IA y Arquitecturas de Datos: Cómo Redefinir tu Plataforma para una Empresa AI-Native

Evolución de arquitecturas de datos para IA

La Inteligencia Artificial ha dejado de ser una capa funcional superpuesta a los sistemas tradicionales para convertirse en un principio estructural que redefine cómo deben diseñarse, gobernarse y operar las arquitecturas de datos modernas.
Durante décadas, las plataformas empresariales se han construido alrededor de patrones estables: bases de datos relacionales, almacenes centralizados, ETLs recurrentes y modelos de gobernanza que asumían que el dato era fundamentalmente un activo estático.
Sin embargo, la irrupción de modelos de machine learning —y, más recientemente, los modelos generativos y LLMs— ha provocado un cambio profundo: ahora el dato es dinámico, contextual, tiempo-dependiente y semánticamente rico..

Panorama actual de motores de datos: RDBMS, NewSQL, NoSQL, series temporales, grafos , grafos y su lugar en la arquitectura

Panorama actual de motores de datos

La elección del motor de datos correcto puede suponer la diferencia entre una arquitectura que escala con elegancia y un cuello de botella perpetuo de 2 millones de euros anuales. Este capítulo desmitifica el zoo de bases de datos modernas y ofrece un marco de decisión práctico basado en patrones de acceso, no en tendencias tecnológicas..