00242.XBKR0000

1DSNU000I 315 17:07:09.65 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 315 17:07:09.68 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 315 17:07:09.68 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN00242.XBKR0000
 DSNU581I -DB0B 315 17:07:09.68 DSNUPREC - REPORT RECOVERY TABLESPACE DSN00242.XBKR0000
 DSNU593I -DB0B 315 17:07:09.69 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
 MINIMUM RBA: 000000000000
 MAXIMUM RBA: FFFFFFFFFFFF
 MIGRATING RBA: 000000000000
 DSNU582I -DB0B 315 17:07:09.69 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN00242.XBKR0000
SYSCOPY ROWS AND SYSTEM LEVEL BACKUPS
TIMESTAMP = 2010-11-04-22.02.43.211430, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,
START LRSN =00006656ED79
 DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
Chapter 9. Utilities with XML 217

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
 JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
 NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
 DSNAME = DSN00242.XBKR0000 , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M
...
...
...
TIMESTAMP = 2010-11-10-18.12.48.307770, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =000069667C5E
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 4.5E+01 , CPAGESF = 0.0E0
 DSNAME = DSN00242.XBKR0000.F.D2010314.T231248.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M

 TIMESTAMP = 2010-11-10-18.14.25.421739, IC TYPE = I , SHR LVL = R, DSNUM = 0000,
START LRSN =0000696BCB4C
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 4.5E+01 , CPAGESF = 2.0E+00
 DSNAME = DSN00242.XBKR0000.I.D2010314.T231425.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M

 TIMESTAMP = 2010-11-10-18.30.01.235727, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
START LRSN =0000696BCB4C
 DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
PIT LRSN = 000000000000
 LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
LOGGED = Y, TTYPE =
 JOBNAME = XMLR4LD , AUTHID = XMLR4 , COPYPAGESF = 3.0E+00
 NPAGESF = 4.5E+01 , CPAGESF = 0.0E0
 DSNAME = DSN00242.XBKR0000.F.D2010314.T233001.COPY , MEMBER NAME = ,
INSTANCE = 01, RELCREATED = M
...
...
...
DSNU580I 315 17:07:09.69 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 315 17:07:09.70 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

We do not show the complete output of the REPORT utility, instead show only the relevant
entries to demonstrate partial recovery of the table space.

We took a full image copy of the base table space and XML table space (see Example 9-3 on
page 188), did a partial update to the XML document (see Figure 9-5 on page 190), took an
incremental image copy (see Example 9-4 on page 190), and merged the full and incremental
image copies (see Example 9-13 on page 202). The REPORT utility output shows the entries
for the full, incremental, and merged full image copy for the base table space in Example 9-21
on page 216 and for the XML table space in Example 9-22 on page 217.
218 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
9.15 RUNSTATS

You can use the RUNSTATS utility to gather statistics for XML objects. RUNSTATS
TABLESPACE ignores the following keywords for XML table spaces:

� COLGROUP
� FREQVAL MOST/LEAST/BOTH
� HISTOGRAM

RUNSTATS INDEX ignores the following keywords for XML indexes or NODEID indexes:

� KEYCARD
� FREQVAL MOST/LEAST/BOTH
� HISTOGRAM

XML indexes are related to XML tables, and not to the associated base tables. If you specify a
base table space and an XML index in the same RUNSTATS control statement, DB2
generates an error. When you run RUNSTATS against a base table, RUNSTATS collects
statistics only for indexes on the base table, including the document ID index.

RUNSTATS TABLESPACE does not collect histogram statistics for XML table spaces.
RUNSTATS INDEX does not collect histogram statistics for XML NODEID indexes or XML
indexes.

Example 9-23 shows the JCL for the RUNSTATS utility for the base table space (and XML
table space) and the output of the utility run.

Example 9-23 RUNSTATS utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSIN DD *
RUNSTATS TABLESPACE DSN00242.BKRTORCS INDEX (ALL)
RUNSTATS TABLESPACE DSN00242.XBKR0000 INDEX (ALL)

1DSNU000I 319 19:06:31.28 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 319 19:06:31.33 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 319 19:06:31.33 DSNUGUTC - RUNSTATS TABLESPACE DSN00242.BKRTORCS INDEX(ALL)
 DSNU610I -DB0B 319 19:06:31.40 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR
DSN00242.BKRTORCS SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.40 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR
XMLR4.BK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.40 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR
XMLR4.BK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.40 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR
DSN00242.BKRTORCS SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.41 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR
XMLR4.I_DOCIDBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.41 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR
XMLR4.I_DOCIDBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.41 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR
XMLR4.I_DOCIDBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.41 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR
XMLR4.I_DOCIDBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU620I -DB0B 319 19:06:31.41 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP =
2010-11-15-19.06.31.341899
Chapter 9. Utilities with XML 219

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
0DSNU050I 319 19:06:31.42 DSNUGUTC - RUNSTATS TABLESPACE DSN00242.XBKR0000 INDEX(ALL)
 DSNU610I -DB0B 319 19:06:31.48 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR
DSN00242.XBKR0000 SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.48 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR
XMLR4.XBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.48 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR
XMLR4.XBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.48 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR
DSN00242.XBKR0000 SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.49 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR
XMLR4.I_NODEIDXBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.49 DSNUSUKT - SYSKEYTARGETS CATALOG UPDATE FOR
XMLR4.I_NODEIDXBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU610I -DB0B 319 19:06:31.49 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR
XMLR4.I_NODEIDXBK_TO_CSTMR_STMT SUCCESSFUL
 DSNU620I -DB0B 319 19:06:31.49 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP =
2010-11-15-19.06.31.425894

DSNU010I 319 19:06:31.50 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

9.16 UNLOAD

You can unload XML data to output data records or to separate files.

XML columns can be unloaded with either of the following methods:

� The XML column can be unloaded to the output records. XML column value can be placed
in the OUTPUT record with or without any other unloading column values. The output
record can be in delimited or non-delimited format. For a non-delimited format, the XML
column is handled like a variable character field with a 2-byte length preceding the XML
value. For a delimited format there are no length bytes present. If the total output record
length is more than 32 KB, unload the record in spanned record format by specifying the
SPANNED YES option.

� The XML column can be unloaded to a separate file whether the XML column length is
less than 32 KB or not.

The output data can be in the textual XML format or the binary XML format. Data that is
unloaded can be in the delimited or non-delimited format.

To unload XML data directly to output record specify XML as the output field type. If the output
is a non-delimited format, a 2-byte length will precede the value of the XML. For delimited
output, no length field is present. XML is the only acceptable field type when unloading the
XML directly to the output record. No data type conversion applies and you cannot specify
FROMCOPY.

If the input data is in Extensible Dynamic Binary XML DB2 Client/Server Binary XML Format
(binary XML format), you need to specify BINARYXML. To unload XML data to a separate file:

� In the UNLOAD utility control statement, specify BLOBF, CLOBF or DBCLOBF. These
keywords indicate that the output column contains the name of a file to which the XML
value is to be unloaded. Also specify either CHAR or VARCHAR instead of XML. Do not
specify FROMCOPY.

� Use the template control statement to create the XML output file and filename. If data sets
are not created and the DSN type is not specified on the template, UNLOAD will use PDS
220 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
as the data set type. PDS has a limit of single volume. The output file uses multiple
volumes, so you must specify HFS as the DSN type.

In the UNLOAD statement, specify the base table space. You cannot specify the XML table
space.

Example 9-24 shows the JCL for the UNLOAD utility and the output of the utility run.

Example 9-24 UNLOAD utility JCL and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=XMLR4.UNLOAD
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSPUNCH DD DSN=XMLR4.LOADCTL
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
UNLOAD TABLESPACE DSN00242.BKRTORCS
 FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 (BK_TO_CSTMR_STMT POSITION(*) XML)

1DSNU000I 301 18:01:07.19 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 301 18:01:07.21 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 301 18:01:07.22 DSNUGUTC - UNLOAD TABLESPACE DSN00242.BKRTORCS
 DSNU650I -DB0B 301 18:01:07.22 DSNUUGMS - FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 301 18:01:07.22 DSNUUGMS - (BK_TO_CSTMR_STMT POSITION(*) XML)
 DSNU253I 301 18:01:07.24 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU252I 301 18:01:07.24 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU250I 301 18:01:07.24 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU010I 301 18:01:07.25 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

NOTE: SYSREC shows the name of the data set which receives the XML document unloaded by
UNLOAD utility.
SYSPUNCH shows the name of the data set which has the LOAD utility control statements
generated by UNLOAD utility.
The first few characters of the XML document in SYSREC data set are shown below:

7<?xml version="1.0" encoding="IBM037"?><Document xmlns:xsi="http://
0001F46A994A89A89977F4F748989889877CCDFFF7664C98A989A4A999A7AA8778AA9766
03017CF74305592965EF1B0F055364957EF924037FFEC46344553074352A729EF8337A11
A 2-byte length precedes the XML value.
The LOAD utility control statement in SYSPUNCH data set is shown below:
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "XMLR4"."BK_TO_CSTMR_STMT"
 WHEN(00001:00002) = X'0003'
 NUMRECS 1
("BK_TO_CSTMR_STMT"
 POSITION(*) XML PRESERVE WHITESPACE
)
Chapter 9. Utilities with XML 221

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
UNLOAD utility using file reference variable
Example 9-25 shows the JCL for the UNLOAD utility using file reference variable and the
output of the utility run.

Example 9-25 UNLOAD utility JCL (using file reference variable) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=XMLR4.UNLOAD1,
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSPUNCH DD DSN=XMLR4.LOADCTL1,
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
TEMPLATE TCLOBF UNIT(SYSDA) DISP(MOD,CATLG,DELETE)
DSN(&USERID..&DB..&TS..T&TI..UFILEREF)
UNLOAD TABLESPACE DSN00242.BKRTORCS
 FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 (BK_TO_CSTMR_STMT POSITION(*) VARCHAR CLOBF TCLOBF)

1DSNU000I 301 19:12:35.80 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 301 19:12:35.82 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 301 19:12:35.83 DSNUGUTC - TEMPLATE TCLOBF UNIT(SYSDA) DISP(MOD, CATLG,
DELETE) DSN(&USERID..&DB..&TS..T&TI..UFILEREF)
 DSNU1035I 301 19:12:35.83 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 301 19:12:35.83 DSNUGUTC - UNLOAD TABLESPACE DSN00242.BKRTORCS
 DSNU650I -DB0B 301 19:12:35.83 DSNUUGMS - FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 301 19:12:35.83 DSNUUGMS - (BK_TO_CSTMR_STMT POSITION(*) VARCHAR CLOBF
TCLOBF)
 DSNU1038I 301 19:12:35.89 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=TCLOBF
 DDNAME=SYS00001
 DSN=XMLR4.DSN00242.XBKR0000.T231235.UFILEREF
 DSNU253I 301 19:12:35.92 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU252I 301 19:12:35.92 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU250I 301 19:12:35.93 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU010I 301 19:12:35.94 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

NOTE: SYSREC shows the name of the data set derived from the Template definition which has
the XML document as shown below:
XMLR4.DSN00242.XBKR0000.T231235.UFILEREF(C1XSJ2ZY)
The first few characters of the XML document are shown below:
<?xml version="1.0" encoding="IBM037"?><Document xmlns:xsi="http://www
46A994A89A89977F4F748989889877CCDFFF7664C98A989A4A999A7AA8778AA9766AAA
CF74305592965EF1B0F055364957EF924037FFEC46344553074352A729EF8337A1166A
The XML document starts from position 1.
The LOAD utility control statement in SYSPUNCH data set is shown below:
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE
 "XMLR4"."BK_TO_CSTMR_STMT"
 WHEN(00001:00002) = X'0003'
 NUMRECS 1
222 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
("BK_TO_CSTMR_STMT"
 POSITION(00003:00259) VARCHAR CLOBF PRESERVE WHITESPACE
)

UNLOAD utility to unload XML data in binary
Example 9-26 shows the JCL for the UNLOAD utility to unload XML data in binary and the
output of the utility run.

Example 9-26 UNLOAD utility JCL (to unload XML data in binary) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=XMLR4.UNLOAD.XML.BINARY.REC00,
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSPUNCH DD DSN=XMLR4.UNLOAD.XML.BINARY.PUNCH,
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
UNLOAD DATA
FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 (BK_TO_CSTMR_STMT XML BINARYXML)

1DSNU000I 308 14:17:16.66 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 308 14:17:16.69 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 308 14:17:16.69 DSNUGUTC - UNLOAD DATA
 DSNU650I -DB0B 308 14:17:16.69 DSNUUGMS - FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 308 14:17:16.69 DSNUUGMS - (BK_TO_CSTMR_STMT XML BINARYXML)
 DSNU253I 308 14:17:16.76 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU252I 308 14:17:16.76 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU250I 308 14:17:16.77 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

NOTE: SYSREC shows the name of the data set which receives the XML document unloaded by
UNLOAD utility.
SYSPUNCH shows the name of the data set which has the LOAD utility control statements
generated by UNLOAD utility.
The first few characters of the XML document in SYSREC data set are shown below:
....-.......ñ.ÌËÑ.ñ.ÇÈÈø...ÏÏÏ.Ï..?ÊÅ......ì(<ëÄÇÁ_/.Ñ>ËÈ/>ÄÁÃñ.ÍÊ>.ÑË?.ËÈÀ.ÑË?.
0003C300000040776142677732277727326762333325445666662667766666427763676377636763
03D4AB510002938398998440AFF777E73EF27F2001F8DC3385D1D9E341E3569E52EA93FA344A93FA
A 2-byte length precedes the XML value.
The LOAD utility control statement in SYSPUNCH data set is shown below:
LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE "XMLR4"."BK_TO_CSTMR_STMT"
 WHEN(00001:00002) = X'0003'
 NUMRECS 1
 ("BK_TO_CSTMR_STMT"
 POSITION(*) XML PRESERVE WHITESPACE BINARYXML)
Chapter 9. Utilities with XML 223

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
UNLOAD utility to unload into a VBS data set in spanned record format
If you want to unload data from a table that has large LOB or XML fields, consider unloading
the data in spanned record format to improve performance of read-write operations.

When you unload data in spanned record format, all LOB and XML data for a given table
space or table space partition can be written to an individual sequential file. This file can
reside on DASD and can span multiple volumes. Having such a single sequential file can
improve the performance of read-write operations.

To unload data in spanned record format, specify the SPANNED YES option. Specify in the
field specification list that all LOB and XML data are to be at the end of the record.

Example 9-27 shows the JCL for the UNLOAD utility to unload XML data in spanned record
format and the output of the utility run.

Example 9-27 UNLOAD utility JCL (to unload XML data in spanned record format) and output

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=XMLR4,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//UTIL EXEC DSNUPROC,SYSTEM=DB0B,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=XMLR4.DSN00242.XBKR0000.T214620.UFILEREF.NEW,
// DISP=(MOD,CATLG)
//DSNUPROC.SYSPUNCH DD DSN=XMLR4.UNLOAD.SCENARIO.NEW.PUNCH3,
// DISP=(MOD,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
UNLOAD DATA SPANNED YES FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 (MSG_ID VARCHAR,

MSG_CRE_DT_TM TIMESTAMP WITH TIME ZONE EXTERNAL,
BK_TO_CSTMR_STMT XML)

NOTE: The record format of the SYSREC data set is VBS.
1DSNU000I 309 18:59:48.56 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
 DSNU1044I 309 18:59:48.58 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 309 18:59:48.59 DSNUGUTC - UNLOAD DATA SPANNED YES
 DSNU650I -DB0B 309 18:59:48.59 DSNUUGMS - FROM TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU650I -DB0B 309 18:59:48.59 DSNUUGMS - (MSG_ID VARCHAR,
 DSNU650I -DB0B 309 18:59:48.59 DSNUUGMS - MSG_CRE_DT_TM TIMESTAMP WITH TIME ZONE
EXTERNAL,
 DSNU650I -DB0B 309 18:59:48.59 DSNUUGMS - BK_TO_CSTMR_STMT XML)
 DSNU253I 309 18:59:48.65 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLE XMLR4.BK_TO_CSTMR_STMT
 DSNU252I 309 18:59:48.65 DSNUUNLD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS
UNLOADED=1 FOR TABLESPACE DSN00242.BKRTORCS
 DSNU250I 309 18:59:48.66 DSNUUNLD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU010I 309 18:59:48.66 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

From performance point of view, in general HFS is much better than PDS for file references.
Binary XML is significantly better than textual XML. The best performing combination is
SPANNED with BINARYXML.
224 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
9.17 DSNTIAUL

Like the UNLOAD utility, the DSNTIAUL sample program also provides two ways to handle
XML data:

� Unload XML columns as normal data columns to the SYSRECxx file.

� Unload XML columns to a separate file.

Unload LOB data as normal data columns (SQL parameter)
As the maximum record length of a sequential file in z/OS is 32 KB, this method can only be
used if the total record size of the data to be unloaded does not exceed 32 KB. The XML
fields are unloaded together with the other selected data fields to the output file with a
maximum record length of 32 KB.

In most cases, this method is only used if the XML documents in the table are small.

We demonstrate this with the table XMLR4.BK_TO_CSTMR_STMT defined in Example 4-1
on page 52.

In the first case, we execute the JCL as shown in Example 9-28.

Example 9-28 DSNTIAUL with SQL parameter

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//JOBLIB DD DSN=DB0BT.SDSNLOAD,DISP=SHR
//DSNTIAUL EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB0B)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB10) PARMS('SQL') -
LIB('DB0BM.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSREC00 DD DSN=XMLR4.DB0B.DSN8UNLD.SQL.SYSREC00,
// DISP=(MOD,CATLG),UNIT=3390,
// SPACE=(CYL,(100,100))
//SYSPUNCH DD DSN=XMLR4.DB0B.DSN8UNLD.SQL.SYSPUNCH,
// DISP=(MOD,CATLG),UNIT=3390,
// SPACE=(CYL,(1,1))
//SYSIN DD *
SELECT BK_TO_CSTMR_STMT
FROM XMLR4.BK_TO_CSTMR_STMT ;
As a result, we get an FB sequential data set SYSREC00 with a LRECL and BLKSIZE of 32,753
bytes with BK_TO_CSTMR_STMT beginning in position 1.
DSNT490I SAMPLE DATA UNLOAD PROGRAM
DSNT505I DSNTIAUL OPTIONS USED: SQL
DSNT503I UNLOAD DATA SET SYSPUNCH RECORD LENGTH SET TO 80
DSNT504I UNLOAD DATA SET SYSPUNCH BLOCK SIZE SET TO 27920
DSNT506I INPUT STATEMENT WAS NOT A FULL SELECT ON A SINGLE TABLE. LOAD STATEMENT WILL NEED
MODIFICATION.
DSNT503I UNLOAD DATA SET SYSREC00 RECORD LENGTH SET TO 32760
DSNT504I UNLOAD DATA SET SYSREC00 BLOCK SIZE SET TO 32760
DSNT495I SUCCESSFUL UNLOAD 1 ROWS OF TABLE TBLNAME
The job ends with a return code of RC=4.

NOTE:
The first few characters in the unloaded SYSREC00 data set are shown below:
Chapter 9. Utilities with XML 225

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
...Ü<?xml version="1.0" encoding="IBM037"?><Document xmlns:xsi="http://www.w3.or
001F46A994A89A89977F4F748989889877CCDFFF7664C98A989A4A999A7AA8778AA9766AAA4AF499
001CCF74305592965EF1B0F055364957EF924037FFEC46344553074352A729EF8337A11666B63B69
DSNTIAUL generates in the SYSPUNCH data set the following LOAD control statement:
LOAD DATA LOG NO INDDN SYSREC00 INTO TABLE TBLNAME
(BK_TO_CSTMR_STMT POSITION(1) CLOB)

In the SYSIN DD * if you specify all the column names explicitly as shown below:
SELECT DB2_GENERATED_DOCID_FOR_XML,
 MSG_ID,
 MSG_CRE_DT_TM,
 BK_TO_CSTMR_STMT
FROM XMLR4.BK_TO_CSTMR_STMT ;
DSNTIAUL issues the messages as above including DSNT506I and generates in the SYSPUNCH data
set the following LOAD control statement:
LOAD DATA LOG NO INDDN SYSREC00 INTO TABLE TBLNAME
(DB2_GENERATED_DOCID_FOR_XML POSITION(1) BIGINT NULLIF(9)='?',
 MSG_ID POSITION(10) VARCHAR NULLIF(47)='?',
 MSG_CRE_DT_TM POSITION(48) TIMESTAMP WITH TIME ZONE EXTERNAL(32)
 NULLIF(80)='?',
 BK_TO_CSTMR_STMT POSITION(81) CLOB)

You should edit the LOAD control statement by replacing TBLNAME by the actual table name,
CLOB by XML and POSITION (1) by POSITION (3) or
POSITION (81) by POSITION (83) depending on how you specify the SELECT statement in
DSNTIAUL, include either RESUME YES or REPLACE, and change
INDDN SYSREC00 to INDDN SYSREC.

In the SYSIN DD * if you specify SELECT * FROM XMLR4.BK_TO_CSTMR_STMT ;
DSNTIAUL issues the messages as above excluding DSNT506I, the job ends with a return code
of RC=0, and generates in the SYSPUNCH data set the following LOAD control statement:
LOAD DATA LOG NO INDDN SYSREC00 INTO TABLE BK_TO_CSTMR_STMT
(MSG_ID POSITION(1) VARCHAR NULLIF(38)='?',
 MSG_CRE_DT_TM POSITION(39) TIMESTAMP WITH TIME ZONE EXTERNAL(32)
 NULLIF(71)='?',
 BK_TO_CSTMR_STMT POSITION(72) CLOB)
Notice the DB2_GENERATED_DOCID_FOR_XML column is not included.

You should edit the LOAD control statement by replacing CLOB by XML and
POSITION (72) by POSITION (74), include either RESUME YES or REPLACE, and change INDDN
SYSREC00 to INDDN SYSREC.

Unload XML data to a separate file (LOBFILE parameter)
This is the recommended method introduced since DB2 9. With this method, the XML values
are unloaded to a different file than the normal SYSRECxx unload files. DSNTIAUL
dynamically creates a sequential data set for each XML document to be unloaded. The name
of the separate file is stored in the normal SYSRECxx unload files together with the other
normal data fields.

DSNTIAUL does this by using the new XML file reference variables introduced since DB2 9.
Each XML file has a name of the form <prefix>.Q<i>.C<j>.R<k>, where:

� <prefix> is a user-specified data set name prefix. <prefix> must conform to the rules for a
z/OS physical sequential data set name and cannot exceed 17 characters.

� Q<i> is the (<i>-1)th query processed by the current DSNTIAUL session. <i> ranges from
0,000,000 to 0,000,099, which corresponds to the limit on the number of queries that can
be processed by a single DSNTIAUL session.
226 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch09.fm
� C<j> is the (<j>-1)th column in the current SELECT statement. <j> ranges from
0,000,000to 0,000,999 (no more than 750 columns are permitted in a table or view).

� R<k> is the (<k>-1)th row FETCHed for the current SELECT statement. <k> ranges from
0,000,000 to 9,999,999.

The data set prefix <prefix> is specified by means of a new DSNTIAUL run-time parameter
called LOBFILE. This is the same parameter that is used when dealing with LOBs.

We demonstrate this with the JCL as shown in Example 9-29.

Example 9-29 DSNTIAUL with LOBFILE parameter

//XMLR4LD JOB (999,POK),'DB0B',CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM SYSAFF=SC63,L=9999
// JCLLIB ORDER=(DB0BM.PROCLIB)
//JOBLIB DD DSN=DB0BT.SDSNLOAD,DISP=SHR
//DSNTIAUL EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB0B)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB10) PARMS('LOBFILE(XMLR4)') -
LIB('DB0BM.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSREC00 DD DSN=XMLR4.DB0B.DSN8UNLD.XML.SYSREC00,
// DISP=(MOD,CATLG),UNIT=3390,
// SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=XMLR4.DB0B.DSN8UNLD.XML.SYSPUNCH,
// DISP=(MOD,CATLG),UNIT=3390,
// SPACE=(CYL,(1,1))
//SYSIN DD *
 XMLR4.BK_TO_CSTMR_STMT

NOTE: In this case, the SYSIN input file contains the name of the base table.

DSNT490I SAMPLE DATA UNLOAD PROGRAM
DSNT505I DSNTIAUL OPTIONS USED: LOBFILE(XMLR4)
DSNT503I UNLOAD DATA SET SYSPUNCH RECORD LENGTH SET TO 80
DSNT504I UNLOAD DATA SET SYSPUNCH BLOCK SIZE SET TO 27920
DSNT503I UNLOAD DATA SET SYSREC00 RECORD LENGTH SET TO 115
DSNT504I UNLOAD DATA SET SYSREC00 BLOCK SIZE SET TO 27945
DSNT495I SUCCESSFUL UNLOAD 1 ROWS OF TABLE XMLR4.BK_TO_CSTMR_STMT

The first few characters in the unloaded SYSREC00 data set are shown below:

..?................................?XMLR4.Q0000000.C0000002.R0000000............
006000000000000000000000000000000006EDDDF4DFFFFFFF4CFFFFFFF4DFFFFFFF000000000000
00F00000000000000000000000000000000F74394B80000000B30000002B90000000000000000000
Notice this data set has only the file name where the XML document is unloaded.
The first few characters in the data set XMLR4.Q0000000.C0000002.R0000000 are:
<?xml version="1.0" encoding="IBM037"?><Document xmlns:xsi="http://www.w3.org/20
DSNTIAUL generates in the SYSPUNCH data set the following LOAD control statement:
LOAD DATA LOG NO INDDN SYSREC00 INTO TABLE BK_TO_CSTMR_STMT
(MSG_ID POSITION(1) VARCHAR NULLIF(38)='?',
 MSG_CRE_DT_TM POSITION(39) TIMESTAMP WITH TIME ZONE EXTERNAL(32)
 NULLIF(71)='?',
 BK_TO_CSTMR_STMT POSITION(72) CLOBF)
Notice the DB2_GENERATED_DOCID_FOR_XML column is not included.
Chapter 9. Utilities with XML 227

7915ch09.fm Draft Document for Review January 9, 2011 1:25 pm
You should edit the LOAD control statement to include either RESUME YES or REPLACE, and
change INDDN SYSREC00 to INDDN SYSREC.

You can also specify SQL as first PARM:

RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) PARMS('SQL,LOBFILE(XMLR4)') -

And you can use an SQL statement as input to SYSIN:

SELECT BK_TO_CSTMR_STMT FROM XMLR4.BK_TO_CSTMR_STMT ;

In both cases, we get a sequential data set SYSREC00 containing the normal data fields and
the names of the XML output files. All of the XML output files have a name of the form
XMLR4.Q0000000.C0000006.R000xxxx with xxxx from 0000 to 5882. They are dynamically
allocated as sequential files with RECFM=VB,LRECL=27994,BLKSIZE=27998, which is the
optimal BLKSIZE for 3390 devices.

9.18 DSN1COPY

You can use DSN1COPY to copy tables from one subsystem to another. When you copy
tables from one subsystem to another, you must ensure that the version information on the
target subsystem matches the version information on the source subsystem.

Restriction: DB2 XML data is condensed by substituting strings by unique IDs. These
unique IDs are stored in the catalog table SYSIBM.SYSXMLSTRINGS and they are not
available in the related XML table space. Therefore it is not recommended to copy XML
table spaces from one subsystem to another using DSN1COPY.
228 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
Chapter 10. XML-related tasks for the DBA

The intent of this chapter is to provide the database administrators (DBA) with an overview of
what they needs to do in connection with XML.

We describe the typical DBA tasks affected by XML by grouping them in the following
sections:

� Tasks regarding system setup
� Tasks regarding object creation
� Housekeeping
� Backup and recovery
� Diagnostics

Many of the DBA tasks are performed using utilities, and for these we include only a brief
overview. Utilities that have additional considerations with the advent of pureXML are covered
in Chapter 9, “Utilities with XML” on page 181.

10
© Copyright IBM Corp. 2011. All rights reserved. 229

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
10.1 Tasks regarding system setup

Before creating and using XML objects, you might need to do some configuration and setup,
such as set up XML schema repository (XSR) for XML validation, size and allocate a
dedicated XML buffer pool and size and adjust the amount of memory available for XML
processing.

10.1.1 Setting up the XSR

Before you can do XML schema validation of your XML documents, you need to set up the
XSR. This involves creating a set of DB2 tables and indexes that store XML schema
information, and a set of stored procedures that operate on the XML schemas that are stored
in the tables.

The major steps to set up the XSR are:

1. Define the XSR tables and indexes.

Installation job DSNTIJRT invokes a program that executes the CREATE DATABASE,
CREATE TABLESPACE, CREATE TABLE and CREATE INDEX statements for the XML
schema repository tables and indexes. After the installation process customizes job
DSNTIJRT, you can run DSNTIJRT without further modification to create those tables and
indexes. Important: Do not drop these objects after you begin to do XML schema
validation. Doing so can cause unexpected behavior.

2. Define the WLM environment and startup procedure for the C language XSR stored
procedures.

3. Define the WLM environment and startup procedure for the Java language XSR stored
procedure.

4. Define the XML schema repository stored procedures to DB2.

5. Bind the packages for the XML schema repository stored procedures.

Installation job DSNTIJRT invokes a program that binds the packages for the XML schema
repository stored procedures. After the installation process customizes job DSNTIJRT, you
can run DSNTIJRT without further modification to bind the packages.

6. Bind the packages for the IBM Data Server Driver for JDBC and SQLJ.

7. Test the XML schema repository setup.

For detailed information, reference “Setting up the XML schema repository” in DB2 10 for
z/OS pureXML Guide, SC19-2981.

Note: The Java stored procedure XSR_COMPLETE needs to run non-APF authorized.
This can be accomplished by adding a non-APF authorized data set to the steplib
concatenation of the WLM procedure.

However, be aware that other Java stored procedures may need to run APF authorized,
so you may need to create a special WLM procedure for XSR_COMPLETE.
230 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
10.1.2 Buffer pool for XML

When you create a table with an XML column or alter a table to add an XML column, DB2
creates the XML table space and indexes implicitly. The buffer pool used for XML table
spaces is always 16 KB.

The DEFAULT BUFFER POOL FOR USER XML DATA field (TBSBPXML subsystem
parameter) specifies the default buffer pool that is to be used for XML table spaces. The
default is BP16K0.

You can alter the BUFFERPOOL property of the XML table space, which supports the altering
to other 16 KB buffer pools only.

10.1.3 Sizing XMLVALA and XMLVALS

You can use the XMLVALA and XMLVALS subsystem parameters to limit the amount of DB2
virtual storage that is used for XML processing. Because XML values are not fixed in length,
and could be very large, DB2 cannot estimate the amount of memory that it needs for
processing SQL/XML and XPath queries before run time. DB2 allocates virtual storage at run
time based on the size of the XML data. For large XML data, the amount of virtual storage
that DB2 requires can grow very large.

If your DB2 subsystem encounters storage constraints because XML values are using too
much memory, set the XMLVALA and XMLVALS subsystem parameters:

� To specify the maximum amount of memory, in KB, for storing XML values for each user,
set XMLVALA. The default is 204800 KB.

� To specify the maximum amount of memory, in MB, for storing XML values for the entire
subsystem, set XMLVALS. The default is 10240 MB.

10.1.4 Be up to date with maintenance

In DB2 9, many enhancements have been introduced through APARs, such as XML index for
joining and some XMLTABLE performance enhancement. It is recommended to apply these
APARs and keep your DB2 system up to date, so you can benefit from these and future
enhancements.

As DB2 utilizes XML System Services for parsing and validating XML documents, attention
should also be paid to any maintenance offered in this area.

See information APAR II14426 for XML service.

10.2 Tasks regarding object creation

When you create tables with XML columns or add XML columns to existing tables, all the
XML objects are created implicitly without any action from the DBA.

However, you need to be aware of the choices that are made for these objects. Some
properties may be inherited directly from the base table, some may be inferred from
properties of the base table, and some may be dependant on default values or values of
DSNZPARMs.
Chapter 10. XML-related tasks for the DBA 231

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
It is a good idea to be aware of how these properties are derived, so you can plan them or
alter them after the objects have been created.

We go through the most important properties in this section.

10.2.1 Creation of table with XML columns

You can create a table with XML columns, or alter a table to add one or more XML column.
When a table with an XML column is created, an XML table space, document ID index and
NODEID index are implicitly created.

For more information about creation of tables with XML columns and the storage structure for
XML data, please reference Chapter 4, “Creating and adding XML data” on page 51.

10.2.2 Alteration of implicitly created XML objects

After creating or adding an XML column, you are able to alter implicitly created XML objects.
however, you can change only some of the properties for the XML objects. The properties can
be altered are listed in Table 10-1.

Table 10-1 Properties can be altered for XML objects

10.2.3 Sizing table spaces

Special consideration has to be paid to sizing table spaces when dealing with XML data in
range-partitioned table spaces. Recall that the type of the base table space dictates the type
of the implicitly created XML table space. The correspondence is shown in Table 10-2.

Objects Description

XML table space You can alter the following properties:
� BUFFERPOOL (16 KB buffer pools only)
� COMPRESS
� PRIQTY
� SECQTY
� MAXROWS
� FREEPAGE
� PCTFREE
� GBPCACHE
� USING STOGROUP
� ERASE
� LOCKSIZE (The only possible values are XML and TABLESPACE.)
� SEGSIZE
� DSSIZE
� MAXPARTITIONS
XML table space attributes that are inherited from the base table space,
such as LOG, are implicitly altered if the base table space is altered.

XML table The ALTER TABLE ALTER PARTITION statement is not supported if the
table contains an XML column.

Index You cannot alter the following properties:
� CLUSTER
� PADDED
� ADD COLUMN
232 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
Table 10-2 Table space types for base and XML tables

For partition-by-growth XML table spaces, there is no correspondence between the partition
in which a particular XML document resides, and the partition of the base table row. The table
spaces grow as needed, and independently of each other.

For partitioned and range-partitioned table spaces, the XML document and the base row
must reside in corresponding partitions. If the base table rows moves partition, so does the
XML document. Therefore, the number of rows fitting into a relational partition is limited by the
number of rows that fit into the XML partition.

The DSSIZE of the XML table space is dictated by a combination of the DSSIZE and page
size of the base table. The exact values are shown in Table 10-3.

Table 10-3 DSSIZE of the XML table space

To understand what impact the decisions made with respect to size and range of partitions, let
us assume that we want to implement the BK_TO_CSTMR_STMT table as a
range-partitioned table with one partition per year. The DDL to create this table is shown in
Example 10-1.

Example 10-1 Creating a range-partitioned table

CREATE TABLESPACE BKSTTS01
 IN BKSTDB01
 USING STOGROUP SYSDEFLT
 DSSIZE 4G
 BUFFERPOOL BP0
 NUMPARTS 3#
CREATE TABLE XMLR2.BK_TO_CSTMR_STMT
 (MSG_ID VARCHAR(35) FOR SBCS DATA
 WITH DEFAULT NULL,
 MSG_CRE_DT_TM TIMESTAMP (6)
 WITH DEFAULT NULL,
 BK_TO_CSTMR_STMT XML
 (XMLSCHEMA ID SYSXSR.CAMT_053_001_02)
 NOT NULL)

Base table space XML table space

Simple Partition-by-growth

Segmented Partition-by-growth

Partitioned Range-partitioned

Partition-by-growth Partition-by-growth

Range-partitioned Range-partitioned

DSSIZE of base
table space

Page size 4K Page size 8K Page size 16K Page size 32K

1 - 4 GB 4 GB 4 GB 4 GB 4 GB

8 GB 32 GB 16 GB 16 GB 16 GB

16 GB 64 GB 32 GB 16 GB 16 GB

32 GB 64 GB 64 GB 32 GB 16 GB

64 GB 64 GB 64 GB 64 GB 64 GB
Chapter 10. XML-related tasks for the DBA 233

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
 IN BKSTDB01.BKSTTS01
PARTITION BY RANGE (MSG_CRE_DT_TM)
 (PARTITION 1 ENDING AT ('2009-12-31T23:59:59.99999'),
 PARTITION 2 ENDING AT ('2010-12-31T23:59:59.99999'),
 PARTITION 3 ENDING AT ('2011-12-31T23:59:59.99999')) #

Now assume that the average size of a BankToCustomerStatement is 4K. The base table is
very small with a maximum row length of 82 bytes.

If we need to store 10,000 bank statements each year, this yields in round numbers

� 10,000 * 82 bytes = 800 KB for the base table space

� 10,000 * 4 KB = 40 MB for the XML table space

In other words, if we just stick with the (default) DSSIZE of 4GB and page size of 4K, we will
have sufficient space for the data.

However, what if instead of 10,000 bank statements, we have 2 million each year? In this
case, the ballpark estimate becomes

� 2,000,000 * 82 bytes = 160 MB for the base table space

� 2,000,000 * 4 KB = 7,8 GB for the XML table space

So even if there is plenty of space for the base table row in each partition using DSSIZE 4G,
the limit of the XML table space partition is reached long before the 2 million rows and this
imposes a limit on the base table as well. An attempt to insert a row when the XML table
space partition is full will result in an SQL code -904, indicating that the XML table space is
unavailable.

The solution is either to use a more granular partitioning key, or to choose a combination of
DSSIZE and page size of the base table space that will give us a larger DSSIZE for the XML
table space.

10.2.4 Compression

Using compression can significantly reduce the amount of disk space needed to store XML
data.

To compress data:

1. Specify COMPRESS YES in your XML table space

– The COMPRESS property of implicitly created XML table space is inherited from base
table.

– To check the COMPRESS property of your table space, query the COMPRESS column
of SYSIBM.SYSTABLEPART catalog table

– You can ALTER TABLESPACE with COMPRESS clause to change the COMPRESS
property

2. Run REORG utility

If the XML table space has the COMPRESS YES attribute, the XML data will be
compressed

With DB2 10 NFM, you can turn on compression with ALTER any time and the compression
dictionary is built when you execute:

� INSERT statements
234 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
� MERGE statements
� LOAD SHRLEVEL CHANGE and SHRLEVEL NONE

Additionally, when you INSERT/MERGE/LOAD XML data, a dictionary could be built
specifically for the XML table space if the amount of XML data is large enough, and then the
new inserted XML data will be compressed.

The compression dictionary is built through these if:

� The table space or partition is defined with COMPRESS YES

� The table space or partition has no compression dictionary built yet

� The amount of data in the table space is large enough to build the compression dictionary.

You can also compress the XML indexes as shown in Example 10-2.

Example 10-2 Creating an XML index with compression

CREATE INDEX LEANXML_IX3
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
GENERATE KEY USING XMLPATTERN
'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02"#
/Document/BkToCstmrStmt/GrpHdr/MsgId'
AS SQL VARCHAR(35)
COMPRESS YES#

10.2.5 Registration of schemas

An XML schema consists of a set of XML schema documents. You need to register the XML
schema to DB2 XSR before using it. You can register an XML schema in any of the following
ways:

� Call the following DB2-supplied stored procedures from a DB2 application program

– SYSPROC.XSR_REGISTER: Begins registration of an XML schema.

– SYSPROC.XSR_ADDSCHEMADOC: Adds additional XML schema documents to an
XML schema

– SYSPROC.XSR_COMPLETE: Completes the registration of an XML schema.

� Invoke the following JDBC method from a Java application program

– com.ibm.db2.jcc.DB2Connection.registerDB2XmlSchema

� Invoke the following commands from the Command Line Processor

– -REGISTER XMLSCHEMA

– -ADD XMLSCHEMA DOCUMENT

– -COMPLETE XMLSCHEMA

We show how to register XML schema using CLP in Example 6-2 on page 89, and how to
register XML schema using a Java program in Example 7-4 on page 138. Refer to DB2 10 for
z/OS pureXML Guide, SC19-2981 for more information.

Note: Real time statistics (RTS) keeps track of the amount of data for the threshold of
online compression. Apply the PTF for APAR PM22081 to correct RTS errors when LOAD
RESUME is executed on partitioned table spaces.
Chapter 10. XML-related tasks for the DBA 235

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
Naming standard and convention for schemas
As we saw in Chapter 5, “Validating XML data” on page 73, the XML schema repository offers
a wide range of choices for specifying XML schemas when validating XML documents against
a schema, both for automatic and explicit validation.

You have the option of specifying a schema using

� Schema name

� URI and location hint

� Namespace

Although it is certainly convenient to be able to choose the option you prefer, it is probably a
good idea to decide and document what method you want to use in your company. This
should help ensure that it is always crystal clear which XML schema(s) you are working with,
without having to go through the quite elaborate rule set for schema selection.

In addition, it might be worth while to define a naming standard for the XML schemas taking
into account that XML schemas may evolve over time and require several versions available
in the XSR at a given time.

Neither of these are technical tasks, but they often lie within the responsibilities of the DBA
and may be good to plan for when starting a new XML project.

10.2.6 Creation of XML indexes

You can create an index on an XML column for efficient evaluation of Xpath expressions to
improve performance of queries on XML documents. In contrast to simple relational indexes
where index keys are composed of one or more table columns that you specify, an XML index
uses a particular Xpath expression to index paths and values in XML documents stored in a
single XML column.

You should specify a data type for every XML index. XML indexes support the data types
VARCHAR, DECFLOAT, DATE, and TIMESTAMP. In Example 10-3 it is shown how to create
an XML index.

Example 10-3 Create an XML index

CREATE INDEX IXMLNTRY
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
GENERATE KEY USING XMLPATTERN
'declare default element namespace
 "urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

/Document/BkToCstmrStmt/Stmt/Ntry/BookgDt/DtTm'
AS SQL TIMESTAMP

For performance considerations for XML indexes, reference 11.3, “Managing access path
selection with XML” on page 249.

10.2.7 Grants and authorizations required

When a table is created with an XML column, an XML table space, XML table, and a NODEID
index and document ID index are implicitly created. The privilege set must include the
following privileges:
236 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
� The USE privilege on the buffer pool and the storage group that is used by the XML
objects.

� If the base table space is explicitly created, CREATETS is also required on the database
that contains the table (DSNDB04 if the database is implicitly created)

If you add an XML column, the privilege set requires the CREATETAB and CREATETS
privileges on the database that contains the table (DSNDB04 if the database is implicitly
created), and USE privilege on the buffer pool and the storage group that is used by the XML
objects.

The implicitly created objects are owned by the owner of the base table.

10.3 Housekeeping

For XML objects maintenance, You can use IBM DB2 for z/OS utilities. The utilities handle
XML objects similar to the way that they handle LOB objects.

� CHECK DATA

In addition to normal checking, the CHECK DATA utility also checks XML relationships, the
integrity of XML documents and system-generated indexes that are associated with XML
data.

� LOAD/UNLOAD

The input/output data can be in the textual XML format or the binary XML format.

If you load data into an XML column that has an XML type modifier, the LOAD utility
validates the input data according to the XML schema that is specified in the XML type
modifier.

Note that by using spanned recors, you are able to unload and load XML documents with
a file size in excess of 32 KB with good performance. Note that the crossloader capability
of the LOAD utility does not support the XML data type.

� REORG TABLESPACE

You can use the REORG TABLESPACE utility to reorganize XML objects.

When you run REORG on an XML table space that supports XML versions, REORG
discards rows for versions of an XML document that are no longer needed.

� RUNSTATS

You can use the RUNSTATS utility to gather statistics for XML objects.

Note that in the physical implementation, an XML document may take up more than one
row in the XML table space, so for the real time statistics of XML table spaces in
SYSIBM.SYSTABLESPACESTATS, the number of rows is reported, not the number of
XML documents.

For more information about utility support, please reference Chapter 9, “Utilities with XML” on
page 181

10.4 Backup and recovery

Like a LOB column, an XML column holds only a descriptor of the column. The data is stored
separately. Backup and recovery of XML objects is quite similar to backup and recovery of
LOBs. A base table space must be kept consistent with its’ associated LOB or XML table
Chapter 10. XML-related tasks for the DBA 237

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
spaces with respect to point-in-time recovery, so for backup and recovery, you should group
all related objects together.

Use the REPORT utility with TABLESPACESET option to identify related objects which may
include objects related by RI or auxiliary relationships to one or more XML and LOB table
spaces. An example can be found at 9.14, “REPORT” on page 215.

You can also use LISTDEF with XML/LOB and RI option to include related objects as a list.
Reference 9.6, “LISTDEF” on page 193 for more detail.

10.5 Diagnostics

When dealing with errors in XML table spaces and related objects, most of the problems are
the same as with any other table spaces and the usual techniques can be applied to diagnose
and solve the problems.

The following are errors that are specific to XML:

� Corrupted XML document(s). There may be missing rows in a document (which can be
made up of more than one row) or structural defects to the nodes.

� Inconsistencies between XML table space and NODEID index. An index entry may exist
but no corresponding XML document and vice versa.

� Inconsistencies between base table space and NODEID index. A reference may exist in
the base table but no corresponding entry in the NODEID index, and vice versa.

� XML documents have not been validated against any schema in an XML type modifier.

� One or more XML documents are not valid according to any of the schemas in the XML
type modifier.

10.5.1 Identification of XML related objects

There are several ways of determining the objects related to the XML column:

� Run the REPORT TABLESPACE utility to identify all objects belonging to base table space
set and XML table space set. An example is shown in Example 9-20 on page 215.

� Query the DB2 catalog to obtain information of all the related objects. Various example
queries are shown in 4.4, “Catalog queries to gather information” on page 63.

� Use LISTDEF with keyword ALL or XML in conjunction with the utilities to include all or all
XML related index and/or table spaces. For more information, refer to 9.6, “LISTDEF” on
page 193.

10.5.2 Investigating XML specific errors

In problem analysis one of the first actions is often to do a display of the table and index
spaces in question to determine whether the XML or base table is in a restricted state.

The output of a display command is shown in Example 10-4. We see that all spaces are in
status RW except the XML table space which is in the restricted state CHKP, check pending.
The XML table space is easily identifiable with the type of XS.

Example 10-4 Display database command shows XML table space in AUXW

DSNT360I -DB0B ***********************************
238 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
DSNT361I -DB0B * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB0B ***********************************
DSNT362I -DB0B DATABASE = DSN00155 STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB0B
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
BKRTORCS TS 0001 RW
BKRTORCS TS RW
XBKR0000 XS 0001 CHKP
XBKR0000 XS CHKP
IRDOCIDB IX L0001 RW
IRDOCIDB IX L* RW
IRNODEID IX L0001 RW
IRNODEID IX L* RW
IXMLNTRY IX L0001 RW
IXMLNTRY IX L* RW
******* DISPLAY OF DATABASE DSN00155 ENDED **********************
DSN9022I -DB0B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

There are only three restricted states that are related specifically to XML, and they may
appear in other contexts too with another meaning. These are listed in Table 10-4.

Table 10-4 Restricted states related to XML

Run the CHECK DATA utility with the INCLUDE XML TABLESPACES keyword to determine
the exact cause of any of these states, and what further action to take. For a comprehensive
description of the XML-related capabilities of the CHECK DATA utility, refer to 9.1, “CHECK
DATA” on page 182.

Run the CHECK INDEX utility if you suspect errors in any of the indexes, like missing or
extraneous entries. This is applicable to the DOCID index on the base table, and the NODEID
index on the XML table, as well as any XML value indexes you have created yourself. For
more information on the CHECK INDEX utility, refer to 9.2, “CHECK INDEX” on page 186.

Run the REPAIR utility with the LOCATE KEY and LOCATE RID keywords to ascertain
whether certain rows and/or index entries exist. LOCATE KEY can be used to locate a row in
a base table using the DOCID key in the DOCID index. LOCATE RID can be used to locate a
row in the XML table space using the RID of the row. Example 10-5 shows how to use the

Restricted state Cause Comment

AUXW on base table Invalidated XML column as a
result of running
CHECK DATA AUXERROR
INVALIDATE

Can also be related to a LOB
column of the table.

ACHKP on base table Invalid XML column detected
when running
CHECK DATA AUXERROR
REPORT

Can also be related to a LOB
column of the table.

CHKP on XML table Validation of documents have
not been made though required
because of change in XML type
modifier
Chapter 10. XML-related tasks for the DBA 239

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
utility to locate a row in base table space BKRTORCS with DocID =2, and a row in the XML
table space with RID X'00000201'.

Example 10-5 REPAIR LOCATE control statements for diagnosing XML inconsistencies

REPAIR LOCATE TABLESPACE DSN00155.BKRTORCS
KEY(2) INDEX XMLR2.I_DOCIDBK_TO_CSTMR_STMT DUMP

REPAIR LOCATE TABLESPACE DSN00155.XBKR0000
RID X'00000201' DUMP

10.5.3 Correcting XML data

Depending on the type of error or inconsistency identified, there are different ways of
correcting the data.

If the errors were identified by the CHECK DATA utility, you can use the CHECK DATA utility to
correct the problems.

� Run CHECK DATA with SHRLEVEL REFERENCE and XMLERROR INVALIDATE. This
will cause the utility to

– delete invalid XML documents and move them to exception tables

– invalidate XML entries in the base table

� Run CHECK DATA with SHRLEVEL CHANGE and XMLERROR INVALIDATE. This will
cause the utility to generate control statements for you to execute, including

– REPAIR LOCATE DOCID DELETE statements for deleting orphan rows

– REPAIR LOCATE RID REPLACE statements for invalidating entries in the base table

– REBUILD INDEX for the NODEID index if this is in error.

For details on the CHECK DATA utility and the options for correcting the data, refer to 9.1,
“CHECK DATA” on page 182.

If the errors were identified by the CHECK INDEX utility, possibly in conjunction with REPAIR
LOCATE, the appropriate course of action is shown in Table 10-5.

Table 10-5 Corrective action after running CHECK INDEX

Note: Currently open APAR PM26592 should be applied to allow for use of BIGINT data
type in REPAIR LOCATE KEY.

Notes:

PTF UK62510 for APAR PM24947 should be applied for the CHECK DATA SHRLEVEL
CHANGE utility to generate REPAIR statements.

APAR PM21834 (currently open) provides various usabililty fixes for DB2 utilities including
CHECK DATA.

Problem Solution

Error in DocID index Ensure table space is at correct level
Rebuild index
240 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch10.fm
Finally, you may need to reset the restrictive status by running CHECK DATA SHRLEVEL
REFERENCE, or by using the REPAIR utility as shown in Example 10-6.

Example 10-6 Using REPAIR utility to clear ACHKP status on table space

REPAIR OBJECT
SET TABLESPACE DSN00155.BKRTORCS NOAUXCHKP

Mismatch between NODEID index or
user-defined XML index and XML table space,
and index is correct.

Use REPAIR LOCATE RID DELETE to remove
orphan row

Mismatch between NODEID index or
user-defined XML index and XML table space,
and XML table space is correct

Rebuild index

Problem Solution
Chapter 10. XML-related tasks for the DBA 241

7915ch10.fm Draft Document for Review January 9, 2011 1:25 pm
242 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
Chapter 11. Performance considerations

In this chapter we provide a checklist of the major (additional) performance considerations
when deploying an application that uses pureXML. The checklist covers

� Choice of relational or XML storage
� XML Schema validation
� Managing access path selection with XML
� Encourage use of native SQL DB2 routines
� External language programming
� DBA considerations
� SQL/XML coding techniques

11
© Copyright IBM Corp. 2011. All rights reserved. 243

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
11.1 Choice of relational or XML storage

The very first thing to consider is whether native XML is the right choice of storage model for
persisting the data in your new application. DB2 offers three choices:

� Relational-only storage (which we will not discuss further in this chapter)

� XML only storage

� Hybrid storage

11.1.1 XML only storage

The option to store data using tables that only contain columns with the XML data type, is a
totally practical option. The enforcement of XML schemas, combined with the ability to create
XML indexes to enforce uniqueness and XML indexes for performance provides the ability to
implement an XML database with integrity and performance. Figure 11-1 illustrates two
ISO20022 message types, covering the area of payment notifications, implemented as an
XML-only database in DB2.

Figure 11-1 XML-only database design

An XML-only design has a number of potential drawbacks for traditional DB2 users.

1. You cannot define referential integrity constraints between tables based on XML columns,
or XML expressions against the contents of those XML columns.

2. Development and DBA teams would necessarily be forced to think in terms of XML and
XPath expressions for every database interaction that they performed. This would be a
large conceptual shift from traditional relational and XML thinking.

BK_TO_CSTMT_ACCT_RPT

<?xml...><Document xmlns:xsi=...><BkToCstmrAcctRpt><GrpHdr>…....</Document>

<?xml...><Document xmlns:xsi=...><BkToCstmrAcctRpt><GrpHdr>…....</Document>

<?xml...><Document xmlns:xsi=...><BkToCstmrAcctRpt><GrpHdr>…....</Document>

BK_TO_CSTMT_STMT

<?xml...><Document xmlns:xsi=...><BkToCstmrStmt><GrpHdr>…....</Document>

<?xml...><Document xmlns:xsi=...><BkToCstmrStmt><GrpHdr>…....</Document>

<?xml...><Document xmlns:xsi=...><BkToCstmrStmt><GrpHdr>…....</Document>

Other
XML

Indexes

XML
MSGID

Unique Index

DOCID
Index

Other
XML

Indexes

XML
MSGID

Unique Index

DOCID
Index
244 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
XML-only storage would be a radical change for many DB2 users, which might stretch
existing skills beyond their comfort zones. For most DB2 users, some kind of hybrid storage
model will be best, because it will minimise the learning curve for DBAs and developers who
are established relational users, without diminishing the ability to manage XML documents
with pureXML.

11.1.2 Hybrid storage

The ability of DB2 to support a hybrid storage model, as illustrated in Figure 11-2, provides
the best of both worlds to DB2 users. The XML documents can be preserved in their original
state (which may be needed for compliance reasons in some cases) and can be accessed at
any level of detail using SQL/XML. Optionally, those data elements that benefit from being
stored in relational format can be stripped out and stored in relational columns. (But don’t strip
XML data elements out into relational storage, unless there is a clear benefit in doing so).

Figure 11-2 Hybrid storage model

The programming examples in this book (SQL procedures, COBOL and Java) have all shown
how easy it is to use the SQL/XML language to strip out data elements of interest, and store
them as relational columns. While this is not necessary to achieve a high performance
database, it can be desirable for many other reasons.

� Referential Integrity can be defined on the indexed relational columns.

� The database is easier to work with, because it can be represented easily in the familiar
representation of Entity-Relationship diagrams, which is the conceptual bedrock upon
which traditional relational systems have been designed for years.

� The contents of the XML documents can be accessed with ease, using the power of the
SQL/XML language.

BK_TO_CSTMT_ACCT_RPT

<?xml...><Docu….

<?xml...><Docu….

<?xml...><Docu….

Other
XML

Indexes

Reln
MSGID

Unique Index

DOCID
Index

MSGID

Msgid_1

Msgid_2

Msgid_3

CRE_DT_TM

timestamp1

timestamp2

timestamp3

Other
Relational
Indexes

BK_TO_CSTMT_STMT

<?xml...><Docu….

<?xml...><Docu….

<?xml...><Docu….

Other
XML

Indexes

Reln
MSGID

Unique Index

DOCID
Index

MSGID

Msgid_1

Msgid_2

Msgid_3

CRE_DT_TM

timestamp1

timestamp2

timestamp3

Other
Relational
Indexes

BK_TO_CSTMR_ACCT_RPT

BK_TO_CSTMR_STMT
Chapter 11. Performance considerations 245

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
� Developers need not become super-skilled in XML expressions, particularly if the
database is implemented with appropriate use of stored procedures and user defined
functions (to encapsulate XML functions in callable SQL routines). This will allow the
developers to work very effectively with the database using “plain old SQL” for much of the
time.

� Data structures that are naturally best supported in an XML structure can be stored
unaltered in DB2 in their optimal physical representation, and can be accessed efficiently
using XML expressions in SQL/XML.

� The inherent strengths of the XML structures can still be fully utilized with SQL/XML,
regardless of the fact that we have also stored some of the data elements in relational
columns to make some development and DBA tasks easier.

� Relational and XML data can be joined and processed together with ease and good
performance. New applications can be written to fully utilise pureXML, while being able to
integrate seamlessly with traditional relational structures.

� Data that is very stable in terms of its structure (low variability) and accessed very often
can be a good fit for extraction into relational columns. More variable parts of the data are
better kept in XML.

Dedicated use of XML columns
Another database design consideration is whether it's better to have one XML column to
contain XML documents of differing XML schemas, or multiple columns that each contain
documents of one specific XML schema.

Either approach is valid. This is a trade-off between database management complexity and
performance.

If you have multiple XML columns to store XML documents of different XML schemas, then
you will create many more database objects (table spaces, data sets, DOCID indexes,
NODEID indexes, etc....). The logical data model is easier to understand if different XML
document types are stored in their columns. However, the physical data model will have a
larger number of objects to track.

XML Indexes and performance may suffer if you combine multiple XML document types into a
single DB2 column. If you create an XML index on an XML column with multiple XML
schemas then the costs of index creation will increase, even if many of the documents do not
contain matching nodes. Additionally, if you are not careful about XPath expressions and
namespaces, you might get unexpected results if you get an index hit against an XML
document type that you were not targeting in your application.

As a rule of thumb, it is usually best to store XML documents in DB2 columns that are
dedicated to documents of that particular XML schema.

11.1.3 Natural fit for XML storage

Some data are an obvious natural fit for pureXML storage. The ISO20022 standard for
banking messages used in the application scenarios of this book is a good example. These
messages are defined by ISO as a standard for messaging for european banking. It will be
important to store these messages in exactly the way that they were transmitted, because
they are a record of financial transactions. DB2 pureXML allows us to store these messages
in their original format, and also allows us to query and interrogate them using the power of
SQL/XML, and the efficiency of pureXML.
246 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
There are a large range of other industry standard models for XML storage and XML
messaging, particularly in financial services, but also in other industries. We may wish to
store in a persistent database for both query and transactional purposes. DB2 pureXML
provides a good foundation for such systems.

Many data structures for in-house systems would be best implemented using XML. The
example of insurance quotations comes to mind. The range of data collected for a car
insurance proposal can vary dramatically depending on the vehicle, the applicants, the usage
of the vehicle, the claims history and so on. Do we really want to design a relational database
with 50 or so tables to store millions of internet quotes, when they are sparsely populated and
only 1% of them will be taken forward into a purchased policy? Surely this is an example of an
in-house data structure that should implemented in XML. Price comparison sites must surely
use XML documents and web services to communicate between different insurers. With
pureXML these documents could be stored for efficient retrieval, and indexed and queried in
their native format for patterns in client behavior.

The following is a list of the data characteristics that tend to make XML a good choice for data
storage.

� Hierarchical data

The XML data model is naturally hierarchical, which means that it will tend to be a good fit
for data that is naturally hierarchical.

� Semi-structured data

XML schemas can be rigid or loose as appropriate. They can have rigid constraints for
some XML nodes, and looser constraints for other XML nodes as appropriate, to
accommodate the appropriate level of structure that is required.

� Document/narrative data

XML is always accused of being verbose!

� Many different schemas

The ISO20022 standard is a case in point. It contains hundreds of schemas. The
development cost of building relational database schemas for all these message
structures would be astronomical. With pureXML the number of tables and columns could
be very small, because the data structures are managed in the XML schemas, with very
little DBA impact.

� Large schemas (with sparsely populated attributes/elements)

The ISO20022 schemas are very large to provide a generic schema that could cater for a
very wide range of payments scenarios. The average personal banking customer will only
use a subset of the facilities in that schema. No additional processing or storage costs are
incurred for leaving the majority of the XML nodes empty of data. XML indexes will only
contain entries for those XML patterns where an indexed element or attribute is found,
thus minimizing the space required for XML indexes.

� Quickly evolving schema

If a relational database schema changes, it can take months for the development, testing
and QA processes to introduce a new release of the application. A major part of that
release time is taken up by database change management. This part would be
substantially reduced if all you had to do was add a new schema document to the existing
XSR schema, to define a new release of the XML schema. Furthermore, database
schema changes do not necessarily require data migration: the application can decide
whether an XML document which is compliant with the old schema release needs to be
modified to accommodate the new schema release.

� Forms-based applications
Chapter 11. Performance considerations 247

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
If the data from a forms based application is created in XML, why would you want to
convert it to relational for storage?

� Data with nulls and multiple values

XML storage is a way for DB2 to support multi-value data storage.

� Existing industry standard schemas for XML

The ISO20022 examples in this book have shown how easy it is to incorporate an existing
XML standard into DB2, and use it with a minimal amount of database administration
work. There are many other industry-related XML standards, some of which are listed in
chapter 1.

If the data for your application fits some or all of these characteristics, then pureXML could be
the best physical storage option. If you choose pureXML storage, then consider carefully the
optimal hybrid storage design, which makes development tasks easy, and allows the
strengths of the XML model to be fully utilized.

11.2 XML Schema validation

Having chosen pureXML for your storage model, and the appropriate degree of hybrid
storage, the next questions are whether and when to perform schema validation. The primary
considerations here are

� Data integrity is paramount. XML schemas are the method by which the integrity rules of
XML data are defined, and XML schema validation is how they are enforced.

� Schema validation is CPU intensive, so we don’t want to validate XML documents
unnecessarily or repeatedly.

� XML schema validation is a candidate for zIIP and zAAP redirect, which means that XML
schema validation need not increase your general purpose CPU resource consumption.

Some initial guidance follows:

� Don’t take chances with data integrity. If you are not sure that an XML document is valid
(perhaps if it was received from an external source, which will be a common scenario),
then you should validate it before you commit it to your database.

� If you know that an XML document has been validated against its schema (perhaps
because it was validated in WebSphere Message Broker before being stored in DB2) then
do not re-validate it just for the sake of it.

� In scenarios where you will always want to perform schema validation, ensure that the
DB2 table is defined with an XML type modifier, so that XML validation cannot be
bypassed.

� In scenarios where the some, but not all, of the XML documents have been validated
before they are presented to DB2, do not define the DB2 table with an XML type modifier.
In this case, make use of the DSN_XMLVALIDATE function to perform validation only
where necessary.

� You can optionally control whether certain users or programs need to perform XML
validation by restricting access to the base DB2 table, and encapsulating write access
(with or without XML schema validation calls) to the DB2 table within stored procedures or
user defined functions. Access to these routines and functions can be granted to
controlled groups as appropriate.

� You could implement automated XML validation in test and quality assurance
environments in order to flush out XML data quality issues before an application is
248 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
deployed to the production environment. The amount of XML validation that is enforced in
a production environment with higher transaction volumes could be set to a lower level if
the XML documents in a production environment are known to be valid.

It is worth noting that the XML validation process (whether invoked manually via
DSN_XMLVALIDATE, or automatically via DDL table modifier) always requires a string data
type as input. If you invoke XML schema validation against an XML data type, then the
validation first converts the XML document to a string value, and then performs XML schema
validation. Validation using binary XML is not yet supported.

You should also monitor zIIP and zAAP utilization, because XML processing is 100% eligible.
A discussion paper about zIIP and zAAP monitoring is available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101227

11.3 Managing access path selection with XML

XML indexes can be used instead of relational indexes, or in addition to relational indexes.
The critical consideration is that DB2 indexes (of one sort of the other) are used to eliminate
the retrieval and searching of a large number of XML documents. If scanning a relational table
space is bad, then the prospect of scanning and processing an XML table space as well
would be far worse.

The principles of designing access paths are no different from relational access path
selection.

� XML indexes are B-tree structures just like relational indexes
� The DB2 Optimizer will consider using both XML and relational indexes based on their

attractiveness
� The attractiveness of XML indexes is based on largely the same measures as relational

indexes. (cardinality, filter factors etc... that you will find in the DB2 catalog)

The best way of approaching the subject of XML indexes for access path selection is to be
aware of the differences that exist between XML index usage and relational index usage, and
add this knowledge to traditional quality assurance processes that you already use for access
path selection.

11.3.1 Differences between XML and relational indexes

The purpose of an XML index is to retrieve a number of DOCID values, which will be used to
perform filtering of qualifying rows in a table as shown in Figure 11-3. The subsequent table
access will be performed via the index on hidden DB2_GENERATED_DOCID_FOR_XML
column.
Chapter 11. Performance considerations 249

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101227

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
Figure 11-3 Physical access path using an XML Index.

XML indexes are created on a XML Pattern (examples of XML patterns are provided shortly).
The result of that XML pattern yields a result (which may be very variable in nature,
depending on the content of the XML document and the constraints of an XML schema).

The differences between XML and relational indexes are:

� Relational indexes may be defined on one or more relational columns. XML Indexes can
only be defined on one XML element or attribute (using an XML pattern expression)

� Relational indexes always have one index entry for every row in a table. However XML
indexes are much less prescriptive. XML indexes are based on an XML pattern. An XML
pattern may occur any number of times in an XML document. So, XML Indexes may
contain 0, 1 or many entries for each row in the table.

� Relational indexes are always based on the data types of the column(s) that they are
defined on. The data types found at the locations of an XML pattern may be many and
varied unless an appropriate XML schema is enforced. XML indexes are defined based on
a mapping to a particular data type, but whether or not the data type that is found at that
location can be cast to that data type for an index match to be achieved depends on the
degree to which the XML schema constrains the data contents.

� Relational Indexes can be used to support table clustering. XML indexes may not be used
for table clustering support.

Having understood the nature of XML indexes and how they differ from relational indexes, we
must now use that understanding to consider how to design our XML indexes.

11.3.2 XML index design

The differences between XML indexes and relational indexes lead to a set of XML index
design considerations which follow:

BK_TO_CSTMT_STMT

<?xml...><Docu….

<?xml...><Docu….

<?xml...><Docu….

Other
XML

Indexes

Reln
MSGID

Unique Index

DOCID
Index

MSGID

Msgid_1

Msgid_2

Msgid_3

CRE_DT_TM

timestamp1

timestamp2

timestamp3

Other
Relational
Indexes

BK_TO_CSTMR_STMT

SQL
Access
Path
250 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
XML Index patterns
A wide range of XML patterns can be used in XML indexes.

At the most restrictive end of the spectrum are “lean” indexes. The index in Example 11-1 is
targeted at a data element in a specific XPath location, which is cast to a specific relational
data type. In this example an index is built based on mapping the data elements at XPath
/Document/BkToCstmrStmt/GrpHdr/MsgId and casting whatever is found there to
Varchar(35). Note: XMLPATTERNS must define the appropriate namespace if the Documents
contain a namespace declarations.

Example 11-1 A lean XML index

Create index LEAN_XMLIX
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
Generate Key using XMLPATTERN 'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

/Document/BkToCstmrStmt/GrpHdr/MsgId'
as SQL VARCHAR(35) ;

At the least restrictive end of the spectrum are “heavy” indexes. The index in Example 11-2 is
targeted at any occurrence of a data element called MsgId within the entire document.

Example 11-2 A heavy XML index

Create index HEAVY_XMLIX
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
Generate Key using XMLPATTERN 'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

//MsgId'
as SQL VARCHAR(35) ;

Choosing lean or heavy XML indexes is a physical design trade off. You want to maximise the
filter factor of every index, but you might be prepared to compromise the filter factor if you can
get away with a smaller number of indexes.

When you create your first XML index, you will want to get some confirmation about whether it
is doing the task that you want it to do. The obvious way to do this is to explain a query that
should benefit from the index, and see if the index is selected by the optimizer.

Consider the “silly” XML index in Example 11-3. This index was created with an
XMLPATTERN that did not actually match any nodes in the XML document, because of a
typographical error in the xpath expression.

Example 11-3 A “silly” XML index

Create index SILLY_XMLIX
ON BK_TO_CSTMR_STMT(BK_TO_CSTMR_STMT)
Generate Key using XMLPATTERN 'declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";

/Document/BkToCstmrStmt/MsgId'
as SQL VARCHAR(35) ;

If you find that the index is not selected, and you can’t figure out why the optimizer is not
choosing the index, then you should take a moment to check the contents of
SYSIBM.SYSINDEXES. The table snapshot in Example 11-4 shows a subset of the catalog
Chapter 11. Performance considerations 251

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
statistics for the lean and the heavy indexes that were created in example and example. It
also shows the catalog statistics of another XML index which is based on an XML pattern with
a typographic error.

� The table has 5 rows, each with an XML document

� The lean XML index has a cardinality of 5, because it is based on an XPath expression
that identifies the MsgId data element, which happens to be unique

� The heavy XML index has a cardinality of 24, because the MsgId data element is repeated
multiple times in a typical Bk_To_Cstmr_Stmt message

� The “silly” index has a cardinality of 0!

Figure 11-4 Catalog query to sysibm.sysindexes

The fact that FIRSTKEYCARDF and FULLKEYCARDF are zero is the warning alarm that
tells you that the index did not point to any matches at all in any of the XML documents in the
table. When this happens, you can deduce that you have an error in your XML pattern in the
index definition. Check the XML pattern, correct it, recreate the index, run RUNSTATS and
review the cardinality statistics until you get a sensible number.

This is a very useful way to check that the index you have created is based on an XML pattern
that finds hits in the data. This example illustrates one of the differences between relational
indexes and XML indexes very well. It is impossible to create a relation index that doesn’t
have a pointer to every row in the table. But it is very possible to have a perfectly valid XML
index that points to zero rows in the table.

As an aside, there is a learning curve for the SQL programmer to become comfortable with
writing XML expressions such as XMLTABLE, XMLQUERY and XMLEXISTS. If you code an
invalid SQL/XML statement you will receive an SQL error (such as SQLCODE -104) which
will usually contain some helpful guidance as to what is wrong with your statement. What can
be more frustrating is when you code an SQL/XML statement that is valid, but it returns no
rows. The two most common causes of getting no rows are XPath expressions containing a

---------+---------+---------+---------+---------+---------+---------+---------
select

substr(creator,1,5) concat '.' concat substr(name,1,23) as IndexName,
int(firstkeycardf) as firstkeycardf,
int(fullkeycardf) as fullkeycardref

from sysibm.sysindexes
where creator = 'XMLR3' and
tbname = 'BK_TO_CSTMR_STMT'

-- yields

---------+---------+---------+---------+---------+---------+---------+---------
INDEXNAME FIRSTKEYCARDF FULLKEYCARDREF
---------+---------+---------+---------+---------+---------+---------+---------
XMLR3.HEAVY_XMLIX 6 24
XMLR3.I_DOCIDBK_TO_CSTMR_STMT 5 5
XMLR3.LEAN_XMLIX 5 5
XMLR3.RELN_IX1 5 5
XMLR3.SILLY_XMLIX 0 0
DSNE610I NUMBER OF ROWS DISPLAYED IS 5
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------
252 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
typographic error, and incorrect namespace declarations. These two reasons are also the first
things you should look at when an XML index matches nothing in the table.

XML index maintenance cost
XML indexes are more expensive for insert than relational indexes because DB2 has more
work to perform. Consider inserting a row into a DB2 table with an integer index and an XML
index. Ignoring factors like page splits, the maintenance of the relational index is just a case of
inserting a new entry into the appropriate index leaf page. However, the maintenance of the
XML index requires that the XML document is scanned for zero, one or many matches to the
xmlpattern of the index, as well as the insert of a new value into the index leaf page. The
maintenance of an XML index is similar to the maintenance of an index-on-expression (with
the XPath XMLPATTERN being the expression).

XML indexes are also more expensive for select than relational indexes because two indexes
must be used:

� The NODEID index on the XML table space must be used to find matches for the XML
pattern that is being searched on

� The DOCID index must be used next, to retrieve RIDs to perform table access.

XML indexes should therefore chosen with care, because they will increase the path length of
insert operations more than relational indexes. This statement should NOT be taken to mean
that all searchable data fields should be stripped from XML documents and placed in indexed
DB2 columns. The fact that an XML index adds some extra path length must be balanced
against the flexibility of being able to index directly into any part of a large XML document
without having to maintain a copy of that data element in a separate relational column.

XML index eligibility
There are a number of index eligibility constraints that you need to be aware of when
designing XML indexes. When considering index eligibility, it is always useful to remember
that the purpose of an XML index is to return a small (hopefully) number of DOCID values
which will be used for table access.

XMLEXISTS functions are eligible for index access, provided the XMLEXISTS predicate is
supported by the XML pattern of the XML index. Example 11-4 shows an SQL/XML query
with an XMLEXISTS predicate that could be supported by either the lean or the heavy XML
indexes. In this case, the lean XML index was chosen, as proven by the results of an explain
request.

Example 11-4 Explain for XMLEXISTS

explain plan set queryno = 99 for
select c.msg_id, c.msg_cre_dt_tm

from BK_TO_CSTMR_STMT c
where xmlexists('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$i/Document/BkToCstmrStmt/GrpHdr[MsgId="AAAASESS-FP-STAT002"]'

passing c.BK_TO_CSTMR_STMT as "i");

select
planno, creator, tname, accesstype,
matchcols, accesscreator, accessname, table_type

from XMLR3.PLAN_TABLE where queryno = 99;

PLANNO = 1
CREATOR = XMLR3
Chapter 11. Performance considerations 253

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
TNAME = BK_TO_CSTMR_STMT
ACCESSTYPE = DX
MATCHCOLS = 1
ACCESSCREATOR = XMLR3
ACCESSNAME = LEAN_XMLIX
TABLE_TYPE = T

XMLTABLE without a filtering predicate i is not generally eligible for XML index access. This is
because the result of an XMLTABLE operation is just a table without any filtering of DOCIDs,
unless a predicate is included alongside the XMLTABLE function. Example 11-5 shows the
use of the XMLTABLE function in conjunction with an XMLEXISTS predicate. The access
path is to use the lean XML index to retrieve the DOCIDs, and then to use the table function X
(which is the name assigned to the result of the XMLTABLE function) to retrieve the data
values.

Example 11-5 Explain for XMLTABLE with XMLEXISTS

EXPLAIN PLAN SET QUERYNO = 88 FOR
SELECT X.MSG_ID, X.CRE_DT_TM FROM BK_TO_CSTMR_STMT as C,

XMLTable(XMLNAMESPACES(DEFAULT
'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',
'$d/Document/BkToCstmrStmt'

PASSING c.BK_TO_CSTMR_STMT as "d"
COLUMNS

"MSG_ID" VARCHAR(35) PATH './GrpHdr/MsgId/text()',
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm/text()') AS X

where xmlexists('declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$i/Document/BkToCstmrStmt/GrpHdr[MsgId="AAAASESS-FP-STAT002"]'
passing c.BK_TO_CSTMR_STMT as "i");

select
planno, creator, tname, accesstype, matchcols,
accesscreator, accessname, table_type

from XMLR3.PLAN_TABLE where queryno = 88;

PLANNO = 1
CREATOR = XMLR3
TNAME = BK_TO_CSTMR_STMT
ACCESSTYPE = DX
MATCHCOLS = 1
ACCESSCREATOR = XMLR3
ACCESSNAME = LEAN_XMLIX
TABLE_TYPE = T

PLANNO = 2
CREATOR = XMLR3
TNAME = X
ACCESSTYPE = R
MATCHCOLS = 0
ACCESSCREATOR =
ACCESSNAME =
TABLE_TYPE = F
254 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
Another way of getting XMLTABLE to use an XML Index does not require the use of
XMLEXISTS. You can specify a predicate on an XMLTABLE function, as shown in
Example 11-6, and get XML index access.

Example 11-6 Explain for XMLTABLE with an XML predicate

EXPLAIN PLAN SET QUERYNO = 55 FOR
SELECT X.MSG_ID, X.CRE_DT_TM

FROM BK_TO_CSTMR_STMT as C,
XMLTable(XMLNAMESPACES(DEFAULT

'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',
'http://www.w3.org/2001/XMLSchema-instance' AS "xsi"),
'$d/Document/BkToCstmrStmt[GrpHdr/MsgId="AAAASESS-FP-STAT002"]'

PASSING c.BK_TO_CSTMR_STMT as "d"
COLUMNS

"MSG_ID" VARCHAR(35) PATH './GrpHdr/MsgId',
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm/text()') AS X

select
planno, creator, tname, accesstype, matchcols,
accesscreator, accessname, table_type
from XMLR3.PLAN_TABLE where queryno = 55;

PLANNO = 1
CREATOR = XMLR3
TNAME = BK_TO_CSTMR_STMT
ACCESSTYPE = DX
MATCHCOLS = 1
ACCESSCREATOR = XMLR3
ACCESSNAME = LEAN_XMLIX
TABLE_TYPE = T

PLANNO = 2
CREATOR = XMLR3
TNAME = X
ACCESSTYPE = R
MATCHCOLS = 0
ACCESSCREATOR =
ACCESSNAME =
TABLE_TYPE = F

XMLQUERY is not eligible for XML index access, because the purpose of XMLQUERY is to
return an XML document. XMLQUERY is never used to filter the rows in a table. Hence,
XMLQUERY should in general be used in conjunction with other relational or XML predicates
that will be used for filtering, as illustrated in Example 11-7.

Example 11-7 Explain for XMLQUERY with XMLEXISTS

EXPLAIN PLAN SET QUERYNO = 77 FOR
select xmlquery('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/Stmt' passing BK_TO_CSTMR_STMT as "d")

from BK_TO_CSTMR_STMT C
where xmlexists('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
Chapter 11. Performance considerations 255

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
$i/Document/BkToCstmrStmt/GrpHdr[MsgId="AAAASESS-FP-STAT002"]'
passing c.BK_TO_CSTMR_STMT as "i");

select
planno, creator, tname, accesstype, matchcols,
accesscreator, accessname, table_type
from XMLR3.PLAN_TABLE where queryno = 77;

PLANNO = 1
CREATOR = XMLR3
TNAME = BK_TO_CSTMR_STMT
ACCESSTYPE = DX
MATCHCOLS = 1
ACCESSCREATOR = XMLR3
ACCESSNAME = LEAN_XMLIX
TABLE_TYPE = T

11.4 Encourage use of native SQL DB2 routines

Native SQL stored procedures are probably the second most important DB2 device (after
XML indexes) to ensure good performance and efficiency in your pureXML applications.

Native SQL procedures in DB2 are an incredibly good environment for developing high
performance applications, with or without XML. They are well covered in DB2 9 for z/OS
Stored Procedures: Through the CALL and Beyond,SG24-7604, which explains some of their
strengths as follows:

� Multiple procedural steps can be executed within DB2, eliminating network delays that an
external program would experience making each SQL call and waiting for the results.

� Stored procedures run entirely within the DB2 engine.

� Procedural statements are converted to a native representation that is stored in the DB2
catalog and directory, as it is done with other SQL statements.

� zIIP eligible if they are called through DRDA with TCP/IP, type 4 Java

The advent of pureXML makes native stored procedures even more attractive for the following
reasons:

� You can pass huge arrays of data to and from native stored procedures, via an XML IN or
OUT data type

� You can avoid code page translations for XML processing. A stored procedure can retrieve
an XML document from a DB2 table and work with it, entirely within the DB2 engine. By
contrast, programming environments like COBOL that typically work in EBCDIC will need
to convert the contents of the UTF-8 XML document into EBCDIC, in order to work with
the data.

� XML procedures can receive an external XML document and parse it once, and then
process it with SQL/XML many times without reparsing it.

In addition to the performance benefits of native stored procedures for XML processing, there
are considerable development productivity benefits to be gained from creating frequently
used procedures that encapsulate XML processing, and can be called by a developer using
“plain old SQL”.
256 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
Native stored procedures provide a high performance platform for the programming of SQL
and SQL/XML routines, which can be called from any application environment. Any
application development project using DB2 z/OS should be evaluating which programming
functions should be implemented as native stored procedures, so that they can used and
shared by all applications and application environments that use DB2.

11.5 External language programming

The biggest performance consideration for using external programming languages is the
need to perform codepage translations. Chapter 8, “Using XML with COBOL” on page 155
discusses the fact that COBOL programs will be based in an EBCDIC environment, whereas
the XML is stored in UTF-8. Therefore if you wish to exchange data between COBOL and
pureXML in DB2, you must perform code page translations. Chapter 8 discusses the options
to minimise the amount of code page translation that is performed.

The code page challenge is reduced for Java when using the binary XML format with the IBM
Data Server Driver for JDBC and SQLJ, which presents binary XML data to the application
only through the XML object interfaces.

11.6 DBA considerations

There are a number of database administration considerations that can have a significant
impact on the performance of pureXML applications.

Use DB2 10 NFM universal table spaces
XML versioning support allows XML document updates to be performed with a high level of
concurrency, but it depends on the underlying table spaces being a universal table space
created in DB2 10 new function mode.

XML versioning is the mechanism that allows concurrent read access to an XML document
whilst another user is updating it. It works by maintaining multiple copies of the XML
document in the XML auxiliary table. It depends on the columns in the XML auxiliary table
that are created in DB2 10 NFM. You are disabled from querying the XML table space directly,
but Example 11-8 shows a catalog query and result which shows the columns that get
created automatically in DB2 10 NFM.

Example 11-8 sysibm.syscolumns contents for auxiliary XML table space

select name, colno, coltype, length
from sysibm.syscolumns

where tbcreator = user
and tbname = 'XBK_TO_CSTMR_STMT'

order by colno ;

... yields

NAME COLNO COLTYPE LENGTH
------------ ------ -------- ------
DOCID 1 BIGINT 8
MIN_NODEID 2 VARBIN 128
XMLDATA 3 VARBIN 15850
START_TS 4 BINARY 8
Chapter 11. Performance considerations 257

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
END_TS 5 BINARY 8

The XML table is structured as follows.

� The XML document (minus tags, which are stored in sysibm.sysstrings) is stored in the
XMLDATA column, in one or more rows, depending on the size of the document.

� If the XML document is split into multiple rows, the minimum XML node id is stored against
each row, and is indexed by the node_id index

� The DOCID is also stored in every row
� The start and end timestamps for each row

The DB2 10 "multi-versioning" table space format depends on the use of a cleanup SRB to
remove old versions of XML docUMENTs created by UPDATE and DELETE. It's a small
overhead, but this can result in some CPU activity and BP16K and index BP activity even
when XML applications are idle.

Do not use DB2_GENERATED_DOCID_FOR_XML as a key
The DB2_GENERATED_DOCID_FOR_XML is not explicitly hidden, and is populated with a
unique sequence number, and indexed, which makes it tempting to use as a primary key.

This column is an internal object, and IBM does not guarantee to keep it unchanged in the
future. You should not develop applications that depend on this column.

Data compression
The storage of XML documents receives a certain amount of compression automatically. The
XML tags are stored in SYSIBM.SYSSTRINGS and replaced with binary values. However,
the contents of the data values in XML documents are not compressed by default.

The textual nature of many XML documents means that they are particularly well suited to
compression techniques, which will lead to performance gains from reduced I/O and efficient
use of buffer pool. You should therefore consider compressing DB2 tables with XML, and DB2
XML indexes.

After you specify COMPRESS YES in your DDL, the table space will be compressed at
REORG time or with the new online compression available with DB2 10 during insert type
operations.

The DSN1COMP utility can be used to assess the compression benefit, as usual.

Remember to REORG
You may not be allowed to view the contents of XML table spaces directly, but you are still
responsible for reorganizing them.

The XML table space follows the same partitioning scheme as the base table space, but has
the potential to grow much faster. Make sure that you REORG the XML table spaces
frequently enough to maintain performance.

The method of reorganizing an XML table space requires that you build a REORG job for the
base table space, and then you add an additional REORG control statement for each of the
XML table spaces. The table spaces for the BK_TO_CSTMR_STMT example table are
reorganized using the JCL in Example 11-9. Note that you must also specify the WORKDDN
keyword on the REORG for the XML table space and provide the specified temporary work
file. The default is SYSUT1.
258 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
Example 11-9 REORG of a table space with an XML table space

//REORG1 EXEC DSNUPROC,SYSTEM=DB0B,
// LIB='DB0BT.SDSNLOAD',
// UID=''
//DSNUPROC.SYSPUNCH DD DSN=XMLR3.DB0B.CNTL.XMLR3DB.TSAUDIT1,
// DISP=(MOD,CATLG),
// SPACE=(TRK,(5,5),RLSE),
// UNIT=SYSDA
//DSNUPROC.SYSREC DD DSN=XMLR3.DB0B.UNLD.XMLR3DB.TSAUDIT1,
// DISP=(MOD,CATLG),
// SPACE=(TRK,(15,5),RLSE),
// UNIT=SYSDA
//DSNUPROC.SYSUT1 DD DSN=XMLR3.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(TRK,(5,5),RLSE),
// UNIT=SYSDA
//DSNUPROC.SORTOUT DD DSN=XMLR3.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(TRK,(5,5),RLSE),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
REORG TABLESPACE XMLR3DB.TSAUDIT1
 STATISTICS TABLE(ALL)
 INDEX(ALL)
REORG TABLESPACE XMLR3DB.XBKR0000
 STATISTICS TABLE(ALL)
 INDEX(ALL)
 WORKDDN(SYSUT1)
/*

16 KB buffer pool
XML table spaces are always defined in 16K buffer pool. You must monitor the size of the 16K
buffer pool, and ensure that it is appropriately sized and backup by real storage.

DSNZPARM settings
XMLVALA and XMLVALS are DSNZPARMs which control the amount of virtual storage in the
XML pool which is used as working storage for document materialization, and XPath
evaluation.

As described in 10.1.3, “Sizing XMLVALA and XMLVALS” on page 231, the XMLVALA
subsystem parameter specifies, in KB, an upper limit for the amount of storage that each user
is to have for storing XML values.

� Acceptable values: 1 to 2,097,152 KB
� Default: 204,800 KB

The XMLVALS subsystem parameter specifies, in MB, an upper limit for the amount of
storage that each system can use for storing XML values.

� Acceptable values: 1 to 51200 MB
� Default: 10240 MB

Bear in mind that these values may need to be adjusted if your application materializes a
large volume of XML data.
Chapter 11. Performance considerations 259

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
RID pool size
The RID pool size may need to be increased because XML index access (particularly DOCID
ANDing or ORing) also uses RID pool.

11.7 SQL/XML coding techniques

Coding SQL/XML will be a new sport for many established DB2 programmers. With several
new concepts to learn in the SQL/XML language, it is sometimes hard to work out “how” to
write the SQL/XML statement that you want. And then you will want to work our what
programming techniques will actually yield the best performance. This section provides a
collection of some common coding techniques that will yield efficient data access.

11.7.1 XMLTABLE to minimize database calls

The XMLTABLE function is a very powerful way to minimize the number of DB2 database calls
to access XML data. It is possible to retrieve XML data elements using the XMLQUERY
function multiple times. However it is more efficient to replace multiple XMLQUERY calls with
a single XMLTABLE call, as shown in Example 11-10.

Example 11-10 Multiple XMLQUERY calls replaced with a single XMLTABLE call

SET V_CREDTTM = (
select xmlcast(xmlquery('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/CreDtTm'
passing VALIDXML as "d") as timestamp) from sysibm.sysdummy1);

SET V_MINISTMT = (
select xmlquery('declare default element namespace

"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/Stmt'
passing VALIDXML as "d") from SYSIBM.SYSDUMMY1) ;

-- can be replaced by

SELECT X.CRE_DT_TM, X.MINISTMT INTO V_CREDTTM, V_MINISTMT
FROM XMLTable(XMLNAMESPACES(DEFAULT

'urn:iso:std:iso:20022:tech:xsd:camt.053.001.02',
'$d/Document/BkToCstmrStmt' PASSING VALIDXML as "d"

COLUMNS
"CRE_DT_TM" TIMESTAMP PATH './GrpHdr/CreDtTm/text()'
"MINISTMT" XML PATH './Stmt') AS X ;

Another way of making the code more elegant and more efficient would be to combine the
two XMLQUERY calls into a single select statement, as shown in Example 11-11.

Example 11-11 single select statement combining two xmlquery expressions

select
xmlcast(xmlquery('

declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/GrpHdr/CreDtTm'
260 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ch11.fm
passing VALIDXML as "d") as timestamp)
into V_CREDTTM,

xmlquery('declare default element namespace
"urn:iso:std:iso:20022:tech:xsd:camt.053.001.02";
$d/Document/BkToCstmrStmt/Stmt'
passing VALIDXML as "d")

into V_MINISTMT
from sysibm.sysdummy1);

11.7.2 XMLEXISTS for index access

It really does not matter whether you use an XML or a relational index in order to reduce the
number of rows that need to be accessed in the base table. Use XMLEXISTS whenever
possible to help the optimizer. If there is no suitable relational index, then using an XML index
will require the XMLEXISTS function in the vast majority of cases.

Using predicates to filter rows is a good practice in any situation, but since XMLQUERY and
XMLTABLE can be more CPU-heavy than other built-in functions, good filtering is critical.

11.7.3 Simple XPath expressions

As a generalization, "simple" XPath expressions perform much better than "complex" XPath
expressions, because they are more likely to qualify for XML index access path selection.

For example, XPath with / will generally perform better than with //, both for queries and XML
index specifications.

It is also well worth reviewing the latest APARs to make sure that you download PTFs that
improve performance of XML processing. The best place to start is II14426, info APAR to link
together all the XML support delivery APARs.

http://www.ibm.com/support/docview.wss?uid=isg1II14426
Chapter 11. Performance considerations 261

http://www.ibm.com/support/docview.wss?uid=isg1II14426

7915ch11.fm Draft Document for Review January 9, 2011 1:25 pm
262 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ax01.fm
Appendix A. Application scenario documents

There are many international organizations that publish XML standards for various industries.
We have chosen to use the Bank To Customer Statement V2, one of the ISO 20022
(Universal financial industry message scheme) as the openly published XML standard for the
XML documents. Our scenario is based on receiving and processing one of those messages
from a financial institution such as a bank. You can read all about the ISO 20022 Universal
financial Industry message scheme at:

http://www.iso20022.org

A full description of the message can be found in”Payments_Maintenance_2009.pdf”
document which can be downloaded from:

http://www.iso20022.org/documents/general/Payments_Maintenance_2009.zip.

A

© Copyright IBM Corp. 2011. All rights reserved. 263

http://www..iso20022.org
http://www.iso20022.org/documents/messages/camt/schemas/camt.053.001.02.zip

7915ax01.fm Draft Document for Review January 9, 2011 1:25 pm
A.1 Schema

We have used the Bank To Customer Statement V2 schema which can be downloaded from
http://www.iso20022.org/documents/messages/camt/schemas/camt.053.001.02.zip.

This schema is also available as additional material download file as described in
Appendix B, “Additional material” on page 273.

A.2 XML message

The XML message was taken from
http://www.iso20022.org/documents/messages/camt/instances/camt.053.001.02.zip and
was augmented by adding a second Stmt element just like the first one with a few text values
changed. The updated XML message is available as additional materials download file as
described in Appendix B, “Additional material” on page 273.

We have provided two copies of the message.

Example A-1 shows the entire message which is inserted into BK_TO_CUST_STMT table
intact.

The other is a shorter version containing only the elements that we actually process.

Example A-1 XML message received

<?xml version="1.0" encoding="UTF-8" ?>
 <Document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02">
 <BkToCstmrStmt>
 <GrpHdr>
 <MsgId>AAAASESS-FP-STAT001</MsgId>
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 <MsgPgntn>
 <PgNb>1</PgNb>
 <LastPgInd>true</LastPgInd>
 </MsgPgntn>
 </GrpHdr>
 <Stmt>
 <Id>AAAASESS-FP-STAT001</Id>
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 <FrToDt>
 <FrDtTm>2010-10-18T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-18T17:00:00+01:00</ToDtTm>
 </FrToDt>
 <Acct>
 <Id>
 <Othr>
 <Id>50000000054910000003</Id>
 </Othr>
 </Id>
 <Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAA BANKEN</Nm>
 <PstlAdr>
264 Extremely pureXML in DB2 10 for z/OS

http://www.iso20022.org/documents/messages/camt/schemas/camt.053.001.02.zip
http://www.iso20022.org/documents/messages/camt/schemas/camt.053.001.02.zip

Draft Document for Review January 9, 2011 1:25 pm 7915ax01.fm
 <Ctry>SE</Ctry>
 </PstlAdr>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>OPBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">500000</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Dt>
 <Dt>2010-10-15</Dt>
 </Dt>
 </Bal>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>CLBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435678.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Dt>
 <Dt>2010-10-18</Dt>
 </Dt>
 </Bal>
 <Ntry>
 <Amt Ccy="SEK">105678.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-18T13:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-18</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98765/01</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>PAYM</Cd>
 <Fmly>
 <Cd>0001</Cd>
 <SubFmlyCd>0005</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <TxDtls>
 <Refs>
 <EndToEndId>MUELL/FINP/RA12345</EndToEndId>
 </Refs>
 <RltdPties>
 <Dbtr>
 <Nm>MUELLER</Nm>
 </Dbtr>
 </RltdPties>
 </TxDtls>
Appendix A. Application scenario documents 265

7915ax01.fm Draft Document for Review January 9, 2011 1:25 pm
 </NtryDtls>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">200000</Amt>
 <CdtDbtInd>DBIT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-18T10:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-18</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-01</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>PAYM</Cd>
 <Fmly>
 <Cd>0001</Cd>
 <SubFmlyCd>0003</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <Btch>
 <MsgId>FINP-0055</MsgId>
 <PmtInfId>FINP-0055/001</PmtInfId>
 <NbOfTxs>20</NbOfTxs>
 </Btch>
 </NtryDtls>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">30000</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-18T15:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-18</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CONF-FX</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>TREA</Cd>
 <Fmly>
 <Cd>0002</Cd>
 <SubFmlyCd>0000</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <TxDtls>
 <Refs>
 <InstrId>FP-004567-FX</InstrId>
 <EndToEndId>AAAASS1085FINPSS</EndToEndId>
 </Refs>
 <AmtDtls>
 <CntrValAmt>
 <Amt Ccy="EUR">3255</Amt>
 <CcyXchg>
266 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ax01.fm
 <SrcCcy>EUR</SrcCcy>
 <XchgRate>0.1085</XchgRate>
 </CcyXchg>
 </CntrValAmt>
 </AmtDtls>
 </TxDtls>
 </NtryDtls>
 </Ntry>
 </Stmt>
 <Stmt>
 <Id>AAAASESS-FP-STAT002</Id>
 <CreDtTm>2010-10-17T17:00:00+01:00</CreDtTm>
 <FrToDt>
 <FrDtTm>2010-10-17T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-17T17:00:00+01:00</ToDtTm>
 </FrToDt>
 <Acct>
 <Id>
 <Othr>
 <Id>50000000054910000004</Id>
 </Othr>
 </Id>
 <Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAB BANKEN</Nm>
 <PstlAdr>
 <Ctry>SE</Ctry>
 </PstlAdr>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>OPAV</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">500300</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Dt>
 <Dt>2010-10-14</Dt>
 </Dt>
 </Bal>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>FWAV</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435478.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Dt>
 <Dt>2010-10-17</Dt>
 </Dt>
 </Bal>
 <Ntry>
 <Amt Ccy="SEK">105378.50</Amt>
Appendix A. Application scenario documents 267

7915ax01.fm Draft Document for Review January 9, 2011 1:25 pm
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-17T13:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98764/01</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>PAYM</Cd>
 <Fmly>
 <Cd>0002</Cd>
 <SubFmlyCd>0004</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <TxDtls>
 <Refs>
 <EndToEndId>MUELL/FINP/RA12344</EndToEndId>
 </Refs>
 <RltdPties>
 <Dbtr>
 <Nm>MUELLAR</Nm>
 </Dbtr>
 </RltdPties>
 </TxDtls>
 </NtryDtls>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">200100</Amt>
 <CdtDbtInd>DBIT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-17T10:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-02</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>TREA</Cd>
 <Fmly>
 <Cd>0002</Cd>
 <SubFmlyCd>0004</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <Btch>
 <MsgId>FINP-0056</MsgId>
 <PmtInfId>FINP-0055/002</PmtInfId>
 <NbOfTxs>21</NbOfTxs>
 </Btch>
 </NtryDtls>
 </Ntry>
 <Ntry>
268 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ax01.fm
 <Amt Ccy="SEK">30020</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <Sts>BOOK</Sts>
 <BookgDt>
 <DtTm>2010-10-17T15:15:00+01:00</DtTm>
 </BookgDt>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CONF-FY</AcctSvcrRef>
 <BkTxCd>
 <Domn>
 <Cd>TREA</Cd>
 <Fmly>
 <Cd>0003</Cd>
 <SubFmlyCd>0001</SubFmlyCd>
 </Fmly>
 </Domn>
 </BkTxCd>
 <NtryDtls>
 <TxDtls>
 <Refs>
 <InstrId>FP-004568-FX</InstrId>
 <EndToEndId>AAAASS1084FINPSS</EndToEndId>
 </Refs>
 <AmtDtls>
 <CntrValAmt>
 <Amt Ccy="EUR">3254</Amt>
 <CcyXchg>
 <SrcCcy>EUR</SrcCcy>
 <XchgRate>0.1084</XchgRate>
 </CcyXchg>
 </CntrValAmt>
 </AmtDtls>
 </TxDtls>
 </NtryDtls>
 </Ntry>
 </Stmt>
 </BkToCstmrStmt>
 </Document>

Example A-2 is a shorter version of the Message Received and contains only the elements
that we actually process in our scenario.

Example A-2 XML message parts processed

<?xml version="1.0" encoding="UTF-8" ?>
 <Document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:iso:std:iso:20022:tech:xsd:camt.053.001.02">
 <BkToCstmrStmt>
 <GrpHdr>
 <MsgId>AAAASESS-FP-STAT001</MsgId>
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 </GrpHdr>
 <Stmt>
 <Id>AAAASESS-FP-STAT001</Id>
 <CreDtTm>2010-10-18T17:00:00+01:00</CreDtTm>
 <FrToDt>
 <FrDtTm>2010-10-18T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-18T17:00:00+01:00</ToDtTm>
Appendix A. Application scenario documents 269

7915ax01.fm Draft Document for Review January 9, 2011 1:25 pm
 </FrToDt>
 <Acct>
 <Id>
 <Othr>
 <Id>50000000054910000003</Id>
 </Othr>
 </Id>
 <Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAA BANKEN</Nm>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>OPBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">500000</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>CLBD</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435678.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Ntry>
 <Amt Ccy="SEK">105678.50</Amt>
 <BookgDt>
 <DtTm>2010-10-18T13:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98765/01</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">200000</Amt>
 <BookgDt>
 <DtTm>2010-10-18T10:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-01</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">30000</Amt>
 <BookgDt>
 <DtTm>2010-10-18T15:15:00+01:00</DtTm>

</BookgDt>
 <AcctSvcrRef>AAAASESS-FP-CONF-FX</AcctSvcrRef>
 </Ntry>
 </Stmt>
 <Stmt>
 <Id>AAAASESS-FP-STAT002</Id>
 <CreDtTm>2010-10-17T17:00:00+01:00</CreDtTm>
 <FrToDt>
270 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915ax01.fm
 <FrDtTm>2010-10-17T08:00:00+01:00</FrDtTm>
 <ToDtTm>2010-10-17T17:00:00+01:00</ToDtTm>
 </FrToDt>
 <Acct>
 <Id>
 <Othr>
 <Id>50000000054910000004</Id>
 </Othr>
 </Id>
 <Ownr>
 <Nm>FINPETROL</Nm>
 </Ownr>
 <Svcr>
 <FinInstnId>
 <Nm>AAAB BANKEN</Nm>
 </FinInstnId>
 </Svcr>
 </Acct>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>OPAV</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">500300</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Bal>
 <Tp>
 <CdOrPrtry>
 <Cd>FWAV</Cd>
 </CdOrPrtry>
 </Tp>
 <Amt Ccy="SEK">435478.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 </Bal>
 <Ntry>
 <Amt Ccy="SEK">105378.50</Amt>
 <CdtDbtInd>CRDT</CdtDbtInd>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-CN_98764/01</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">200100</Amt>
 <ValDt>
 <Dt>2010-10-17</Dt>
 </ValDt>
 <AcctSvcrRef>AAAASESS-FP-ACCR-02</AcctSvcrRef>
 </Ntry>
 <Ntry>
 <Amt Ccy="SEK">30020</Amt>
 <BookgDt>
 <DtTm>2010-10-17T15:15:00+01:00</DtTm>
 </BookgDt>
 <AcctSvcrRef>AAAASESS-FP-CONF-FY</AcctSvcrRef>
 </Ntry>
 </Stmt>
 </BkToCstmrStmt>
Appendix A. Application scenario documents 271

7915ax01.fm Draft Document for Review January 9, 2011 1:25 pm
 </Document>
272 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915addm.fm
Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247915

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks publication number SG24-7915-00.

Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description
Storedproceduresamples.zip Zipped code for the setup of stored procedures used for

the implementation of the scenarios
Javasamples.zip Zipped code samples and data used for the

implementation of the scenario in Java
Cobolsamples.zip Zipped code samples and data used for the

implementation of the scenario in COBOL

System requirements for downloading the Web material

The Web material requires the following system configuration:

B

© Copyright IBM Corp. 2011. All rights reserved. 273

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

7915addm.fm Draft Document for Review January 9, 2011 1:25 pm
Hard disk space: 100 KB
Operating System: Windows
Processor: All Intel® and AMD processors capable of running the supported

Windows operating systems (32-bit and x64 based systems).
Memory: 2 GB

Downloading and extracting the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the Web
material .zip file into this folder.

Storedproceduresamples.zip
The zipped file contain code and data to reproduce the application infrastructure.

Prerequisites

� DB2 Client for Windows V9.7 Fix Pack 3a

� IBM Data Server Driver for JDBC and SQLJ version 4.9 or later (If you use DB2 Client,
V9.7 Fix Pack 3a and above provides this support)

� Environment setup on server for XML schema registration

� The table BK_TO_CSTMR_STMT with XML column, and other related tables documented
in “Tables used for following examples.” on page 88.

Sample code

� STOREXML1.db2

Stored procedure in Example 6-3 on page 89.

� Teststorexml1.java

Java program to drive STOREXML1().

� callstorexml1.bat

Script to run Teststorexml1 java program.

� STOREXML2.db2

Stored procedure in Example 6-4 on page 91.

� Teststorexml2.java

Java program to drive STOREXML2().

� callstorexml2.bat

Script to run Teststorexml2 Java program.

� LOADMQ.db2

Stored procedure to prime an MQ queue with an XML message.

� STOREXML3.db2

Stored procedure in Example 6-7 on page 96.

� STOREXML4.db2

Stored procedure in Example 6-11 on page 98.

� STOREXML5.db2

Stored procedure in Example 6-25 on page 114.

� Teststorexml5.java
274 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915addm.fm
Java program to drive STOREXML5().

� callstorexml5.bat

Script to run Teststorexml5 java program

� RECEIVE_CDC.db2

Stored procedure in Example 6-34 on page 122.

� Testcdc.java

Java program to drive RECEIVE_CDC().

� callcdc.bat

Script to run Testcdc Java program.

Sample data
� XMLTABLES.DDL

DDL for all samples.

� XML_TEST_SOURCE.SQL

Test data for all samples.

� RESET_TEST_SOURCE.SQL

Script to reset test data for all samples.

Javasamples.zip
The zipped file contain code and data to reproduce our Java scenario.

Prerequisites
� SDK for Java Version 6 or later

� IBM Data Server Driver for JDBC and SQLJ version 4.9 or later (If you use DB2 Client,
V9.7 Fix Pack 3a and above provides this support)

� Environment setup on server for XML schema registration

� The table BK_TO_CSTMR_STMT with XML column should be created as Example 7-5 on
page 139.

Sample code
� RegisterSchema.java

This class registers the XML schema to the DB2 databases.

� InsertXML.java

This class validates and inserts XML data into db2 table.

� UpdateXML.java

This class demonstrates partial updates of XML documents.

� SelectXML.java

This class demonstrates the retrieving entire or partial XML document to a SQLXML
object.

� XMLProcedure.java

This class creates SQL stored procedure with XML as parameter to shred XML document,
then calls the SQL stored procedure from Java.

� TransformXML.java
Appendix B. Additional material 275

7915addm.fm Draft Document for Review January 9, 2011 1:25 pm
This class transforms retrieved XML document into an new XML or HTML document.

� SendMQMessage.java

This class sends a XML message generated by XSLT to WebSphere MQ.

Sample data
� Schema of bank to customer statement message

camt.053.001.02.xsd

� XML file of bank to customer statement message

camt.053.001.02.xml

camt.053.001.03.xml

camt.053.001.04.xml

� XSLT file to transform XML message

camt.053.001.04.xsl

camt.053.001.05.xsl

� XML document send to WebSphere MQ

xmloutput.xml

Cobolsamples.zip
The zipped file contain code and data to reproduce our COBOL scenario.

Prerequisites
� Enterprise COBOL for z/OS Version 4.1 or later.

� DB2 Connect Version 9.5 or later.

� Configuration of DB2 for z/OS node in DB2 Connect.

� Setup of DB2 XML schema repository.

� The XML schema should be registered as in Example 8-8 on page 164.

� The table BK_TO_CSTMR_STMT with XML column should be created as Example 8-9 on
page 164.

Sample code
� INSBKST.txt

COBOL program for inserting a BankToCustomerStatement into table
BK_TO_CUSTMR_STSMT using a file reference variable.

� GETSTMT.txt

COBOL program for selecting a BankToCustomerStatement from table
BK_TO_CUSTMR_STSMT into a file using a file reference variable.

� GETNTRY.txt

COBOL program for selecting entries from a BankToCustomerStatement from table
BK_TO_CUSTMR_STSMT using XMLTABLE.

� UPDRCPT.txt

COBOL program for altering the message recipient of a BankToCustomerStatement in
table BK_TO_CUSTMR_STSMT using XMLMODIFY. The message recipient element is
received as a file reference variable.

� UPDRCP2.txt
276 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915addm.fm
COBOL program for altering the message recipient of a BankToCustomerStatement in
table BK_TO_CUSTMR_STSMT using XMLMODIFY. The message recipient element is
generated using COBOL XML GENERATE statement.

� PREPPROG.txt

JCL for precompiling, compiling, link-editing and binding COBOL program INSBKST. It can
be modified to prepare other COBOL programs by replacing INSBKST with other COBOL
program name.

� RUNPROG.txt

JCL for running COBOL program INSBKST. It can be modified to run other COBOL
programs by replacing the program name, but take care to enter the correct input
variables.

Sample data
� Schema for BankToCustomerStatement message

camt.053.001.02.xsd

� XML file with BankToCustomerStatement message

camt.stmt.xml

� XML file with MsgRcpt element

camt.msgrcpt.xml
Appendix B. Additional material 277

7915addm.fm Draft Document for Review January 9, 2011 1:25 pm
278 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
Glossary

A

address space. A range of virtual storage pages
identified by a number (ASID) and a collection of segment
and page tables which map the virtual pages to real pages
of the computer's memory.

address space connection. The result of connecting an
allied address space to DB2. Each address space
containing a task connected to DB2 has exactly one
address space connection, even though more than one
task control block (TCB) can be present. See allied
address space and task control block.

Advanced Program-to-Program communication
(APPC). (1) The general facility characterizing the LU6.2
architecture and its implementation in different SNA
products. (2) Sometimes used to refer to an LU6.2 product
feature in particular, such as an APPC application
programming interface.

allied address space. An area of storage external to DB2
that is connected to DB2 and is therefore capable of
requesting DB2 services.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. See American National Standards Institute.

APAR. See authorized program analysis report.

API. See Application Program Interface.

applet. See Java Applet.

application. (1) A program or set of programs that
perform a task; for example, a payroll application. (2) In
Java programming, a self-contained, stand-alone Java
program that includes a static main method. It does not
require an applet viewer. Contrast with applet.

application plan. The control structure produced during
the bind process and used by DB2 to process SQL
statements encountered during statement execution.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to use
specific data or functions of the operating system or
licensed program.
© Copyright IBM Corp. 2011. All rights reserved.
application requester (AR). See requester.

Application Service Provider (ASP). An ASP is an
agent or broker that aggregates, facilitates and brokers IT
services to deliver IT-enabled business solutions across a
network via subscription-based pricing.

application-owning region (AOR). A CICS® region in an
MRO environment that “owns” the CICS applications, and
invokes them on behalf of remotely attached terminal (or
Web) users. See also TOR and listener region.

AR. Application requester. See requester.

ASCII. (1) American Standard Code for Information
Interchange. A standard assignment of 7-bit numeric
codes to characters. See also Unicode. (2) An encoding
scheme used to represent strings in many environments,
typically on PCs and workstations. Contrast with EBCDIC.

attribute. In XML, a name="value" pair that can be placed
in the start tag of an element. The value must be quoted
with single or double quotes.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

authorized program analysis report (APAR). A report of
a problem caused by a suspected defect in a current,
unaltered release of a program.

automatic bind. (More correctly automatic rebind). A
process by which SQL statements are bound
automatically (without a user issuing a BIND command)
when an application process begins execution and the
bound application plan or package it requires is not valid.

B

base table. (1) A table created by the SQL CREATE
TABLE statement that is used to hold persistent data.
Contrast with result table and temporary table. (2) A table
containing a LOB column definition. The actual LOB
column data is not stored along with the base table. The
base table contains a row identifier for each row and an
indicator column for each of its LOB columns. Contrast
with auxiliary table.

basic mode. A S/390® central processing mode that
does not use logical partitioning. Contrast with logically
partitioned (LPAR) mode.
 279

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
bean. A definition or instance of a JavaBeans component.
See JavaBeans.

binary XML format. A system of storing XML data in
binary, as opposed to text, that facilitates more efficient
storage and exchange.

bind. The process by which the output from the DB2
precompiler is converted to a usable control structure
called a package or an application plan. During the
process, access paths to the data are selected and some
authorization checking is performed.

browser. (1) In VisualAge® for Java, a window that
provides information on program elements. There are
browsers for projects, packages, classes, methods, and
interfaces. (2) An Internet-based tool that lets users
browse Web sites.

bytecode. Machine-independent code generated by the
Java compiler and executed by the Java interpreter.

C

call level interface (CLI). A callable application program
interface (API) for database access, which is an
alternative to using embedded SQL. In contrast to
embedded SQL, DB2 CLI does not require the user to
precompile or bind applications, but instead provides a
standard set of functions to process SQL statements and
related services at run time.

Cascading Style Sheet (CSS). CSS defines a stylesheet
language for HTML 4.0. CSS allows a Web page designer
to separately specify style elements of a Web page, such
as colors, fonts and font styles.

case-sensitive. Indicates whether an application,
processor, or operating system distinguishes between
upper and lower case. If it does, it is case-sensitive. XML
tags are case-sensitive, but HTML tags are not.

casting. Explicitly converting an object or primitive’s data
type.

catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and indexes.

catalog table. Any table in the DB2 catalog.

CGI. The Common Gateway Interface (CGI) is a means of
allowing a Web server to execute a program that you
provide rather than to retrieve a file. A number of popular
Web servers support the CGI. For some applications (for
example, displaying information from a database), you
must do more than simply retrieve an HTML document
from a disk and send it to the Web browser. For such
applications, the Web server has to call a program to
generate the HTML to be displayed. The CGI is not the
only such interface, however.

channel-attached. (1) Pertaining to attachment of
devices directly by data channels (I/O channels) to a
computer. (2) Pertaining to devices attached to a
controlling unit by cables rather than by
telecommunication lines.

character large object (CLOB). See CLOB.

class. An encapsulated collection of data and methods to
operate on the data. A class may be instantiated to
produce an object that is an instance of the class.

class hierarchy. The relationships between classes that
share a single inheritance. All Java classes inherit from
the Object class.

class method. Methods that apply to the class as a whole
rather than its instances (also called a static method).

class variable. Variables that apply to the class as a
whole rather than its instances (also called a static field).

CLASSPATH. In your deployment environment, the
environment variable keyword that specifies the
directories in which to look for class and resource files.

CLI. See call level interface.

client. (1)A networked computer in which the IDE is
connected to a repository on a team server. (2) See
requester.

CLOB. A sequence of bytes representing single-byte
characters or a mixture of single and double-byte
characters where the size can be up to 2 GB - 1. Although
the size of character large object values can be anywhere
up to 2 GB - 1, in general, they are used whenever a
character string might exceed the limits of the VARCHAR
type.

codebase. An attribute of the <APPLET> tag that
provides the relative path name for the classes. Use this
attribute when your class files reside in a different
directory than your HTML files.

column function. An SQL operation that derives its result
from a collection of values across one or more rows.
Contrast with scalar function.

commit. The operation that ends a unit of work by
releasing locks so that the database changes made by
that unit of work can be perceived by other processes.

Common Connector Framework. In the Enterprise
Access Builder, interface and class definitions that provide
a consistent means of interacting with enterprise
resources (for example, CICS and Encina transactions)
from any Java execution environment.
280 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
connection. In the VisualAge for Java Visual
Composition Editor, a visual link between two components
that represents the relationship between the components.
Each connection has a source, a target, and other
properties.

connection handle. The data object that contains
information associated with a connection managed by
DB2 CLI. This includes general status information,
transaction status, and diagnostic information.

content model. In XML, the expression specifying what
elements and data are allowed within an element.

cookie. (1) A small file stored on an individual's computer;
this file allows a site to tag the browser with a unique
identification. When a person visits a site, the site's server
requests a unique ID from the person's browser. If this
browser does not have an ID, the server delivers one. On
the Wintel platform, the cookie is delivered to a file called
'cookies.txt,' and on a Macintosh platform, it is delivered to
'MagicCookie.' Just as someone can track the origin of a
phone call with Caller ID, companies can use cookies to
track information about behavior. (2) Persistent data
stored by the client in the Servlet Builder.

cursor. A named control structure used by an application
program to point to a row of interest within some set of
rows, and to retrieve rows from the set, possibly making
updates or deletions.

Customer relationship management (CRM). CRM
includes the systems and infrastructure required to
analyze, capture and share all parts of the customer’s
relationship with the enterprise. From a strategy
perspective, it represents a process to measure and
allocate organizational resources to those activities that
have the greatest return and impact on profitable
customer relationships.

D

Data Access Bean. In the VisualAge for Java Visual
Composition Editor, a bean that accesses and
manipulates the content of JDBC/ODBC-compliant
relational databases.

Data Access Builder. A VisualAge for Java Enterprise
tool that generates beans to access and manipulate the
content of JDBC/ODBC-compliant relational databases.

data source. A local or remote relational or non-relational
data manager that is capable of supporting data access
via an ODBC driver which supports the ODBC APIs. In the
case of DB2 for OS/390®, the data sources are always
relational database managers.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data stored
within it.

DB2 thread. The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services.

DBCLOB. A sequence of bytes representing double-byte
characters where the size can be up to 2 gigabytes.
Although the size of double-byte character large object
values can be anywhere up to 2 gigabytes, in general,
they are used whenever a double-byte character string
might exceed the limits of the VARGRAPHIC type.

DBMS. Database management system.

direct access storage device (DASD). A mass storage
medium on which a computer stores data.

distributed relational database architecture (DRDA)).
A connection protocol for distributed relational database
processing that is used by IBM's relational database
products. DRDA includes protocols for communication
between an application and a remote relational database
management system, and for communication between
relational database management systems.

DLL (dynamic link library). A file containing executable
code and data bound to a program at load time or run
time, rather than during linking. The code and data in a
dynamic link library can be shared by several applications
simultaneously. The DLL’s Enterprise Access Builders
also generate platform-specific DLLs for the workstation
and OS/390 platforms.

Document Object Model (DOM). This allows the
representation and manipulation of an XML document in
memory as a programming object. DOM is defined by the
World-Wide Web Consortium.

Document Type Definition (DTD). A DTD is a definition
of which Elements and Attributes are acceptable in a
specific XML file. The DTD therefore defines a subset of
XML which may be used for a particular application.

DOM. (see Document Object Model).

DOM Tree. A DOM Tree is an in-memory representation
of an XML Document.

double precision. A floating-point number that contains
64 bits. See also single precision.

double-byte character large object (DBCLOB). See
DBCLOB.

DRDA. Distributed relational database architecture.
 Glossary 281

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
duplex. Pertaining to communication in which data or
control information can be sent and received at the same
time. Contrast with half duplex.

dynamic bind. A process by which SQL statements are
bound as they are entered.

Dynamic I/O Reconfiguration. A S/390 function that
allows I/O configuration changes to be made
non-disruptively to the current operating I/O configuration.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the program
is executing. In dynamic SQL, the SQL source is
contained in host language variables rather than being
coded into the application program. The SQL statement
can change several times during the application
program's execution.

E

EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme used to represent character
data in the MVS™, VM, VSE, and OS/400®
environments. Contrast with ASCII.

EBNF. Extended Backus-Naur Form. A formal set of
production rules that comprise a grammar defining
another language, such as XML.

Electronic data interchange. The automatic
machine-to-machine transfer of trading documents (for
example, invoices and purchase orders) using electronic
networks such as the Internet. Originally conducted only
through value-added networks, EDI is gradually moving to
the Internet.

element. In XML, a start tag and its end tag, plus the
content between the tags. An empty tag is also an
element.

embedded SQL. SQL statements coded within an
application program. See static SQL.

embeddedJava. An API and application environment for
high-volume embedded devices, such as mobile phones,
pagers, process control, instrumentation, office
peripherals, network routers and network switches.
EmbeddedJava applications run on real-time operating
systems and are optimized for the constraints of
small-memory footprints and diverse visual displays.

empty declaration. In XML, the DTD declaration for an
empty tag. For example, if <foo/> is an empty tag, the
empty declaration looks like: <!ELEMENT foo EMPTY>.

empty tag. In XML, a start and end tag combined in one
tag. The tag has a trailing slash, so an XML parser can
immediately recognize it as an empty tag and not bother
looking for a matching end tag. For example, if foo is an
empty tag, it looks like <foo/>.

Enterprise Java. Includes Enterprise JavaBeans as well
as open API specifications for: database connectivity,
naming and directory services, CORBA/IIOP
interoperability, pure Java distributed computing,
messaging services, managing system and network
resources, and transaction services.

Enterprise JavaBeans. A cross-platform component
architecture for the development and deployment of
multi-tier, distributed, scalable, object-oriented Java
applications.

Enterprise JavaBeans (EJB). The Enterprise
JavaBeans specification defines a way of building
transactionally aware business objects in Java.

Enterprise Systems Architecture/390 (ESA/390). An
IBM architecture for mainframe computers and
peripherals. Processors that follow this architecture
include the S/390 Server family of processors.

entity. In XML, an entity declaration provides the ability to
have constants or replacement strings, which are
expanded by a pre-processor. An entity declaration maps
some token to a replacement string. Later the token can
be prefixed with the '&' character and the replacement
string is put in its place.

environment handle. In DB2 ODBC, the data object that
contains global information regarding the state of the
application. An environment handle must be allocated
before a connection handle can be allocated. Only one
environment handle can be allocated per application.

ESA/390. See Enterprise Systems Architecture/390.

exception. An exception is an object that has caused
some sort of new condition, such as an error. In Java,
throwing an exception means passing that object to an
interested party; a signal indicates what kind of condition
has taken place. Catching an exception means receiving
the sent object. Handling this exception usually means
taking care of the problem after receiving the object,
although it might mean doing nothing (which would be bad
programming practice).

executable content. Code that runs from within an HTML
file (such as an applet).

extends. A subclass or interface extends a class or
interface if it add fields or methods, or overrides its
methods.
282 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
external function. A function for which the body is written
in a programming language that takes scalar argument
values and produces a scalar result for each invocation.
Contrast with sourced function and built-in function.

Extranet. In some cases intranets have connections to
other independent intranets. An example would be one
company connecting its intranet to the intranet of one of its
suppliers. Such a connection of intranets is called an
extranet. Depending on the implementation, they may or
may not be fully or partially visible to the outside.

F

factory. A bean that dynamically creates instances of
beans.

FastCGI. FastCGI is a way of combining the advantages
of CGI programming with some of the performance
benefits you get by using the GWAPI. FastCGI, written by
Open Market, Inc., is an extension to normal Web server
processing. It requires server-specific API support, which
is available for AIX®, Sun Solaris, HP-UX, and OS/390.
With FastCGI you can start applications in independent
address spaces and pass requests for these applications
from the Web server. The communication is through either
the TCP/IP sockets interface or UNIX Domain socket bind
path in the Hierarchical File System (HFS).

fibre channel standard. An ANSI standard for a
computer peripheral interface. The I/O interface defines a
protocol for communication over a serial interface that
configures attached units to a communication fabric. The
protocol has four layers. The lower of the four layers
defines the physical media and interface, the upper of the
four layers defines one or more logical protocols (for
example, FCP for SCSI command protocols and FC-SB-2
for FICON® for ESA/390). Refer to ANSI X3.230.1999x.

FICON. (1) An ESA/390 computer peripheral interface.
The I/O interface uses ESA/390 logical protocols over a
FICON serial interface that configures attached units to a
FICON communication fabric. (2) An FC4 proposed
standard that defines an effective mechanism for the
export of the SBCON command protocol via fibre
channels.

field. A data object in a class; for example, a variable.

File Transfer Protocol (FTP). In the Internet suite of
protocols, an application layer protocol that uses TCP and
Telnet services to transfer bulk-data files between
machines or hosts.

first tier. The client; the hardware and software with which
the end user interacts.

foreign key. A key that is specified in the definition of a
referential constraint. Because of the foreign key, the table
is a dependent table. The key must have the same number
of columns, with the same descriptions, as the primary
key of the parent table.

form data. A generated class representing the HTML
form elements in a visual servlet.

FTP. See File Transfer Protocol.

function. A specific purpose of an entity or its
characteristic action, such as a column function or scalar
function. (See column function and scalar function.).
Furthermore, functions can be user-defined, built-in, or
generated by DB2. (See user-defined function, external
function, sourced function.)

G

garbage collection. Java's ability to clean up
inaccessible unused memory areas ("garbage") on the fly.
Garbage collection slows performance, but keeps the
machine from running out of memory.

GWAPI. Because CGI has some architectural limitations,
most Web servers provide an equivalent mechanism that
is optimized for their native environment. Domino® Go
Web Server, IBM’s strategic Web server, offers the
Domino Go Web Server Application Programming
Interface (GWAPI), optimized for a given environment,
such as OS/390. The GWAPI enables you to create
dynamic content similar to the CGI, but in a more
specialized way than the generalized CGI. The GWAPI
process is similar to OS/390 exit processing. There is an
exit point for various server functions that can be
exploited.

H

half duplex. In data communication, pertaining to
transmission in only one direction at a time. Contrast with
duplex.

handle. In DB2 CLI, a variable that refers to a data
structure and associated resources. See connection
handle, environment handle.

hard disk drive. (1) A storage media within a storage
server used to maintain information that the storage
server requires. (2) A mass storage medium for
computers that is typically available as a fixed disk or a
removable cartridge.

hierarchy. The order of inheritance in object-oriented
languages. Each class in the hierarchy inherits attributes
and behavior from its superclass, except for the top-level
Object class.
 Glossary 283

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
HTTPS. HTTPS is a de facto standard developed by
Netscape for making HTTP flows secure. Technically, it is
the use of HTTP over SSL.

Hypertext Markup Language (HTML). A file format,
based on SGML, for hypertext documents on the Internet.
Allows for the embedding of images, sounds, video
streams, form fields and simple text formatting.
References to other objects are embedded using URLs,
enabling readers to jump directly to the referenced
document.

Hypertext Transfer Protocol (HTTP). The Internet
protocol, based on TCP/IP, used to fetch hypertext objects
from remote hosts.

I

IDE. See Integrated Development Environment.

Identifier. A unique name or address that identifies things
such as programs, devices or systems.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to commence
operation. (2) The process by which a configuration image
is loaded into storage at the beginning of a work day or
after a system malfunction. (3) The process of loading
system programs and preparing a system to run jobs.

Integrated Development Environment (IDE). In
VisualAge for Java, the set of windows that provide the
user with access to development tools. The primary
windows are the Workbench, Log, Console, Debugger,
and Repository Explorer.

Internet. The vast collection of interconnected networks
that use TCP/IP and evolved from the ARPANET of the
late 1960s and early 1970s. The number of independent
networks connected into this vast global net is growing
daily.

Internet Protocol (IP). In the Internet suite of protocols, a
connectionless protocol that routes data through a
network or interconnected networks. IP acts as an
intermediary between the higher protocol layers and the
physical network. However, this protocol does not provide
error recovery and flow control, and does not guarantee
the reliability of the physical network.

interpreter. A tool that translates and executes code
line-by-line.

Intranet. A private network inside a company or
organization that uses the same kinds of software that you
would find on the Internet, but that are only for internal
use. As the Internet has become more popular, many of
the tools used on the Internet are being used in private
networks; for example, many companies have Web
servers that are available only to employees.

IP. See Internet Protocol.

IPL. See initial program load.

J

JAR file format. JAR (Java Archive) is a
platform-independent file format that aggregates many
files into one. Multiple Java applets and their requisite
components (.class files, images, sounds and other
resource files) can be bundled in a JAR file and
subsequently downloaded to a browser in a single HTTP
transaction.

Java. An object-oriented programming language for
portable, interpretive code that supports interaction
among remote objects. Java was developed and specified
by Sun Microsystems, Incorporated. The Java
environment consists of the JavaOS, the Virtual Machines
for various platforms, the object-oriented Java
programming language, and several class libraries.

Java applet. A small Java program designed to run within
a Web browser. It is downloadable and executable by a
browser or network computer.

Java beans. Java's component architecture, developed
by Sun, IBM, and others. The components, called Java
beans, can be parts of Java programs, or they can exist as
self-contained applications. Java beans can be
assembled to create complex applications, and they can
run within other component architectures (such as
ActiveX and OpenDoc).

Java Development Kit (JDK). The set of Java
technologies made available to licensed developers by
Sun Microsystems. Each release of the JDK contains the
following: the Java Compiler, Java Virtual Machine, Java
Class Libraries, Java Applet Viewer, Java Debugger, and
other tools.

Java Naming and Directory Interface (JNDI). A set of
APIs that assist with the interfacing to multiple naming and
directory services. (Definition copyright 1996-1999 Sun
Microsystems, Inc. All Rights Reserved. Used by
permission.)

Java Native Interface (JNI). A native programming
interface that allows Java code running inside a Java
Virtual Machine (VM) to interoperate with applications and
libraries written in other programming languages, such as
C and C++.

Java Platform. The Java Virtual Machine and the Java
Core classes make up the Java Platform. The Java
Platform provides a uniform programming interface to a
100% Pure Java program regardless of the underlying
operating system. (Definition copyright 1996-1999 Sun
Microsystems, Inc. All Rights Reserved. Used by
permission.)
284 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
Java Remote Method Invocation (RMI). Java Remote
Method Invocation is method invocation between peers,
or between client and server, when applications at both
ends of the invocation are written in Java. Included in JDK
1.1.

Java Runtime Environment (JRE). A subset of the Java
Development Kit for end users and developers who want
to redistribute the JRE. The JRE consists of the Java
Virtual Machine, the Java Core Classes, and supporting
files. (Definition copyright 1996-1999 Sun Microsystems,
Inc. All Rights Reserved. Used by permission.)

Java Server Page (JSP). Java Server Pages are Web
pages that include dynamic tags which are executed on
the server. JSPs are the presentation layer for Web-based
applications built in Java.

Java Virtual Machine (JVM). A software implementation
of a central processing unit (CPU) that runs compiled Java
code (applets and applications).

JavaDoc. Sun's tool for generating HTML documentation
on classes by extracting comments from the Java source
code files.

JavaScript. A scripting language used within an HTML
page. Superficially similar to Java but JavaScript scripts
appear as text within the HTML page. Java applets, on the
other hand, are programs written in the Java language
and are called from within HTML pages or run as
standalone applications.

JDBC (Java Database Connectivity). In the JDK, the
specification that defines an API that enables programs to
access databases that comply with this standard.

JIT. See Just-In-Time compiler.

JNDI. See Java Naming and Directory Interface.

JNI. See Java Native Interface.

JRE. See Java Runtime Environment.

Just-In-Time compiler (JIT). A platform-specific software
compiler often contained within JVMs. JITs compile Java
bytecodes on-the-fly into native machine instructions,
thereby reducing the need for interpretation.

JVM. See Java Virtual Machine.

L

LAN. See local area network.

large object (LOB). See LOB.

licensed internal code (LIC). Microcode that IBM does
not sell as part of a machine, but instead, licenses to the
customer. LIC is implemented in a part of storage that is
not addressable by user programs. Some IBM products
use it to implement functions as an alternate to hard-wire
circuitry.

linker. A computer program for creating load modules
from one or more object modules or load modules by
resolving cross references among the modules and, if
necessary, adjusting addresses. In Java, the linker
creates an executable from compiled classes.

load module. A program unit that is suitable for loading
into main storage for execution. The output of a linkage
editor.

LOB (large object). A sequence of bytes representing bit
data, single-byte characters, double-byte characters, or a
mixture of single- and double-byte characters. A LOB can
be up to 2 GB -1 bytes in length. See also CLOB,
DBCLOB.

local area network (LAN). A computer network located in
a user’s premises within a limited geographic area.

logical partition (LPAR). A set of functions that create a
programming environment that is defined by the ESA/390
architecture. ESA/390 architecture uses this term when
more than one LPAR is established on a processor. An
LPAR is conceptually similar to a virtual machine
environment except that the LPAR is a function of the
processor. Also, LPAR does not depend on an operating
system to create the virtual machine environment.

logical switch number (LSN). A two-digit number used
by the I/O Configuration Program (IOCP) to identify a
specific ESCON® Director.

logically partitioned (LPAR) mode. A central processor
mode, available on the Configuration frame when using
the PR/SM™ facility, that allows an operator to allocate
processor hardware resources among logical partitions.
Contrast with basic mode.

LPAR. See logical partition.

M

megabyte (MB). (1) For processor storage, real and
virtual storage, and channel volume, 220 or 1 048 576
bytes. (2) For disk storage capacity and communications
volumes, 1 000 000 bytes.

method. A fragment of Java code within a class that can
be invoked and passed a set of parameters to perform a
specific task.
 Glossary 285

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
middle tier. The hardware and software that resides
between the client and the enterprise server resources
and data. The software includes a Web server that
receives requests from the client and invokes Java
servlets to process these requests. The client
communicates with the Web server via industry standard
protocols such as HTTP and IIOP.

middleware. A layer of software that sits between a
database client and a database server, making it easier
for clients to connect to heterogeneous databases.

multithreading. Multiple TCBs executing one copy of
code concurrently (sharing a processor) or in parallel (on
separate central processors).

N

National Committee for Information Technology
Standards. NCITS develops national standards, and its
technical experts participate on behalf of the United
States in the international standards activities of ISO/IEC
JTC 1, information technology.

native class. Machine-dependent C code that can be
invoked from Java. For multi-platform work, the native
routines for each platform need to be implemented.

native SQL procedure. An SQL procedure that is
processed by converting the procedural statements to a
native representation that is stored in the database
directory, as is done with other
SQL statements. When a native SQL procedure is called,
the native representation is loaded from the directory, and
DB2 executes the procedure.

NCITS. See National Committee for Information
Technology Standards.

NUL terminator. In C, the value that indicates the end of
a string. For character strings, the NUL terminator is X'00'.

NUL-terminated host variable. A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

null. A special value that indicates the absence of
information.

O

object. The principal building block of object-oriented
programs. Objects are software programming modules.
Each object is a programming unit consisting of related
data and methods.

ODBC. See Open Database Connectivity.

ODBC driver. A dynamically-linked library (DLL) that
implements ODBC function calls and interacts with a data
source.

Open Database Connectivity (ODBC). A Microsoft®
database application programming interface (API) for C
that allows access to database management systems by
using callable SQL. ODBC does not require the use of an
SQL preprocessor. In addition, ODBC provides an
architecture that lets users add modules called database
drivers that link the application to their choice of database
management systems at runtime. This means that
applications no longer need to be directly linked to the
modules of all the database management systems that
are supported.

open system. A system whose characteristics comply
with standards made available throughout the industry
and that therefore can be connected to other systems
complying with the same standards.

original equipment manufacturers information
(OEMI). A reference to an IBM guideline for a computer
peripheral interface. More specifically, refer to IBM S/360
and S/370 Channel to Control Unit Original Equipment
Manufacturer’s Information. The interface uses ESA/390
logical protocols over an I/O interface that configures
attached units in a multi-drop bus environment.

P

package. A program element that contains classes and
interfaces.

partition-by-growth table space. A universal table
space whose size can grow to accommodate data growth.
DB2 for z/OS manages partition-by-growth table spaces
by automatically adding new data sets when the database
needs more space to satisfy an insert operation.

partitioned by range table space. A type of universal
table space that is based on user defined partitioning
ranges.

persistence. In object models, a condition that allows
instances of classes to be stored externally, for example in
a relational database.

Persistence Builder. In VisualAge for Java, a persistence
framework for object models, which enables the mapping
of objects to information stored in relational databases
and also provides linkages to legacy data on other
systems.

plan. See application plan.

plan name. The name of an application plan.
286 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes source
code that can be submitted to the compiler and the
database request module (DBRM) that is input to the bind
process.

prepare. The first phase of a two-phase commit process
in which all participants are requested to prepare for
commit.

prepared SQL statement. A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

primary key. A unique, non-null key that is part of the
definition of a table. A table cannot be defined as a parent
unless it has a unique key or primary key.

process. A program executing in its own address space,
containing one or more threads.

program temporary fix (PTF). A temporary solution or
bypass of a problem diagnosed by IBM in a current
unaltered release of a program.

property. An initial setting or characteristic of a bean, for
example, a name, font, text, or positional characteristic.

PTF. See program temporary fix.

R

RDBMS. Relational database management system.

reentrant. Executable code that can reside in storage as
one shared copy for all threads. Reentrant code is not
self-modifying and provides separate storage areas for
each thread. Re-entrancy is a compiler and operating
system concept, and re-entrancy alone is not enough to
guarantee logically consistent results when
multithreading.

reference. An object's address. In Java, objects are
passed by reference rather than by value or by pointers.

relational database management system (RDBMS). A
relational database manager that operates consistently
across supported IBM systems.

remote. Refers to any object maintained by a remote DB2
subsystem; that is, by a DB2 subsystem other than the
local one. A remote view, for instance, is a view
maintained by a remote DB2 subsystem. Contrast with
local.

Remote Method Invocation (RMI). RMI is a specific
instance of the more general term RPC. RMI allows
objects to be distributed over the network; that is, a Java
program running on one computer can call the methods of
an object running on another computer. RMI and java.net
are the only 100% pure Java APIs for controlling Java
objects in remote systems.

Remote Object Instance Manager. In Remote Method
Invocation, a program that creates and manages
instances of server beans through their associated
server-side server proxies.

Remote Procedure Calls (RPC). RPC is a generic term
referring to any of a series of protocols used to execute
procedure calls or method calls across a network. RPC
allows a program running on one computer to call the
services of a program running on another computer.

requester. Also application requester (AR). The source of
a request to a remote RDBMS, the system that requests
the data.

RMI (Remote Method Invocation). See Remote Method
Invocation.

rollback. The process of restoring data changed by SQL
statements to the state at its last commit point. All locks
are freed. Contrast with commit.

RPC. See Remote Procedure Calls.

runtime system. The software environment where
compiled programs run. Each Java runtime system
includes an implementation of the Java Virtual Machine.

S

sandbox. A restricted environment, provided by the Web
browser, in which Java applets run. The sandbox offers
them services and prevents them from doing anything
naughty, such as doing file I/O or talking to strangers
(servers other than the one from which the applet was
loaded). The analogy of applets to children led to calling
the environment in which they run the "sandbox."

scalar function. An SQL operation that produces a single
value from another value and is expressed as a function
name followed by a list of arguments enclosed in
parentheses. See also column function.

Secure Socket Layer (SSL). SSL is a security protocol
that allows communications between a browser and a
server to be encrypted and secure. SSL prevents
eavesdropping, tampering, or message forgery on your
Internet or intranet network.
 Glossary 287

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
security. Features in Java that prevent applets
downloaded off the Web from deliberately or inadvertently
doing damage. One such feature is the digital signature,
which ensures that an applet came unmodified from a
reputable source.

serialization. Turning an object into a stream, and back
again.

server. The computer that hosts the Web page that
contains an applet. The .class files that make up the
applet, and the HTML files that reference the applet reside
on the server. When someone on the Internet connects to
a Web page that contains an applet, the server delivers
the .class files over the Internet to the client that made the
request. The server is also known as the originating host.

server bean. The bean that is distributed using RMI
services and is deployed on a server.

servlet. See Java servlet.

SGML. See Standardized Generalized Markup
Language.

Shell. The user interface of UNIX system software. In
z/OS, an xpg4.2-compliant shell is used. Very often
OMVS is used as an interface for z/OS shells.

single precision. A floating-point number that contains
32 bits. See also double precision.

Small Computer System Interface (SCSI). (1) An ANSI
standard for a logical interface to computer peripherals
and for a computer peripheral interface. The interface
uses a SCSI logical protocol over an I/O interface that
configures attached targets and initiators in a multi-drop
bus topology. (2) A standard hardware interface that
enables a variety of peripheral devices to communicate
with one another.

SmartGuide. In IBM software products, an active form of
help that guides you through common tasks.

source type. An existing type that is used to internally
represent a distinct type.

sourced function. A function that is implemented by
another built-in or user-defined function already known to
the database manager. This function can be a scalar
function or a column (aggregating) function; it returns a
single value from a set of values (for example, MAX or
AVG). Contrast with external function and built-in function.

SQL. Structured Query Language. A language used by
database engines and servers for data acquisition and
definition.

SSL. See secure socket layer.

Standardized Generalized Markup Language. An
ISO/ANSI/ECMA standard that specifies a way to
annotate text documents with information about types of
sections of a document.

static bind. A process by which SQL statements are
bound after they have been precompiled. All static SQL
statements are prepared for execution at the same time.
Contrast with dynamic bind.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not change
(although values of host variables specified by the
statement might change).

stored procedure. A user-written application program,
that can be invoked through the use of the SQL CALL
statement.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a relational
database.

Sysout. The regular output for a program on z/OS is
SYSOUT. It is the functional equivalent of stdout on UNIX.
In batch, there can be multiple SYSOUTs.

System. A single instance of the z/OS or OS/390
operating system in a sysplex.

System Management End User Interface (SMEUI). A
Windows-based tool that makes it possible to perform
administrative tasks for WebSphere Application Server
from a Windows workstation. The SMEUI tool is used to
deploy a new application to WebSphere on z/OS.

T

task control block (TCB). A control block used to
communicate information about tasks within an address
space that are connected to DB2. An address space can
support many task connections (as many as one per
task), but only one address space connection. See
address space connection.

TCB. Task Control Block; manages dispatchable tasks.
Each UNIX thread is assigned to a TCB.

Telnet. Telnet provides a virtual terminal facility that
allows users of one computer to act as if they were using
a terminal connected to another computer. The Telnet
client program communicates with the Telnet daemon on
the target system to provide the connection and session.

temporary table. A table created by the SQL CREATE
GLOBAL TEMPORARY TABLE statement that is used to
hold temporary data. Contrast with result table.
288 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
textual XML format. A system of storing XML data in text,
as opposed to binary, that allows for direct human reading.

thin client. Thin client usually refers to a system that runs
on a resource-constrained machine or that runs a small
operating system. Thin clients don't require local system
administration, and they execute Java applications
delivered over the network.

third tier. The third tier, or back end, is the hardware and
software that provides database and transactional
services. These back-end services are accessed through
connectors between the middle-tier Web server and the
third-tier server. Though this conceptual model depicts the
second and third tier as two separate machines, the NCF
model supports a logical three-tier implementation in
which the software on the middle and third tier is on the
same box.

thread. A separate flow of control within a program.

timestamp. A seven-part value that consists of a date and
time expressed in years, months, days, hours, minutes,
seconds, and microseconds.

trace. A facility that provides the ability to monitor and
collect monitoring, auditing, performance, accounting,
statistics, and serviceability data.

Trading communities. Trading communities bring
together buyers and sellers in a central online location to
trade, using various online mechanisms including
auctions and exchanges, in addition to industry content
and application services. Trading communities are owned
and operated by both large industry players in closed
trading networks and by neutral parties in more
fragmented open communities.

transaction. (1) In a CICS program, an event that queries
or modifies a database that resides on a CICS server. (2)
In the Persistence Builder, a representation of a path of
code execution. (3) The code activity necessary to
manipulate a persistent object. For example, a bank
application might have a transaction that updates a
company account.

U

UDF. See user-defined function.

UDT. See user-defined data type.

Unicode. A 16-bit international character set defined by
ISO 10646. See also ASCII.

Uniform Resource Locator (URL). The unique address
that tells a browser how to find a specific Web page or file.

universal table space. A table space that is both
segmented and partitioned.

URI/URL. A Uniform Resource Identifier (URI) and
Uniform Resource Locator (URL) uniquely define a
location on the Web. URLs are familiar to anyone who
browses the Web (for example http://www.ibm.com), and
the term URI is a more general term which also
incorporates other schemes for identifying resources.

URL. See Uniform Resource Locator.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function defined to DB2
using the CREATE FUNCTION statement that can be
referenced thereafter in SQL statements. A user-defined
function can be either an external function or a sourced
function. Contrast with built-in function.

V

valid. An XML document is valid if its content conforms to
the rules in its DTD.

variable. (1) An identifier that represents a data item
whose value can be changed while the program is
running. The values of a variable are restricted to a certain
data type. (2)A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

vi. A popular UNIX editor. It can only be used from an
ASCII Telnet connection.

virtual machine. A software or hardware implementation
of a central processing unit (CPU) that manages the
resources of a machine and can run compiled code. See
Java Virtual Machine.

visual bean. In the Visual Composition Editor, a bean that
is visible to the end user in the graphical user interface.

W

WAP. Wireless Application Protocol. Offers Internet
browsing from wireless handsets.

Web. See World Wide Web.

Web Application. A WebSphere Web application is a
collection of static pages, JSPs, and Servlets that share a
common URL prefix, and together make a complete
application.
 Glossary 289

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
Web browser. The Web uses a client/server processing
model. The Web browser is the client component.
Examples of Web browsers include Mosaic, Netscape
Navigator, and Microsoft Internet Explorer. The Web
browser is responsible for formatting and displaying
information, interacting with the user, and invoking
external functions, such as Telnet, or external viewers for
data types that it does not directly support. Web browsers
are fast becoming the universal client for the GUI
workstation environment, in much the same way that the
ability to emulate popular terminals such as the DEC
VT100 or IBM 3270 allows connectivity and access to
character-based applications on a wide variety of
computers. Web browsers are available for all popular
GUI workstation platforms and are inexpensive (often
included with operating systems or related products for no
additional charge.)

Web server. Web servers are responsible for servicing
requests for information from Web browsers. The
information can be a file retrieved from the server’s local
disk or generated by a program called by the server to
perform a specific application function. Web servers are
sometimes referred to as httpd servers or daemons. A
number of Web servers are available for most platforms
including most UNIX variants, OS/2 Warp, OS/390, and
Windows NT®.

well-formed. An XML document is well-formed if there is
one root element, and all its child elements are properly
nested within each other. Start tags must have end tags,
and each empty tag must be designated as such with a
trailing slash. Also, all attributes must be quoted, and all
entities must be declared.

white-space. In XML, characters that are not visible, but
used in formatting documents or programs. These
characters include the SPACE, TAB, NEWLINE, and
CARRIAGE-RETURN characters.

World Wide Web. A network of servers that contain
programs and files. Many of the files contain hypertext
links to other documents available through the network.

WWW. See World Wide Web.

X

XML. The Extensible Markup Language (XML) is an
important new standard emerging for structured
documents on the Web. XML extends HTML beyond a
limited tag set and adapts SGML, making it easy for
developers to write programs that process this markup
and providing for a rich, more complex encoding of
information.

XML attribute. A name-value pair within a tagged XML
element that modifies certain features of the element.

XML column. A column of a table that stores XML values
and is defined using the data type XML. The XML values
that are stored in XML columns are internal
representations of well-formed XML documents.

XML data type. A data type for XML values.

XML element. A logical structure in an XML document
that is delimited by a start and an end tag. Anything
between the start tag and the end tag is the content of the
element.

XML index. An index on an XML column that provides
efficient access to nodes within an XML document by
providing index keys that are based on XML patterns.

XML lock. A column-level lock for XML data. The
operation of XML locks is similar to the operation of LOB
locks.

XML node. The smallest unit of valid, complete structure
in a document. For example, a node can represent an
element, an attribute, or a text string.

XML node ID index. An implicitly created index, on an
XML table that provides efficient access to XML
documents and navigation among multiple XML data rows
in the same document.

XML pattern. A slash-separated list of element names,
an optional attribute name (at the end), or kind tests, that
describe a path within an XML document in an XML
column. The pattern is a restrictive form of path
expressions, and it selects nodes that match the
specifications. XML patterns are specified to create
indexes on XML columns in a database.

XML publishing function. A function that returns an XML
value from SQL values. An XML publishing function is also
known as an XML constructor

XML schema. In XML, a mechanism for describing and
constraining the content of XML files by indicating which
elements are allowed and in which combinations. XML
schemas are an alternative to document type definitions
(DTDs) and can be used to extend functionality in the
areas of data typing, inheritance, and presentation.

XML schema repository (XSR). A repository that allows
the DB2 database system to store XML schemas. When
registered with the XSR, these objects have a unique
identifier and can be used to validate XML instance
documents.

XML serialization function. A function that returns a
serialized XML string from an XML value.
290 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915glos.fm
XML table. An auxiliary table that is implicitly created
when an XML column is added to a base table. This table
stores the XML data, and the column in the base table
points to it.

XML table space. A table space that is implicitly created
when an XML column is added to a base table. The table
space stores the XML table. If the base table is
partitioned, one partitioned table space exists for each
XML column of data.

XSL Stylesheet. The eXtensible Stylesheet Language
defines stylesheets for XML Documents. It is composed of
two parts: the formatting objects, and XSLT. XSL is
defined by the WorldWide Web Consortium.

XSLT. eXtensible Stylesheet Language Transformations.
This defines the part of the XSL specification which allows
the stylesheet to reformat and reorganize the XML data. It
is most often used to transform XML into XSL.
 Glossary 291

7915glos.fm Draft Document for Review January 9, 2011 1:25 pm
292 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 294.
Note that some of the documents referenced here might be available in softcopy only.

� DB2 10 for z/OS Technical Overview, SG24-7892

� DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604

� XML on z/OS and OS/390: Introduction to a Service-Oriented Architecture, SG24-6826

� XML Processing on z/OS, SG24-7810

Other publications

These publications are also relevant as further information sources:

� DB2 10 for z/OS Installation and Migration Guide, GC219-2974

� DB2 10 for z/OS pureXML Guide, SC19-2981

� DB2 10 for z/OS Application Programming Guide and Reference for Java, SC19-2970

� DB2 10 for z/OS Application Programming and SQL Guide, SC19-2969

� DB2 10 for z/OS SQL Reference, SC19-2983

� DB2 pureXML Cookbook, Matthias Nicola and PAV Kumar-Chatterjee, IBM Press,
ISBN-13: 978-0-13-815047-1

� WebSphere MQ Application Programming Guide Version 6.0, SC34-6595

� WebSphere MQ Using Java Version 6.0, SC34-6591

Online resources

These Web sites are also relevant as further information sources:

� Tools and XML functionality for DB2 pureXML users

https://www.ibm.com/developerworks/data/library/techarticle/dm-1012xmltools/

� Extensible Dynamic Binary XML, Client/Server Binary XML Format(XDBX) Version 1.0

http://www.ibm.com/support/docview.wss?uid=swg27019354&aid=1

� XSL Transformations (XSLT) Version 1.0

http://www.w3.org/TR/xslt

� pureXML Devotees

http://www.ibm.com/developerworks/wikis/display/db2xml/devotee#devotee-rational
© Copyright IBM Corp. 2011. All rights reserved. 293

http://www.ibm.com/developerworks/wikis/display/db2xml/devotee#devotee-rational
http://www.w3.org/TR/xsl
http://www.ibm.com/support/docview.wss?uid=swg27019354&aid=1
https://www.ibm.com/developerworks/data/library/techarticle/dm-1012xmltools/

7915bibl.fm Draft Document for Review January 9, 2011 1:25 pm
� ISO 3166 code lists

http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

� OASIS

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl

� ISO 20022 Universal financial industry message scheme

http://www.iso20022.org/

� Catalogue of ISO 20022 messages

http://www.iso20022.org/catalogue_of_unifi_messages.page

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
294 Extremely pureXML in DB2 10 for z/OS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://www.iso20022.org/
http://www.iso20022.org/catalogue_of_unifi_messages.page

Draft Document for Review January 9, 2011 1:25 pm 7915IX.fm
Index

Numerics
2-byte length 195

variable character 220

A
access plan 28
ALTER statement 75
ALTER TABLE 54, 56, 74–76, 175, 232

statement 56, 74, 77
Amt Ccy 68, 265
APIs 129–130, 132
application xix, 4–5, 19–20, 22–23, 31, 45–46, 52, 59,
67, 70, 88, 93, 129–130, 155–156, 213, 235, 243–244,
246, 274
application scenario 118, 246
applications with SQL (AS) 184
array 131
attribute 6, 9, 27, 34, 36, 78, 80, 100, 132, 157, 174, 176,
191, 234, 247, 250
auxiliary index 184
auxiliary table 62, 257
availability 3, 48, 58

B
bank statement 102–103, 171–172, 234
base table 52–53, 58, 88, 103, 164, 182–184, 231–232,
258, 261

document ID column 61
non-XML columns 197
page size 233
partition-by-growth table space 66
row changes partition 56
table space 54
XML indicator column 54

base table space 53, 184
BKRTORCS 63, 240
DSN00242.BKRT ORCS 190
set 238

binary format 135, 158, 199
BK_TO_CSTMR_STMT c 116, 253
BK_TO_CSTMR_STMT Position 196
BLOB 98, 132, 156, 198
BLOBs 156, 159
buffer 63, 230–231, 258–259
Byte Order Mark (BOM) 157

C
C 26, 28, 85, 216–217, 226–227, 230, 253–255
c.xmla ddress 26
CCSID 157, 198
cdc message 118–120

potential use 121
© Copyright IBM Corp. 2011. All rights reserved.
change data 49, 118–119
XML 118

CHECK DATA 182–183, 237
CHECK Data 182, 237

default behavior 182
CHECK INDEX 186, 239
CHECK Index 187, 239
class 4, 22, 133, 186, 275
CLASSPATH 130
client application 135
CLOB 31, 91, 94–96, 132, 156–157, 190, 198, 208, 211,
226
CLOBs 156, 159
COBOL xix, 19, 22, 45–46, 48–49, 87, 155–156, 198,
245, 256–257, 273, 276
COBOL program 50, 173, 175, 276
code page 156–157, 256–257
code page conversion 177
Column

XML 23, 65, 103, 158, 184
Command Line Processor 37, 89, 91, 138, 163, 235
Command Line Processor (CLP) 37, 89
Comments xxi, 7, 44, 119
COMMIT 41, 59, 97, 248
complete xmlschema

SYSXSR.MYXM LSCHEMA 37
components 137, 158, 161, 173
compression 61, 234, 258
condition 92–93
connection 100, 136, 229
constraint 34, 64
constructor 107–108
Content 3, 46, 74, 178, 207, 250
Context 7, 27, 57, 107, 170
COPY utility

control statement 188
COPYTOCOPY 191
corresponding namespace name

schema location hint 80
Create 4, 24–25, 47, 51, 74, 88, 107, 130, 133, 160, 192,
195–196, 230, 236, 244, 251, 274
CREATE PROCEDURE 89, 91, 96
CreDtTm element 170

MsgRcpt element 175
MsgRcpt element right 175

cross-loader 192
CURRENT TIMESTAMP 92

D
data access 22–24, 260
Data compression 258
data element 23, 30, 88, 101, 245

large number 31
data format 136
 295

7915IX.fm Draft Document for Review January 9, 2011 1:25 pm
data model 23, 31–32, 107, 126, 246
data set 41, 58, 63, 195–197, 199, 230, 246
data source 120
data structure 12, 22, 126, 246
Data Studio 44, 93
data type xix, 10–11, 19, 22–23, 35, 52, 54, 56, 74–75,
88, 90, 111, 113, 130, 156, 159, 196, 220, 236–237, 240,
244, 249–250

BIGINT 61
casing 35
casting 29
timestamp 91
XML 23, 54, 74–76, 88, 90, 130, 156, 159, 175, 220,
249–250

database access thread (DBAT) 42
DATABASE DSN00242 67, 193
database objects 246
databases 2, 22–23, 129, 275
DB0B DSNTDDIS 67, 207, 239
DB2 10 21, 74, 88, 167, 183, 230, 257

MQ functions 94
online compression 258
zAAP eligible 42

DB2 9 xix–xx, 23, 42, 84, 93, 167, 226, 231, 256
DB2 data 23, 38, 132, 158
DB2 database xx, 22–23, 38, 52, 260
DB2 engine 42, 49, 256
DB2 for z/OS xix, 19, 42, 119, 129–130, 163, 192, 237,
276
DB2 pureXML

Using COBOL 50
XML cdc messages 121

DB2 subsystem 88, 94, 97, 231
DB2 table 5, 24, 29, 32, 88, 90–91, 248, 275

XML document 32
db2 table 91, 248
DB2 V8 23
DB2 z/OS 257
DB2Connection 235
DBA 28, 229
DBCLOB 156, 198
DBD Length 67, 207, 239
DD DISP 165
DD DSN 186, 259
DDL 48, 155, 233
DE LETE 187
default element namespace 15, 28, 90, 106, 169, 208,
236, 251
default namespace 15, 107, 170
default value 197
DELETE 5, 33, 62, 168, 186–187, 240, 258–259
delete 5, 32–33, 115, 167, 186, 215, 240–241, 259
DEV Type 216
DOCID 54, 183, 246
DOCID column 54, 61, 183

corresponding value 183
unique index 54

DOCID index 54, 205, 214, 239, 253
DOCID key 239

DOCTYPE 5, 14, 16

DOCTYPE declaration 16
Document Object Models 7
Document Type Definition 6–7
Document validity 5
Document xmlns

xsi 197, 199, 269
Documentation 11, 47, 93
DOM 7, 129, 133–135

See also also also also Document Object Model
See also also also Document Object Model
See also also Document Object Model

DRDA 42, 192
DSN_XMLVALIDATE function 34, 93
DSN_XMLVALIDATE invocation 42, 82
DSN1COPY 228
DSNE610I Number 63, 166, 190, 252
DSNE616I STATEMENT Execution 63, 166, 204, 252
DSNT408I SQLCODE 166, 169
DSNT415I SQLERRP 166, 169
DSNT416I SQLERRD 166, 169
DSNT418I SQLSTATE 166, 169
DSNTIAUL 225
DSNUPROC.SYSIN DD 259
DTD 5–7
DtTm element 70, 108, 173
dynamic 75, 130, 192, 220

E
EBCDIC CCSID 157, 200
element 6, 23, 26–27, 48, 78, 90, 134, 162, 190, 208,
235–236, 247, 250–251, 264, 276–277
element name 7, 9, 36, 78, 112, 139, 170
email emailUse 31
encoding scheme 54, 56, 60
Enterprise Service Bus 45–46, 88, 93
ENVIRONMENT 15, 38, 40, 94, 137, 176, 216–217, 249,
274
environment 19, 38–39, 93–94, 97, 129, 137, 162, 230,
249, 256, 275
eq 15
EXEC SQL 59, 157, 165, 192–193

OPEN CURSOR C1 59
statement 171

EXPLAIN 7, 21, 90, 173, 251, 254–255
expression 14, 27–28, 82, 103, 107–108, 169, 171, 173,
236, 250, 252
eXtensible Markup Language 4
Extensible Stylesheet Language 11
extensions 24, 107

F
FETCH 59, 172
fetch 123
file reference variable 160, 197–198, 222, 276

variable declarations 160
fn

abs 107
empty 108

fragment 17, 33
296 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915IX.fm
function 21, 25–26, 28, 50, 74, 81–82, 90–91, 130, 139,
163, 165–167, 192, 214, 248, 254
function DSN_XMLVALIDATE 42

G
GENERATED ALWAYS 54, 61
given table space

XML data 224
GrpHdr element 166

Schema definition 170
GUI 43

H
handle 2, 51, 56, 99, 120, 129, 158–159, 175, 181, 225,
237
Hierarchical xix, 7, 32, 247
HIGH DSNUM 216
host variable 157–159
host variables 156
HTML xxi, 4, 31, 137, 150, 276

I
IC Type 216
ID attributes 15
ID INT 76
II14426 38, 231, 261
image copy 188
import 48, 134
INCLUDE XML TABLESPACES 183–184, 239
INDDN SYSREC00 226
index access 30, 109, 111, 173, 253–255
INDEX XMLR4 197, 199
indexes 22–23, 28, 47, 51, 58, 104, 164, 172, 186, 230,
244, 246
Information Integrator 192
input data 176, 195–196, 198, 237
input parameter 88–90, 139, 165
INSERT 24–25, 31, 51, 74, 77, 80, 90, 92, 132, 156, 165,
168, 196, 234–235, 253, 275
installation 21, 38, 94, 230
Installation job

DSNTIJMV 39
DSNTIJRT 38, 230
DSNTIJRW install 38–39

instance document 11, 80
root element 80
root element node 83

Interactive Financial Exchange (IFX) 2
IS xix, 2, 21, 45, 52, 63, 74, 87, 130, 156, 182, 187, 229,
244, 252, 263, 273
ISO/IEC 24
ISO20022 standard 48, 118, 155, 246

BankToCustomerStatement message 161
same subset 161

J
jar 130
Java xix, 19, 22, 38–39, 45, 48, 50, 91, 129, 230, 235,

245, 257, 273–275
java program 46, 93
JCL 97, 164–165, 180, 186, 188, 190–191, 193, 258, 277
JCLLIB Order 186
JDBC 22, 38–39, 41, 50, 129–130, 230, 235, 257,
274–275

driver 130
JOBPARM SYSAFF 186
John Doe 26, 121
joins 116

K
KB 195, 231, 259, 274
Key 15, 35, 54, 57, 61, 106, 165, 234, 251, 258
keyword 8, 77–78, 177, 182–184, 238–239, 258

L
LANGUAGE SQL 90, 92, 96
let 17–18, 27, 74, 89, 99, 108, 159, 162, 204, 233
LISTDEF 193, 238
LISTDEF List 193
LISTDEF LISTALL 193
LISTDEF LISTXML 193
LISTDEF utility 193
LOAD 70, 77, 107, 135, 166, 192, 195, 235
LOAD PHASE Statistic 197
LOAD utility 196, 198, 237

crossloader capability 237
XML data 197

LOB 52, 156, 181–182, 184, 237
LOB table 184, 238
LOBs 156, 160, 184, 227, 237
location 13, 26–27, 77, 116, 118, 138, 166, 192, 236,
250–251
locking 32, 62
LOW DSNUM 216
LRSN 60, 204–205, 208

M
markup language 4
MERGE 202–203, 235
MERGECOPY 202
message queue

XML message 98
message queue (MQ) 93
metadata 4
method 9, 116, 131, 173, 197, 225–226, 235–236, 248,
258
monitor 249, 259
Move XML-Text 178
MQ Listener

configuration data 98
process 97

MQ listener 93
configuration 97

MSG_CRE_DT_TM TIMESTAMP 88, 192
MSG_ID VARCHAR 224
MsgRcpt element 167, 277
 Index 297

7915IX.fm Draft Document for Review January 9, 2011 1:25 pm
multiple occurrences 174
XML document 169

N
name space 8
namespace 8, 27–28, 75, 77, 90, 162, 168, 190, 208,
235–236, 251
namespace declaration 15, 28, 169, 253

MsgRcpt element 170
namespace name 80

schema location hint 80
namespace prefix 8–9, 107
Namespaces 8
namespaces 5, 7–9, 27, 35, 85, 103, 170, 246
native data type 24
native SQL 49, 88, 256
Node 14, 32, 57, 80, 103, 169
node 14, 30, 32–33, 54, 56–57, 80, 101, 103, 134–135,
168–169, 173, 190, 258, 276
node id index 61
NODEID index

corresponding entry 183
index entry 183
XML table space 188

NORMAL Completion 67, 207, 239
Ntry element 101
NUMRECS 1 200

O
ODBC 39
optimizer 28, 35, 249, 251
options 11, 120, 156, 159, 163, 183–184, 189, 211, 240,
257
order by 59, 65, 103–104, 123, 257
OUTPUT Start 187–188
overhead 258

P
package 41
parameter 41, 82, 88–89, 139, 165, 171, 225–227, 231,
259, 275
parent/child relationships 6, 18
parser 5, 7, 139–140, 178
partitioning 56, 61, 234, 258
PATH xix, 11, 28, 57, 92, 165, 169, 249, 254
Pattern 13, 34, 70, 109, 173, 250
PCDATA 6–7
performance xix, 19–20, 23, 34, 58, 131, 137, 224, 231,
236, 243–244
persisting 244
PHASE Statistic 197
PIT LRSN 216
PK90032 42
PK90040 42
PM21834 240
PM22081 235
PM24947 240
PM26592 240

PM28385 125
PM29986 201
po

purchaseOrder xmlns
po 80

point-in-time recovery 206, 238
precompiler 156
predicate 26–27, 103, 108, 171–172, 253–254
prefix 8–9, 107, 170, 226
primary schema 38
privilege 236–237
procedures 24, 37, 46, 48–49, 87, 138, 159, 230,
245–246, 248, 273
PROCESSING SYSIN 187
programming interface 126
programming language 130–131
Publishing xix, 24–25, 89, 124, 133
purchase order 3, 75
PURCHASE_ORDERS Value 81
pureQuery 44
pureXML xix–xx, 19–22, 46–48, 87–88, 106, 137,
155–156, 161, 229–230, 235, 243, 245–246
pureXML storage 121, 246, 248

Q
qualified name 84
query 15, 26–28, 45–47, 63, 84, 93, 99, 137, 175, 179,
197, 207, 226, 234, 238, 246–247, 251
Querying XML documents 171
Queue Manager

MQBA 97
QUIESCE 203

R
RACF 213–214
RBA 60, 204–205, 208
REBUILD INDEX 188, 205, 240
received XML document

new XML document 91
relational and XML objects 112

RECOVER 188, 206
Redbooks Web site 48, 273, 294

Contact us xxi
REGION 186, 188, 190–191
registered XML schema

XML documents 36
relational column 29, 49, 96, 115, 245

data elements 246
relational data xix, 4, 23–24, 45, 90, 116, 176, 178, 251
relational index 34, 70, 236, 249
reordered row format 61
REORG 58, 188, 211, 234, 237, 258
REORG TABLESPACE 211, 237, 259
REORG UNLOAD ONLY 212
REORG utility 58, 197
REPORT 39, 137, 166, 182, 197, 215, 238
REPORT RECOVERY 216

TABLESPACE DSN00242.BKRT ORCS 216
TABLESPACE DSN00242.XBKR 0000 217
298 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915IX.fm
REPORT TABLESPACESET 215–216
repository 22, 30, 36, 48, 78, 82, 96, 127, 138, 163, 175,
230, 276
requirements 45–47, 74, 121, 273
result set 103, 197
ResultSet 131
retrieved XML document

XML structure 24
return 15, 29–30, 89, 92, 99, 132, 166, 200, 225–226,
253, 255
RETURN Code (RC) 39, 197, 199
RETURNS VARCHAR 41, 113
root element 11, 75

namespace name 80
node 80

row format 61
RUNSTATS 106, 173, 219, 237, 252
runtime 27

S
samples xix, 19, 48, 137, 273
SAX 129, 132, 137

Parser 132
Schema 5–6, 34, 38, 44, 47, 50, 74, 79, 89, 138,
162–163, 179, 184, 230, 236, 247–248, 264, 275–277

XML 6, 35, 38, 44, 74, 162, 230, 248
schema 6, 21–22, 27, 48, 74, 89, 137–138, 155,
161–162, 182–183, 230, 246–247, 264, 274–275
schema document 38, 78, 80, 247
schema location

hint 80
hint http 81
URI 80

schema validation 22, 34–35, 48, 74, 78, 91, 95–96, 107,
139, 163–164, 179–180, 185, 230, 248
Schemas 7, 9, 22, 47, 74, 79, 89, 130, 162, 230, 244, 264
SCOPE PENDING 182
SCOPE XMLSCHEMAONLY 183
scripts 155
SDK 137, 275
SELECT statement 110, 226–227, 260
SELECT SUBSTR 63
SELECT XMLSERIALIZE 208
Semi-structured data 247
separate file 7, 195, 220
Server 38–39, 41, 119, 130, 192, 220, 230, 257,
273–275
SET 6, 22, 33, 47, 63, 74, 76–77, 90, 130, 165, 168, 190,
192, 195, 230, 241, 249, 254
setup 40–41, 93–94, 137, 230, 273–274
SGML 4
SHR LVL 216
Shredding 178–179
shredding 49, 139, 161, 178
SHRLEVEL 185, 235
side 137, 175–176
SOA 2, 44
source file 18
spanned record format 195, 201
SQL xx, 12, 19, 22–24, 45–47, 49, 51, 59, 67, 77–78, 84,

87–88, 130, 132, 156–157, 192, 231, 234–236, 243, 245,
275
SQL code 108
SQL error 158, 252
SQL PL 62
SQL programmer 112, 252
SQL statement 24, 30, 37, 40, 84, 95, 100, 115, 168, 228,
256
SQL Type 160
SQL/XML 23–24, 47, 49, 87, 93, 99, 133, 159, 245–246
SQL/XML extension 27
SQL/XML language 260
SQL/XML query 99, 253

numbered points 103
SQLCA 168, 171
SQLCODE 41, 63–64, 90, 92, 166, 169, 204, 252
SQLCODE Integer 96
SQLJ 38–39, 41, 50, 129–130, 230, 257, 274–275
sqlj 130
SQLSTATE 92, 166, 169
Standard Generalized Markup Language 4
START LRSN 216
startup procedure 38, 230
statement 22, 27, 45–46, 48, 51–52, 54, 75, 89–90, 137,
161, 164, 184–186, 232, 252, 263, 276
statistics 197, 211, 219, 237, 252
STEPLIB 41, 165, 230
storage model 244–245
stored procedure 38, 45–46, 48, 88–89, 129, 139, 230,
256, 274
string value 18, 27, 31–32, 133, 249
stylesheet 11–12
SYSIBM.SYSD UMMY1 41
sysibm.sysdummy1 41, 90, 260
SYSIBM.SYSI NDEXES 65, 204, 251
SYSIN DD 165, 225

T
TABLE BK_TO_CSTMR_STMT

table space names 63
table BK_TO_CSTMR_STMT 52, 88, 164, 274

INDDN SYSREC00 226
table BK_TO_CUSTMR_STSMT 276
TABLE PURCHASEORDERS 76
table space 38, 52, 75, 186, 231, 246

ACHKP status 241
different table space 52
logging attribute 191
partial recovery 218
SHRLEVEL CHANGE 212

table T1 58
tables 24, 31, 45, 47, 51, 60, 94, 115, 130, 162, 164, 182,
192–193, 230, 244, 247, 274
TABLESPACE DSN00242.BKRT ORCS 187

PARTITION 1 200
TOLOGPOINT X'000011112222 208
TOLOGPOINT X'000069667C5E 208

TABLESPACE DSN00242.XBKR 0000 187
COPYDDN 188
PARTITION 1 200
 Index 299

7915IX.fm Draft Document for Review January 9, 2011 1:25 pm
target namespace 11, 77
XML schema 77
XML schemas 81

task control block (TCB) 42
text node 135
three-layer structure 159

Data conversion 159
TIMESTAMP Path 92, 260
tree structure 7, 12

U
UDF 42, 114–115
UDFs 48, 112–113
UK62510 240
Unicode 2, 54, 56, 60, 156–157, 198
Uniform Resource Identifier 8
Uniform Resource Identifier (URI) 80
universal table space 32, 52, 54, 58, 167, 211, 257
UNLOAD 135, 187, 223, 237
UPDATE 32–34, 50, 54, 59, 74, 77, 84, 90, 115, 124,
132, 165, 168–169, 190, 219, 258
URI 8, 77–78, 236
URL 13, 44
USAGE 32, 46, 58, 106, 157–158, 247
UTF-8 10, 31, 36, 54, 56, 60, 67, 120, 122, 131–132,
156–157, 197, 199, 256–257, 264, 269
UTIL EXEC DSNUPROC 188
UTILITY Execution 197, 199
utility run 186, 193

V
V_CREDTTM TIMESTAMP 89
V_MSG_ID VARCHAR 92
Validation 21, 48, 73–74, 77, 88, 139, 162, 179, 184,
230, 239, 248
validity 5–6
VALUE 2, 26, 46, 52, 74, 106, 115, 131, 164, 168, 183,
213, 239, 248
VALUES 6, 24–25, 67, 75, 80–81, 90, 94, 129, 160, 165,
195, 213, 231, 248, 264
VARCHAR 25, 27, 29, 52, 54, 56, 65, 82, 88–90, 139,
159, 164–165, 192, 196–198, 202, 233, 235–236, 251,
254–255
VARCHAR NULLIF 198
variable 96, 115–116, 130, 156, 195, 197–198, 246, 250,
276
VBS data 224
versions 22, 32, 48, 54, 58, 74, 83, 88, 119, 130, 211,
236–237, 258
views 18

W
W3C 4, 9–10, 134
Web browser 5, 273
Web services 2–3, 44, 247
WebSphere 14, 45, 87, 93–94, 158, 248, 276
WebSphere Message Broker 118
WebSphere MQ 46, 49–50, 88, 93–94, 276

well-formed XML 9, 30, 74
Well-formedness 6
well-formedness 5–7
whitespace 31–32, 74, 196
wide range 44, 87, 236, 247
WLM 38, 94, 230
WLM environment 39

X
XHTML 15–16
XHTML 1.0 Frameset 16
XHTML 1.0 Strict 16
XHTML 1.0 Transitional 16
XHTML example 17
XID XMLADDRESS 26
XLink 17
XML xix–xx, 1–3, 19, 21–22, 29, 45–46, 51–52, 73–74,
87–88, 108, 116–118, 129–130, 155–156, 181–182,
229–230, 244, 263–264, 274–276

definition 4, 6, 64, 74–75, 106, 139, 174, 222, 252
editor 44
Repository 22, 37, 79
Schema 5, 9, 36, 90, 248
standards 2, 24, 48, 248, 263
Web Services 44

XML column 24–27, 29, 37, 51–52, 54, 61, 74, 115,
129–131, 158, 163–164, 166–167, 174, 183, 185, 192,
195, 231–232, 246, 274, 276

base table spaces 211
billing statements 75
data 26, 52, 57, 74, 130–131, 174, 232, 237
definition 75
document 74
length 195
need 76
purchase orders 75
Reset XML type modifier 77
table space 215
type modifier 174
value 195, 220
XML document 67
XML table 57
XML type identifier 180
XML type modifier 76

XML columns 24, 43, 52, 54, 58, 60–61, 75, 106, 115,
129, 132, 167, 182, 188, 192, 231–232, 244, 246
XML data xix, 2, 21–22, 32, 46–47, 49, 52, 56, 60–61,
74, 88, 91, 103, 107, 129–130, 156, 158, 181–182,
186–187, 220, 223, 231–232, 234, 245–246, 248, 275

file reference variables 160
integrity rules 248
internally encoded variable 159
NODEID index 57
required transformation 11
Storage structure 56
Using non-XML variables 159
XML variables 159

XML data model 36, 247
XML data type 23, 74, 93, 95–96, 130, 132, 156, 159,
249
300 Extremely pureXML in DB2 10 for z/OS

Draft Document for Review January 9, 2011 1:25 pm 7915IX.fm
XML declaration 131–132, 157
XML declarations 132
XML document 5, 22–23, 46, 50–51, 54, 56, 74, 80–81,
84, 88–89, 94, 112, 115, 129–130, 157, 165, 182–183,
189–190, 230, 233, 237, 245–246, 255, 275–276

Account Name 116
adhere 6
code page 158
credit transactions 102
data element 27
data elements 23
data values 258
declaration 11
detailed constraints 6
efficient insert 160
exact size 197
first few characters 197
Generation 176
individual elements 29
internal structure 23
internal structures 17
large number 104
location 237 169
multiple copies 257
multiple elements 93
multiple parts 70
multiple versions 54
new version 32
new XML node 115
old version 32
relational format 172
root element 11, 80
similar support 178
single element 101
source tree 12
specific fields 96
structural integrity 183
syntactical rules 6
textual nature 258
transactional entry 103
type 16, 246, 249
update 257
Validation 176
validation 84, 90–91, 93, 175, 249
viewer 100
XML data elements 107
XML elements 28

XML element 29, 34, 167, 169, 177, 250
XML Extender 23
XML file 7, 12, 17, 156, 160, 164, 197, 226, 276–277
XML format 50, 102, 117, 131, 135, 173, 196, 220, 237,
257
XML Index

pattern 251
XML index 28, 34–35, 70, 104–107, 172–173, 188, 196,
231, 235–236, 246, 249–250

CHECK INDEX 188
Creation 236
following keywords 219
XML pattern 253

XML indicator column 54, 61
XML message 46, 48, 50, 88, 95–96, 137, 167, 264, 274,
276

common source 118
existing standard 47

XML model 22, 107, 248
XML namespaces 35
XML object 66, 183, 215, 231

Backup and recovery 237
following items 183
REPAIR utility 215

XML PARSE
NEW-RCPT 178
RCPT 179
statement 178–179

XML parser 7
XML parsers 6
XML pattern 35, 70, 250

wide range 251
XML patterns 247, 250–251
XML processing 91, 230, 249

error handling 91
XML record 60, 197

logical creation 60
logical deletion 60

XML Schema 5–6, 36, 74, 120, 179, 230, 243, 250
Definition 9
Language 11

XML schema 6, 22, 27, 34–36, 48, 74, 89, 94–96, 106,
125, 138, 162–166, 183, 230, 235, 246–250, 275–276

naming standard 236
optional schema location 82
registration process 38
XML documents 179

XML schema repository 37, 82, 230, 236
XML schema validation 35, 37, 74, 82, 248
XML Schemas 11, 22, 48, 74, 106, 138, 163, 236, 246
XML source

document 12
XML structure 22, 91, 246

inherent strengths 246
XML table 52, 57–58, 75, 216, 219, 231, 233, 249

MIN_NODEID column 57
new version 59
NODEID index 239
space DSN00242.XBKR 0000 188
space partition 234
space XBKR0000 63
XBK_TO_STMTR_STMT 64
XML node id 57

XML table space
BUFFERPOOL property 231
empty or unformatted data pages 191
following keywords 219
full image copy 202
histogram statistics 219
inline copies 211
NODEID index 253
status RW 238
table space 259
 Index 301

7915IX.fm Draft Document for Review January 9, 2011 1:25 pm
TRECOVERY option 217
XML TABLESPACE 215
XML type 31, 74–75, 95, 159

table definition 76
XML type modifier 34, 74, 139, 163, 183, 185, 237, 248
XML value 34, 52, 54, 56, 78, 82, 110, 132–133,
195–196, 198, 220–221, 231, 239, 259

old versions 59
XML version

improved storage usage 59
xml version 5, 8–9, 32, 36, 56, 58, 67, 119–120, 122,
157, 197, 199, 221–222, 226, 264, 269
xmladdress c 26
XMLADDRESS table 30

second row 33
single XML document 30

XMLAGG 110
XMLELEMENT 25, 109–110, 112, 176
XMLEXISTS 25–26, 108–109, 172, 252–253
XMLEXISTS predicate 27, 109, 254
XMLMODIFY function 32, 81, 124, 167
XMLNAMESPACES 92, 96, 102, 165, 172, 254–255,
260
xmlns 5, 8, 36, 67, 80–81, 119, 190, 264
XMLPARSE 30–32, 59, 84, 115, 159, 177
XMLPARSE function 32
xmlpattern 35, 70, 106, 173, 235, 251, 253
XMLQUERY function 29
XMLR4.SORT WK01 186
XMLR4.SORT WK02 186
XMLR4.SORT WK03 186
XMLR4.SORT WK04 187
XMLSERIALIZE 30–31, 117, 159, 190, 208
XMLTABLE 25, 28, 91–93, 165, 171, 231, 252, 254, 276
XMLTABLE function 28–30, 32, 91, 100, 102–103, 111,
130, 165, 171–172, 178, 254–255, 260

result table 111
row XPath expressions 111

XMLXSROBJECTID scalar function 84
XPATH 14–15, 25, 105, 236, 261
XPath 11, 13–14, 22, 24–27, 29–30, 82, 107–108, 165,
169, 172, 231, 236, 244, 246, 251, 259, 261
XPath 2.0 13
XPath expression 18, 27–29, 43, 107–109, 111, 171, 252

good understanding 35
XPath expressions 13, 29, 35, 111, 252, 261
XPath location 34

last sequential node 34
XPath patterns 14
XQuery 15, 24–25, 103, 112–115
XQuery expression 15
xs

element name 10
XSD 6, 9, 11, 37, 44, 67, 77, 89, 138, 162, 179, 190, 235,
251, 264, 276
xsi 67, 80, 190, 208, 255, 264
XSL 11, 276
xsl

value-of select 18
XSL transformation 12

result tree 12
XSLT 11–13, 50, 129, 137, 149, 276
XSLT processor 13

desired behavior 13
XSLT stylesheet 18
XSLT transformation 17
XSR 38, 78, 84, 89, 166, 230, 247
XSR object 39

Z
z/OS xix, 4, 19, 89, 130, 163, 192, 225–226, 230, 235,
237, 256–257
302 Extremely pureXML in DB2 10 for z/OS

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50# sm
ooth w

hich has a P
P

I of 526. D
ivided

250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for the book and hide the others: S

p
ecial>C

o
n

d
itio

n
al

Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your book by opening the book file w
ith the spine.fm

 still open and F
ile>Im

p
o

rt>F
o

rm
ats the

C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 January 9, 2011 1:25 pm

7915sp
in

e.fm
303

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Extrem
ely pureXM

L in DB2 10 for z/OS

Extrem
ely pureXM

L in DB2 10 for z/OS

Extrem
ely pureXM

L in DB2 10 for
z/OS

Extrem
ely pureXM

L in DB2 10 for z/OS

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50# sm
ooth w

hich has a P
P

I of 526. D
ivided

250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for the book and hide the others: S

p
ecial>C

o
n

d
itio

n
al

Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your book by opening the book file w
ith the spine.fm

 still open and F
ile>Im

p
o

rt>F
o

rm
ats the

C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 January 9, 2011 1:25 pm

7915sp
in

e.fm
304

Extrem
ely pureXM

L in DB2 10 for
z/OS

Extrem
ely pureXM

L in DB2 10 for
z/OS

®

SG24-7915-00 ISBN

Draft Document for Review January 9, 2011 1:25 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Extremely pureXML
in DB2 10 for z/OS

Develop Java and
COBOL applications
accessing SQL and
XML data

Administer your XML
and SQL data

Choose the best
options for
installation and use

The DB2 pureXML feature offers sophisticated capabilities to store,
process and manage XML data in its native hierarchical format. By
integrating XML data intact into a relational database structure, users
can take full advantage of DB2’s relational data management features.

In this IBM Redbooks publication we document the steps for the
implementation of a simple but meaningful XML application scenario.
We have chosen to provide samples in COBOL and Java language. The
purpose being to provide an easy path to follow to integrate the XML
data type for the traditional DB2 user.

We have also added considerations for the data administrator and
suggested best practices for ease of use and better performance.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Importance of XML data
	1.1.1 Growth of XML
	1.1.2 The value of XML data

	1.2 XML introduction
	1.2.1 XML definitions
	1.2.2 Document validity and well-formedness
	1.2.3 XML Schema
	1.2.4 Extensible Stylesheet Language
	1.2.5 XPath
	1.2.6 XQuery
	1.2.7 XHTML
	1.2.8 XSL, XSLT, Xpath, and XHTML examples

	1.3 What is in this book

	Chapter 2. XML and DB2 for z/OS
	2.1 XML capabilities provided by DB2
	2.1.1 Native XML data type
	2.1.2 SQL/XML language
	2.1.3 Hybrid data access
	2.1.4 XML update
	2.1.5 XML indexes
	2.1.6 XML schema repository and schema validation

	2.2 Supporting infrastructure
	2.2.1 XSR installation steps
	2.2.2 XSR installation validation
	2.2.3 XSR setup troubleshooting
	2.2.4 z/OS XML system services

	2.3 Choice of tools
	2.3.1 3270 based tools
	2.3.2 GUI based tools

	Chapter 3. Application scenario
	3.1 Requirement for XML event logging and auditing
	3.2 Application scenario
	3.2.1 Using ISO 20022 with DB2 pureXML

	3.3 Application code samples
	3.3.1 DB2 SQL/XML programming pureXML
	3.3.2 Using Java with DB2 pureXML
	3.3.3 Using COBOL with DB2 pureXML

	Chapter 4. Creating and adding XML data
	4.1 Creation of tables with XML columns
	4.2 Storage structure for XML data
	4.3 Multi-versioning concurrency control for XML
	4.3.1 Example of improved concurrency with XML versions
	4.3.2 Example of improved storage usage with XML versions
	4.3.3 Storage structure for XML data with versions

	4.4 Catalog queries to gather information
	4.5 Display database command
	4.6 Ingesting XML data
	4.7 XML indexes

	Chapter 5. Validating XML data
	5.1 XML schema validation
	5.2 XML type modifier
	5.3 Automatic validation
	5.4 User-controlled validation
	5.5 Determining whether an XML document has been validated

	Chapter 6. DB2 SQL/XML programming
	6.1 Native SQL stored procedures and XML
	6.1.1 Native SQL stored procedure example
	6.1.2 XML error handling in native SQL procedures
	6.1.3 Stored procedures development tools

	6.2 Receiving XML messages from MQ
	6.2.1 WebSphere MQ functions
	6.2.2 DB2 stored procedure reading from MQ
	6.2.3 DB2 MQ Listener automation

	6.3 Audit queries (against logged XML messages)
	6.3.1 Simple SQL/XML search examples
	6.3.2 Choosing XML indexes
	6.3.3 Verifying XML index usage

	6.4 SQL/XML query techniques
	6.4.1 Manipulating XML data with XPath functions
	6.4.2 Filtering the rows returned with XMLEXISTS
	6.4.3 Creating documents with publishing functions
	6.4.4 Aggregating documents with XMLAGG
	6.4.5 Enumerating all occurrences using XMLTABLE
	6.4.6 Grouping data with XMLTABLE

	6.5 User defined functions with XML
	6.5.1 UDFs for reading from XML documents
	6.5.2 UDFs for writing updates to XML documents

	6.6 Triggers with XML
	6.7 XML joins
	6.7.1 XML to relational join
	6.7.2 XML to XML join

	6.8 XML with change data capture tools
	6.8.1 Change data capture tools background
	6.8.2 Using DB2 pureXML to receive CDC messages
	6.8.3 XML history objects

	Chapter 7. Using XML with Java
	7.1 XML in Java
	7.1.1 XML support in JDBC 3.0
	7.1.2 XML support in JDBC 4.0
	7.1.3 Constructing XML document in Java
	7.1.4 Binary XML format in Java applications

	7.2 The BankStmt application in Java
	7.2.1 Setting up the environment
	7.2.2 Insertion of rows with XML column values
	7.2.3 Updates of XML columns
	7.2.4 Retrieving XML data
	7.2.5 Call stored procedure to shred XML
	7.2.6 XSLT to transform XML document
	7.2.7 Java interface to MQ

	Chapter 8. Using XML with COBOL
	8.1 XML representation in COBOL
	8.1.1 XML host variables in COBOL
	8.1.2 Using non-XML variables for XML data
	8.1.3 Using file reference variables for efficient insert and retrieval

	8.2 The BankStmt application in COBOL
	8.2.1 Setting up the environment
	8.2.2 Inserting XML documents
	8.2.3 Updating XML documents
	8.2.4 Querying XML documents
	8.2.5 Designing indexes
	8.2.6 Schema evolution

	8.3 COBOL functions for manipulating XML
	8.3.1 Generation of XML documents in COBOL
	8.3.2 Shredding XML documents in COBOL
	8.3.3 Validation of XML documents in COBOL

	Chapter 9. Utilities with XML
	9.1 CHECK DATA
	9.2 CHECK INDEX
	9.3 COPY
	9.4 COPYTOCOPY
	9.5 EXEC SQL
	9.6 LISTDEF
	9.7 LOAD
	9.8 MERGECOPY
	9.9 QUIESCE
	9.10 REBUILD INDEX
	9.11 RECOVER INDEX and RECOVER TABLESPACE
	9.12 REORG INDEX and REORG TABLESPACE
	9.13 REPAIR
	9.14 REPORT
	9.15 RUNSTATS
	9.16 UNLOAD
	9.17 DSNTIAUL
	9.18 DSN1COPY

	Chapter 10. XML-related tasks for the DBA
	10.1 Tasks regarding system setup
	10.1.1 Setting up the XSR
	10.1.2 Buffer pool for XML
	10.1.3 Sizing XMLVALA and XMLVALS
	10.1.4 Be up to date with maintenance

	10.2 Tasks regarding object creation
	10.2.1 Creation of table with XML columns
	10.2.2 Alteration of implicitly created XML objects
	10.2.3 Sizing table spaces
	10.2.4 Compression
	10.2.5 Registration of schemas
	10.2.6 Creation of XML indexes
	10.2.7 Grants and authorizations required

	10.3 Housekeeping
	10.4 Backup and recovery
	10.5 Diagnostics
	10.5.1 Identification of XML related objects
	10.5.2 Investigating XML specific errors
	10.5.3 Correcting XML data

	Chapter 11. Performance considerations
	11.1 Choice of relational or XML storage
	11.1.1 XML only storage
	11.1.2 Hybrid storage
	11.1.3 Natural fit for XML storage

	11.2 XML Schema validation
	11.3 Managing access path selection with XML
	11.3.1 Differences between XML and relational indexes
	11.3.2 XML index design

	11.4 Encourage use of native SQL DB2 routines
	11.5 External language programming
	11.6 DBA considerations
	11.7 SQL/XML coding techniques
	11.7.1 XMLTABLE to minimize database calls
	11.7.2 XMLEXISTS for index access
	11.7.3 Simple XPath expressions

	Appendix A. Application scenario documents
	A.1 Schema
	A.2 XML message

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	Downloading and extracting the Web material

	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

