Bases de Datos Distribuidas: Guía Completa sobre Consistencia, Particionado y Replicación

Este capítulo está pensado para CIOs que necesitan tomar decisiones estratégicas sobre infraestructura de datos, arquitectos que deben diseñar sistemas capaces de escalar y mantenerse disponibles, e ingenieros que implementarán y operarán estos sistemas en producción. No vamos a esquivar la complejidad técnica —entenderla es imprescindible—, pero tampoco nos perderemos en ella sin conectarla con las decisiones de negocio que importan..

OLTP vs OLAP: patrones y anti-patrones — consistencia, latencia y particionado

La frontera entre OLTP y OLAP

La distinción entre sistemas OLTP (Online Transaction Processing) y OLAP (Online Analytical Processing) representa una de las decisiones arquitectónicas más fundamentales en cualquier plataforma de datos empresarial. Sin embargo, la línea divisoria se ha difuminado considerablemente en los últimos años con la llegada de arquitecturas híbridas (HTAP), bases de datos distribuidas y requisitos de analítica en tiempo real..

Diseño de esquemas y modelos de datos escalables — normalización, desnormalización y modelos por acceso

Buen diseño y mal diseño de esquemas

El diseño de esquemas de datos es la decisión arquitectónica más duradera y costosa de modificar en cualquier plataforma. Este capítulo desmitifica el dilema normalización vs desnormalización, proporcionando criterios cuantitativos basados en patrones de acceso reales, no en dogmas académicos.
Aprenderás cuándo y cómo aplicar particionado, sharding e índices estratégicos para escalar sin re-arquitecturas dolorosas. Incluye un caso real donde el rediseño basado en patrones de acceso redujo la latencia de 2.3s a 180ms (92% de mejora) y los costes de infraestructura en 48%, junto con checklists operativos, antipatrones documentados y frameworks de decisión para CIOs, arquitectos e ingenieros que necesitan que sus sistemas escalen sin colapsar..